1
|
Kim JH, Shim J, Ko N, Kim HJ, Lee Y, Bang S, Han A, Lee S, Kim H, Cho J, Choi K. Effect of porcine oviductal fluid-derived extracellular vesicle supplementation on in vitro embryonic developmental competence and the production efficiency of cloned pigs. Theriogenology 2025; 242:117442. [PMID: 40250251 DOI: 10.1016/j.theriogenology.2025.117442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Extracellular vesicles (EVs) derived from oviductal epithelial cells help with fertilization and embryo development. Although the effects of EVs on the developmental competence of somatic cell nuclear transfer (SCNT) embryos are known, their impact on the production efficiency of cloned pigs in surrogate mothers is unclear. We evaluated the effects of porcine oviductal fluid-derived EVs (oEVs) on the in vitro development of SCNT embryos and production efficiency in cloned pigs. Embryos were treated with isolated and characterized oEVs for 48 h, corresponding to the residence time of fertilized embryos in the oviduct. In both parthenogenetic activation (PA) and SCNT embryos, oEV-treated groups exhibited higher rate of blastocyst formation than the controls. Gene expression analysis revealed increased expression of genes essential for early embryonic development in four-cell stage SCNT embryos, including those involved in pluripotency (POU5F1; POU class 5 homeobox 1), genome stability (Zinc finger and SCAN domain containing 4), and DNA damage response (Checkpoint kinase 1). Additionally, gene expression analysis of blastocysts from SCNT embryos showed increased expression of pluripotency (POU5F1) and Wnt signal transduction (Axisinhibitionprotein2). Transfer of day-2 in vitro cultured SCNT embryos into surrogate mothers revealed no significant difference in production efficiencies between the control and experimental groups. Thus, enhanced early embryonic developmental competence observed in vitro following oEV treatment of PA or SCNT embryos did not translate into improved production efficiency of cloned pigs following embryo transfer to surrogate mothers. Hence, the impact of oEV treatment on live birth outcomes requires further investigation.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Nayoung Ko
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Hyoung-Joo Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Yongjin Lee
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ayeong Han
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunil Kim
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kimyung Choi
- Optipharm Inc, 63, Osongsaengmyeong 6-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28158, Republic of Korea.
| |
Collapse
|
2
|
Luo W, Yue H, Song G, Cheng J, He M. Identification and Functional Analysis of Novel Mutations in AXIN2 and LRP6 Linked With Non-Syndromic Tooth Agenesis. Mol Genet Genomic Med 2025; 13:e70101. [PMID: 40293036 PMCID: PMC12035762 DOI: 10.1002/mgg3.70101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Tooth agenesis (TA) ranks among the most common dental abnormalities. This study aimed to explore the etiology and pathogenesis in Chinese families with non-syndromic TA. METHODS Chinese families exhibiting non-syndromic TA were recruited. Exome sequencing was conducted to identify mutations in the candidate genes, followed by Sanger sequencing for validation. Functional studies, including bioinformatics analyses, western blots, and dual-luciferase assays, were performed to analyze the impact of the two mutations on the Wnt/β-catenin pathway. RESULTS We identified a novel heterozygous frameshift insertion in AXIN2 [NM_001363813.1: c.1799dupG (p.Asn601GlnfsTer41)] and a novel de novo heterozygous non-frameshift deletion in LRP6 [NM_002336.3: c.3074_3082del (p.1025_1028del)]. Further functional studies indicated that AXIN2 p.Asn601GlnfsTer41 caused hyperactivation of the Wnt/β-catenin pathway, and LRP6 p.1025_1028del led to pathway suppression. CONCLUSIONS This study expands the spectrum of AXIN2 and LRP6 mutations associated with non-syndromic TA. Our study provided further functional evidence supporting the pathogenicity of suppression and excessive activation of the Wnt signaling pathway in TA.
Collapse
Affiliation(s)
- Wendi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Haitang Yue
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Guangtai Song
- Department of Paediatric Dentistry, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Cheng
- Department of Paediatric Dentistry, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Miao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Schmidt O, Brückner M, Bernkopf DB. AXIN2 promotes degradation of AXIN1 through tankyrase in colorectal cancer cells. FEBS J 2025; 292:1019-1033. [PMID: 39022865 PMCID: PMC11880978 DOI: 10.1111/febs.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
AXIN1 and AXIN2 are homologous proteins that inhibit the Wnt/β-catenin signaling pathway, which is frequently hyperactive in colorectal cancer. Stabilization of AXIN1 and AXIN2 by inhibiting their degradation through tankyrase (TNKS) allows the attenuation of Wnt signaling in cancer, attracting interest for potential targeted therapy. Here, we found that knockout or knockdown of AXIN2 in colorectal cancer cells increased the protein stability of AXIN1. The increase in AXIN1 overcompensated for the loss of AXIN2 with respect to protein levels; however, functionally it did not because loss of AXIN2 activated the pathway. Moreover, AXIN2 was highly essential in the context of TNKS inhibition because TNKS-targeting small-molecule inhibitors completely failed to inhibit Wnt signaling and to stabilize AXIN1 in AXIN2 knockout cells. The increased AXIN1 protein stability and the impaired stabilization by TNKS inhibitors indicated disrupted TNKS-AXIN1 regulation in AXIN2 knockout cells. Concordantly, mechanistic studies revealed that co-expression of AXIN2 recruited TNKS to AXIN1 and stimulated TNKS-mediated degradation of transiently expressed AXIN1 wild-type and AXIN1 mutants with impaired TNKS binding. Taken together, our data suggest that AXIN2 promotes degradation of AXIN1 through TNKS in colorectal cancer cells by directly linking the two proteins, and these findings may be relevant for TNKS inhibition-based colorectal cancer therapies.
Collapse
Affiliation(s)
- Olivia Schmidt
- Experimental Medicine II, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander University Erlangen‐NürnbergGermany
| | - Martina Brückner
- Experimental Medicine II, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander University Erlangen‐NürnbergGermany
| | - Dominic B. Bernkopf
- Experimental Medicine II, Nikolaus‐Fiebiger‐CenterFriedrich‐Alexander University Erlangen‐NürnbergGermany
| |
Collapse
|
4
|
Valenzuela-Bezanilla D, Mardones MD, Galassi M, Arredondo SB, Santibanez SH, Gutierrez-Jimenez S, Merino-Véliz N, Bustos FJ, Varela-Nallar L. RSPO/LGR signaling regulates proliferation of adult hippocampal neural stem cells. Stem Cells 2025; 43:sxae065. [PMID: 39432578 DOI: 10.1093/stmcls/sxae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
In the dentate gyrus of the adult hippocampus, neurogenesis from neural stem cells (NSCs) is regulated by Wnt signals from the local microenvironment. The Wnt/β-catenin pathway is active in NSCs, where it regulates proliferation and fate commitment, and subsequently its activity is strongly attenuated. The mechanisms controlling Wnt activity are poorly understood. In stem cells from adult peripheral tissues, secreted R-spondin proteins (RSPO1-4) interact with LGR4-6 receptors and control Wnt signaling strength. Here, we found that RSPO1-3 and LGR4-6 are expressed in the adult dentate gyrus and in cultured NSCs isolated from the adult mouse hippocampus. LGR4-5 expression decreased in cultured NSCs upon differentiation, concomitantly with the reported decrease in Wnt activity. Treatment with RSPO1-3 increased NSC proliferation and the expression of Cyclin D1 but did not induce the expression of Axin2 or RNF43, 2 well-described Wnt target genes. However, RSPOs enhanced the effect of Wnt3a on Axin2 and RNF43 expression as well as on Wnt/β-catenin reporter activity, indicating that they can potentiate Wnt activity in NSCs. Moreover, RSPO1-3 was found to be expressed by cultured dentate gyrus astrocytes, a crucial component of the neurogenic niche. In co-culture experiments, the astrocyte-induced proliferation of NSCs was prevented by RSPO2 knockdown in astrocytes and LGR5 knockdown in hippocampal NSCs. Additionally, RSPO2 knockdown in the adult mouse dentate gyrus reduced proliferation of neural stem and progenitor cells in vivo. Altogether, our results indicate that RSPO/LGR signaling is present in the dentate gyrus and plays a crucial role in regulating neural precursor cell proliferation.
Collapse
Affiliation(s)
- Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Muriel D Mardones
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Maximiliano Galassi
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Sebastian B Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Stephanie Gutierrez-Jimenez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Nicolás Merino-Véliz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), 8370071 Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, 8370071 Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), 8370071 Santiago, Chile
| |
Collapse
|
5
|
Yilmaz O, Arora K, Lee SH, Hosseini S, Chen F, Padmanabha N, Eng G, Kantekure K, Yilmaz O, Deshpande V. LGR5 as a diagnostic marker for dysplasia in serrated polyps. J Clin Pathol 2025:jcp-2024-209856. [PMID: 39788729 DOI: 10.1136/jcp-2024-209856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
AIMS WNT signalling pathway dysregulation is often a critical early component in colorectal neoplasia, particularly the chromosomal instability pathway. Using two WNT reporters, LGR5 and AXIN2, we sought to assess whether these polyps demonstrate predictable expression patterns and if these patterns show diagnostic value. METHODS We evaluated 23 adenomas (TA), 23 sessile serrated lesions (SSLs), 14 SSL with dysplasia and 38 traditional serrated adenomas (TSA). Chromogenic in situ hybridisation stains (ISH) for LGR5 and AXIN2 were performed. Reactivity was defined as strong, intermediate or weak. Upper third crypt reactivity was defined as full-thickness staining. Accentuation within ectopic crypts (ECF) was recorded. RESULTS TAs (91%) showed strong reactivity and full-thickness staining with LGR5. TSAs showed full-thickness and weak to intermediate LGR5 reactivity (79%) and ECF with LGR5 accentuation was exclusively seen in TSA. SSL showed weak LGR5 reactivity confined to the basal crypt region (100%). SSL with dysplasia also showed weak or intermediate (100%) LGR5 reactivity, but the reactivity pattern was full thickness (88%). AXIN2 expression parallels LGR5 expression (Pearson coefficient=0.63) regarding signal intensity for the examined polyp groups. CONCLUSIONS Qualitative and quantitative differences in AXIN2 and LGR5 expression assist in the diagnosis of SSL with dysplasia.
Collapse
Affiliation(s)
- Osman Yilmaz
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kshtij Arora
- Massachusetts General Hospital, Wuincy, Massachusetts, USA
| | - Soo Hyun Lee
- Boston Medical Center, Boston, Massachusetts, USA
| | | | - Feidi Chen
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nandan Padmanabha
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - George Eng
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omer Yilmaz
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
7
|
Xu M, Sun Y, Cong B, Zhang X, Li Z, Liu Y, Geng L, Qin Q, Wu Y, Gao M, Wang W, Wang Y, Xu Y. The mechanism of low molecular weight fucoidan-incorporated nanofiber scaffolds inhibiting oral leukoplakia via SR-A/Wnt signal axis. Front Pharmacol 2024; 15:1397761. [PMID: 39104391 PMCID: PMC11298705 DOI: 10.3389/fphar.2024.1397761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.
Collapse
Affiliation(s)
- Ming Xu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaopei Zhang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Yingnan Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qi Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Vriend J, Liu XQ. Survival-Related Genes on Chromosomes 6 and 17 in Medulloblastoma. Int J Mol Sci 2024; 25:7506. [PMID: 39062749 PMCID: PMC11277021 DOI: 10.3390/ijms25147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4β, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiao-Qing Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Xie Y, Huang K, Li H, Kong W, Ye J. High serum klotho levels are inversely associated with the risk of low muscle mass in middle-aged adults: results from a cross-sectional study. Front Nutr 2024; 11:1390517. [PMID: 38854159 PMCID: PMC11157077 DOI: 10.3389/fnut.2024.1390517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Muscle mass gradually declines with advancing age, and as an anti-aging protein, klotho may be associated with muscle mass. This study aims to explore the relationship between klotho levels and muscle mass in the middle-aged population. Methods Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2011 to 2018, we conducted a cross-sectional analysis on a cohort of individuals aged 40-59. Weighted multivariable analysis was employed to assess the correlation between klotho and low muscle mass, with stratified and Restricted Cubic Spline (RCS) analyses. Results The cross-sectional investigation revealed a significant negative correlation between klotho levels and the risk of low muscle mass (Model 3: OR = 0.807, 95% CI: 0.712-0.915). A notable interaction between klotho and sex was observed, with a significant interaction effect (P for interaction = 0.01). The risk association was notably higher in females. The risk association was notably higher in females. Additionally, RCS analysis unveiled a significant linear relationship between klotho and low muscle mass (P for nonlinear = 0.9495, P for overall<0.0001). Conclusion Our observational analysis revealed a noteworthy inverse relationship between klotho and low muscle mass, particularly prominent among female participants. This discovery provides crucial insights for the development of more effective intervention strategies and offers a new direction for enhancing muscle quality in the middle-aged population.
Collapse
Affiliation(s)
- Yilian Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kai Huang
- Department of General Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hui Li
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Weiliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayuan Ye
- Department of Infectious Diseases, Shangyu People's Hospital of Shaoxing, Shaoxing, Zhejiang, China
| |
Collapse
|
10
|
Gessler L, Huraskin D, Eiber N, Hashemolhosseini S. The impact of canonical Wnt transcriptional repressors TLE3 and TLE4 on postsynaptic transcription at the neuromuscular junction. Front Mol Neurosci 2024; 17:1360368. [PMID: 38600964 PMCID: PMC11004254 DOI: 10.3389/fnmol.2024.1360368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Here, we investigated the role of the canonical Wnt signaling pathway transcriptional regulators at the neuromuscular junction. Upon applying a denervation paradigm, the transcription levels of Ctnnb1, Tcf7l1, Tle1, Tle2, Tle3, and Tle4 were significantly downregulated. A significant decrease in canonical Wnt signaling activity was observed using the denervation paradigm in Axin2-lacZ reporter mice. Alterations in the transcriptional profile of the myogenic lineage in response to agrin (AGRN) suggested that TLE3 and TLE4, family members of groucho transducin-like enhancer of split 3 (TLE3), transcriptional repressors known to antagonize T cell factor/lymphoid enhancer factor (TCF)-mediated target gene activation, could be important regulators of canonical Wnt signaling activity at the postsynapse. Knockouts of these genes using CRISPR/Cas9 gene editing in primary skeletal muscle stem cells, called satellite cells, led to decreased AGRN-dependent acetylcholine receptor (CHRN) clustering and reduced synaptic gene transcription upon differentiation of these cells. Overall, our findings demonstrate that TLE3 and TLE4 participate in diminishing canonical Wnt signaling activity, supporting transcription of synaptic genes and CHRN clustering at the neuromuscular junction.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Danyil Huraskin
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nane Eiber
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Tan L, Yan M, Su Z, Wang H, Li H, Zhao X, Liu S, Zhang L, Sun Q, Lu D. R-spondin-1 induces Axin degradation via the LRP6-CK1ε axis. Cell Commun Signal 2024; 22:14. [PMID: 38183076 PMCID: PMC10768284 DOI: 10.1186/s12964-023-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
R-spondins (RSPOs) are secreted signaling molecules that potentiate the Wnt/β-catenin pathway by cooperating with Wnt ligands. RSPO1 is crucial in tissue development and tissue homeostasis. However, the molecular mechanism by which RSPOs activate Wnt/β-catenin signaling remains elusive. In this study, we found that RSPOs could mediate the degradation of Axin through the ubiquitin-proteasome pathway. The results of Co-IP showed that the recombinant RSPO1 protein promoted the interaction between Axin1 and CK1ε. Either knockout of the CK1ε gene or treatment with the CK1δ/CK1ε inhibitor SR3029 caused an increase in Axin1 protein levels and attenuated RSPO1-induced degradation of the Axin1 protein. Moreover, we observed an increase in the number of associations of LRP6 with CK1ε and Axin1 following RSPO1 stimulation. Overexpression of LRP6 further potentiated Axin1 degradation mediated by RSPO1 or CK1ε. In addition, recombinant RSPO1 and Wnt3A proteins synergistically downregulated the protein expression of Axin1 and enhanced the transcriptional activity of the SuperTOPFlash reporter. Taken together, these results uncover the novel mechanism by which RSPOs activate Wnt/β-catenin signaling through LRP6/CK1ε-mediated degradation of Axin.
Collapse
Affiliation(s)
- Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengfang Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanbin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
12
|
Luissint AC, Fan S, Nishio H, Lerario AM, Miranda J, Hilgarth RS, Cook J, Nusrat A, Parkos CA. CXADR-Like Membrane Protein Regulates Colonic Epithelial Cell Proliferation and Prevents Tumor Growth. Gastroenterology 2024; 166:103-116.e9. [PMID: 37716376 DOI: 10.1053/j.gastro.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND & AIMS CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-β-catenin pathways. CONCLUSIONS These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.
Collapse
Affiliation(s)
| | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Hikaru Nishio
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Jael Miranda
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Roland S Hilgarth
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jonas Cook
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Abdalla H, Storino R, Bandeira A, Teixeira L, Millás A, Lisboa-Filho P, Kantovitz K, Nociti Junior F. Glycogen synthase kinase 3 inhibition enhances mineral nodule formation by cementoblasts in vitro. Braz Oral Res 2023; 37:e112. [PMID: 37970932 DOI: 10.1590/1807-3107bor-2023.vol37.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to investigate whether GSK-3 inhibition (CHIR99021) effectively promoted mineralization by cementoblasts (OCCM-30). OCCM-30 cells were used and treated with different concentrations of CHIR99021 (2.5, 5, and 10 mM). Experiments included proliferation and viability, cellular metabolic activity, gene expression, and mineral nodule formation by Xylene Orange at the experimental time points. In general, CHIR99021 did not significantly affect OCCM-30 viability and cell metabolism (MTT assay) (p > 0.05), but increased OCCM-30 proliferation at 2.5 mM on days 2 and 4 (p < 0.05). Data analysis further showed that inhibition of GSK-3 resulted in increased transcript levels of Axin2 in OCCM-30 cells starting as early as 4 h, and regulated the expression of key bone markers including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx-2), osteocalcin (Ocn), and osterix (Osx). In addition, CHIR99021 led to an enhanced mineral nodule formation in vitro under both osteogenic and non-osteogenic conditions as early as 5 days after treatment. Altogether, the results of the current study suggest that inhibition of GSK-3 has the potential to promote cementoblast differentiation leading to increased mineral deposition in vitro.
Collapse
Affiliation(s)
- Henrique Abdalla
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Rafael Storino
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Amanda Bandeira
- Universidade José do Rosário Vellano University, School of Dentistry, Department of Periodontics, Varginha, MG, Brazil
| | - Lucas Teixeira
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Ana Millás
- Empresa de Biotecnologia e Soluções 3D, 3D Biotechnology Solutions, Department of Innovation, Campinas, SP, Brazil
| | - Paulo Lisboa-Filho
- Universidade Estadual Paulista, School of Sciences, Department of Physics and Meteorology, Bauru, SP, Brazil
| | - Kamila Kantovitz
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Francisco Nociti Junior
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| |
Collapse
|
14
|
Shi P, Xie X, Xu C, Wu Y, Wang J. Activation of Wnt signaling in Axin2 + cells leads to osteodentin formation and cementum overgrowth. Oral Dis 2023; 29:3551-3558. [PMID: 36520568 DOI: 10.1111/odi.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES In this study, we used the mouse incisor model to investigate the regulatory mechanisms of Wnt/β-catenin signaling on Axin2+ cells in tooth development. MATERIALS AND METHODS Axin2lacZ/+ reporter mice were used to define the expression pattern of Axin2 in mouse incisors. We traced the fate of Axin2+ cells from postnatal Day 21 (P21) to P56 using Axin2CreERT2/+ and R26RtdTomato/+ reporter mice. For constitutive activation of Wnt signaling, Axin2CreERT2/+ , β-cateninflox(Ex3)/+ , and R26RtdTomato/+ (CA-β-cat) mice were generated to investigate the gain of function (GOF) of β-catenin in mouse incisor growth. RESULTS The X-gal staining of Axin2lacZ/+ reporter mice and lineage tracing showed that Axin2 was widely expressed in dental mesenchyme of mouse incisors, and Axin2+ cells were essential cell sources for odontoblasts, pulp cells, and periodontal ligament cells. The constitutive activation of Wnt signaling in Axin2+ cells resulted in the formation of osteodentin featured with increased DMP1 and dispersed DSP expression and overgrowth of cementum. CONCLUSION Wnt signaling plays a key role in the differentiation and maturation of Axin2+ cells in mouse incisors.
Collapse
Affiliation(s)
- Peilei Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Klement K, Brückner M, Bernkopf DB. Phosphorylation of axin within biomolecular condensates counteracts its tankyrase-mediated degradation. J Cell Sci 2023; 136:jcs261214. [PMID: 37721093 PMCID: PMC10652037 DOI: 10.1242/jcs.261214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Axin (also known as AXIN1) is a central negative regulator of the proto-oncogenic Wnt/β-catenin signaling pathway, as axin condensates provide a scaffold for the assembly of a multiprotein complex degrading β-catenin. Axin, in turn, is degraded through tankyrase. Consequently, tankyrase small-molecule inhibitors block Wnt signaling by stabilizing axin, revealing potential for cancer therapy. Here, we discovered that axin is phosphorylated by casein kinase 1 alpha 1 (CSNK1A1, also known as CK1α) at an N-terminal casein kinase 1 consensus motif, and that this phosphorylation is antagonized by the catalytic subunit alpha of protein phosphatase 1 (PPP1CA, hereafter referred to as PP1). Axin condensates promoted phosphorylation by enriching CK1α over PP1. Importantly, the phosphorylation took place within the tankyrase-binding site, electrostatically and/or sterically hindering axin-tankyrase interaction, and counteracting tankyrase-mediated degradation of axin. Thus, the presented data propose a novel mechanism regulating axin stability, with implications for Wnt signaling, cancer therapy and self-organization of biomolecular condensates.
Collapse
Affiliation(s)
- Katharina Klement
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dominic B. Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
16
|
Trybek G, Jaroń A, Gabrysz-Trybek E, Rutkowska M, Markowska A, Chmielowiec K, Chmielowiec J, Grzywacz A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. Int J Mol Sci 2023; 24:13889. [PMID: 37762190 PMCID: PMC10530430 DOI: 10.3390/ijms241813889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In recent research, there has been a growing awareness of the role of genetic factors in the positioning and eruption of teeth in the maxilla and mandible. This study aimed to evaluate the potential of specific polymorphic markers of single nucleotide polymorphisms (SNPs) located within the PAX9, MSX1, AXIN2, and IRF6 genes to determine the predisposition to tooth impaction. The study participants were divided into two groups: the first group consisted of individuals with at least one impacted secondary tooth. In contrast, the second group (control group) had no impacted teeth in their jaws. To analyze the genes, real-time PCR (polymerase chain reaction) and TaqMan probes were utilized to detect the selected polymorphisms. The findings suggest that disruptions in the structure and function of the mentioned genetic factors such as polymorphic and haplotype variants of PAX9, MSX1, AXIN2, and IRF6 genes, which play a direct role in tooth and periodontal tissue development, might be significant factors in tooth impaction in individuals with genetic variations. Therefore, it is reasonable to hypothesize that tooth impaction may be influenced, at least in part, by the presence of specific genetic markers, including different allelic variants of the PAX9, AXIN2, and IRF6 genes, and especially MSX1.
Collapse
Affiliation(s)
- Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72/18, 70-111 Szczecin, Poland
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Jaroń
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Ewa Gabrysz-Trybek
- Individual Specialist Medical Practice Ewa Gabrysz-Trybek, 70-111 Szczecin, Poland;
| | - Monika Rutkowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Markowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
17
|
Tage H, Yamaguchi K, Nakagawa S, Kasuga S, Takane K, Furukawa Y, Ikenoue T. Visinin-like 1, a novel target gene of the Wnt/β-catenin signaling pathway, is involved in apoptosis resistance in colorectal cancer. Cancer Med 2023. [PMID: 37096864 DOI: 10.1002/cam4.5970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Abnormal activation of Wnt/β-catenin signaling is associated with various aspects of cancer development. This study explored the roles of novel target genes of the Wnt/β-catenin signaling pathway in cancer cells. METHODS Using the haploid chronic myelogenous leukemia cell line HAP1, RNA sequencing (RNA-seq) was performed to identify genes whose expression was increased by APC disruption and reversed by β-catenin knockdown (KD). The regulatory mechanism and function of one of the candidate genes was investigated in colorectal cancer (CRC) cells. RESULTS In total, 64 candidate genes whose expression was regulated by Wnt/β-catenin signaling were identified. Of these candidate genes, the expression levels of six were reduced by β-catenin KD in HCT116 CRC cells in our previous microarray. One of these genes was Visinin-like 1 ( VSNL1 ), which belongs to the neuronal calcium-sensor gene family. The expression of VSNL1 was regulated by the β-catenin/TCF7L2 complex via two TCF7L2-binding elements in intron 1. VSNL1 KDinduced apoptosis in VSNL1-positive CRC cells. Additionally, forced expression of wild-type VSNL1, but not a myristoylation, Ca2+ -binding, or dimerization-defective mutant, suppressed the apoptosis induced by camptothecin and doxorubicin in VSNL1-negative CRC cells. CONCLUSION Our findings suggest that VSNL1 , a novel target gene of the Wnt/β-catenin signaling pathway, is associated with apoptosis resistance in CRC cells.
Collapse
Affiliation(s)
- Hiroki Tage
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - So Kasuga
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Leclerc J, Beaumont M, Vibert R, Pinson S, Vermaut C, Flament C, Lovecchio T, Delattre L, Demay C, Coulet F, Guillerm E, Hamzaoui N, Benusiglio PR, Brahimi A, Cornelis F, Delhomelle H, Fert-Ferrer S, Fournier BPJ, Hovnanian A, Legrand C, Lortholary A, Malka D, Petit F, Saurin JC, Lejeune S, Colas C, Buisine MP. AXIN2 germline testing in a French cohort validates pathogenic variants as a rare cause of predisposition to colorectal polyposis and cancer. Genes Chromosomes Cancer 2023; 62:210-222. [PMID: 36502525 PMCID: PMC10107344 DOI: 10.1002/gcc.23112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Only a few patients with germline AXIN2 variants and colorectal adenomatous polyposis or cancer have been described, raising questions about the actual contribution of this gene to colorectal cancer (CRC) susceptibility. To assess the clinical relevance for AXIN2 testing in patients suspected of genetic predisposition to CRC, we collected clinical and molecular data from the French Oncogenetics laboratories analyzing AXIN2 in this context. Between 2004 and June 2020, 10 different pathogenic/likely pathogenic AXIN2 variants were identified in 11 unrelated individuals. Eight variants were from a consecutive series of 3322 patients, which represents a frequency of 0.24%. However, loss-of-function AXIN2 variants were strongly associated with genetic predisposition to CRC as compared with controls (odds ratio: 11.89, 95% confidence interval: 5.103-28.93). Most of the variants were predicted to produce an AXIN2 protein devoid of the SMAD3-binding and DIX domains, but preserving the β-catenin-binding domain. Ninety-one percent of the AXIN2 variant carriers who underwent colonoscopy had adenomatous polyposis. Forty percent of the variant carriers developed colorectal or/and other digestive cancer. Multiple tooth agenesis was present in at least 60% of them. Our report provides further evidence for a role of AXIN2 in CRC susceptibility, arguing for AXIN2 testing in patients with colorectal adenomatous polyposis or cancer.
Collapse
Affiliation(s)
- Julie Leclerc
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Marie Beaumont
- Laboratoire de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France
| | - Roseline Vibert
- UF d'Oncogénétique Clinique, Département de Génétique et Institut Universitaire de Cancérologie, Hôpitaux Pitié-Salpêtrière et Saint-Antoine, AP-HP. Sorbonne Université, Paris, France
| | - Stéphane Pinson
- Human Genetics Department, Hospices Civils de Lyon, Lyon, France
| | - Catherine Vermaut
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Cathy Flament
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Tonio Lovecchio
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Lucie Delattre
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Christophe Demay
- Bioinformatics Unit, Molecular Biology Facility, Lille University Hospital, Lille, France
| | - Florence Coulet
- Sorbonne University, INSERM, Saint-Antoine Research Center, Microsatellites instability and Cancer, CRSA, Genetics Department, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne University, Paris, France
| | - Erell Guillerm
- Sorbonne University, INSERM, Saint-Antoine Research Center, Microsatellites instability and Cancer, CRSA, Genetics Department, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne University, Paris, France
| | - Nadim Hamzaoui
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, AP-HP Centre, Université de Paris, and INSERM UMR_S1016, Institut Cochin, Université de Paris, Paris, France
| | - Patrick R Benusiglio
- UF d'Oncogénétique Clinique, Département de Génétique et Institut Universitaire de Cancérologie, Hôpitaux Pitié-Salpêtrière et Saint-Antoine, AP-HP. Sorbonne Université, Paris, France
| | | | - François Cornelis
- Department of Genetics-Oncogénétics-Prevention, Clermont-Ferrand Hospital, Clermont-Auvergne University, Clermont Ferrand, France
| | - Hélène Delhomelle
- Department of Genetics, Curie Institute, Paris Sciences & Lettres Research University, Paris, France
| | | | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, University of Paris, Sorbonne University, INSERM UMRS 1138 - Molecular Oral Pathophysiology, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral and Dental Rare Diseases, AP-HP, University of Paris, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163 - Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France.,Department of Genetics, Necker Hospital for sick children, AP-HP, Paris, France
| | - Clémentine Legrand
- Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Alain Lortholary
- Centre Catherine de Sienne, hôpital privé du Confluent, Nantes, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, Paris-Saclay University, INSERM UMR 1279 - Unité Dynamique des Cellules Tumorales, Villejuif, France
| | - Florence Petit
- Clinique de Génétique, CHU Lille, Lille, France.,Univ. Lille, EA7364 - RADEME, CHU Lille, Lille, France
| | | | | | - Chrystelle Colas
- Department of Genetics, Curie Institute, Paris Sciences & Lettres Research University, Paris, France
| | - Marie-Pierre Buisine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| |
Collapse
|
19
|
Mukhopadhyay B, Holovac K, Schuebel K, Mukhopadhyay P, Cinar R, Iyer S, Marietta C, Goldman D, Kunos G. The endocannabinoid system promotes hepatocyte progenitor cell proliferation and maturation by modulating cellular energetics. Cell Death Discov 2023; 9:104. [PMID: 36966147 PMCID: PMC10039889 DOI: 10.1038/s41420-023-01400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
The proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2+Cnr1+ HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored. Here, we show that in vitro exposure of HPCs to AEA triggers both cell cycling and differentiation along with increased expression of Cnr1, Krt19, and Axin2. Mechanistically, we found that AEA promotes the nuclear localization of the transcription factor β-catenin, with subsequent induction of its downstream targets. Systemic analyses of cells after CRISPR-mediated knockout of the β-catenin-regulated transcriptome revealed that AEA modulates β-catenin-dependent cell cycling and differentiation, as well as interleukin pathways. Further, we found that AEA promotes OXPHOS in HPCs when amino acids and glucose are readily available as substrates, but AEA inhibits it when the cells rely primarily on fatty acid oxidation. Thus, the endocannabinoid system promotes hepatocyte renewal and maturation by stimulating the proliferation of Axin2+Cnr1+ HPCs via the β-catenin pathways while modulating the metabolic activity of their precursor cells.
Collapse
Affiliation(s)
- Bani Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Kellie Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kornel Schuebel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sindhu Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Abdrabou A, Duong BTV, Chen K, Atwal RS, Labib M, Lin S, Angers S, Kelley SO. nuPRISM: Microfluidic Genome-Wide Phenotypic Screening Platform for Cellular Nuclei. ACS CENTRAL SCIENCE 2022; 8:1618-1626. [PMID: 36589880 PMCID: PMC9801500 DOI: 10.1021/acscentsci.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 06/17/2023]
Abstract
Genome-wide loss-of-function screens are critical tools to identify novel genetic regulators of intracellular proteins. However, studying the changes in the organelle-specific expression profile of intracellular proteins can be challenging due to protein localization differences across the whole cell, hindering context-dependent protein expression and activity analyses. Here, we describe nuPRISM, a microfluidics chip specifically designed for large-scale isolated nuclei sorting. The new device enables rapid genome-wide loss-of-function phenotypic CRISPR-Cas9 screens directed at intranuclear targets. We deployed this technology to identify novel genetic regulators of β-catenin nuclear accumulation, a phenotypic hallmark of APC-mutated colorectal cancer. nuPRISM expands our ability to capture aberrant nuclear morphological and functional traits associated with distinctive signal transduction and subcellular localization-driven functional processes with substantial resolution and high throughput.
Collapse
Affiliation(s)
- Abdalla
M. Abdrabou
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bill T. V. Duong
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Kangfu Chen
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Randy Singh Atwal
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Mahmoud Labib
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
| | - Sichun Lin
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Stephane Angers
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Biochemistry, Faculty of Medicine, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Terrence
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Shana O. Kelley
- Department
of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60611, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60611, United States
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
21
|
Gessler L, Kurtek C, Merholz M, Jian Y, Hashemolhosseini S. In Adult Skeletal Muscles, the Co-Receptors of Canonical Wnt Signaling, Lrp5 and Lrp6, Determine the Distribution and Size of Fiber Types, and Structure and Function of Neuromuscular Junctions. Cells 2022; 11:cells11243968. [PMID: 36552732 PMCID: PMC9777411 DOI: 10.3390/cells11243968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christopher Kurtek
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mira Merholz
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yongzhi Jian
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24634
| |
Collapse
|
22
|
Roa Fuentes LA, Bloemen M, Carels CE, Wagener FA, Von den Hoff JW. Retinoic acid effects on in vitro palatal fusion and WNT signaling. Eur J Oral Sci 2022; 130:e12899. [PMID: 36303276 PMCID: PMC10092745 DOI: 10.1111/eos.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Retinoic acid is the main active vitamin A derivate and a key regulator of embryonic development. Excess of retinoic acid can disturb palate development in mice leading to cleft palate. WNT signaling is one of the main pathways in palate development. We evaluated the effects of retinoic acid on palate fusion and WNT signaling in in vitro explant cultures. Unfused palates from E13.5 mouse embryos were cultured for 4 days with 0.5 μM, 2 μM or without retinoic acid. Apoptosis, proliferation, WNT signaling and bone formation were analyzed by histology and quantitative PCR. Retinoic acid treatment with 0.5 and 2.0 μM reduced palate fusion from 84% (SD 6.8%) in the controls to 56% (SD 26%) and 16% (SD 19%), respectively. Additionally, 2 μM retinoic acid treatment increased Axin2 expression. Retinoic acid also increased the proliferation marker Pcna as well as the number of Ki-67-positive cells in the palate epithelium. At the same time, the WNT inhibitors Dkk1, Dkk3, Wif1 and Sfrp1 were downregulated at least two-fold. Retinoic acid also down-regulated Alpl and Col1a2 gene expression. Alkaline phosphatase (ALP) activity was notably reduced in the osteogenic areas of the retinoic acid- treated palates. Our data suggest that retinoic acid impairs palate fusion and bone formation by upregulation of WNT signaling.
Collapse
Affiliation(s)
- Laury Amelia Roa Fuentes
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterial Engineering (IBE), Maastricht University, Maastricht, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carine El Carels
- Department of Human Genetics, KU University Leuven, Leuven, Belgium
| | - Frank Adtg Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Bazid HAS, Samaka RM, Mousa MEA, Seleit I. Immunohistochemical expression of Axin-2, as an implication of the role of stem cell in scar pathogenesis and prognosis. J Cosmet Dermatol 2022; 21:6010-6020. [PMID: 35546288 DOI: 10.1111/jocd.15075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Wound healing is a multi-phased process. A disruption in these phases could result in a persistent wound or an atypical scar. Wounding activates wingless proteins (Wnt) signaling, which aids in the healing process. Axis inhibition protein-2 regulates a variety of cellular activities through the Wnt and other pathways. AIM To assess the role of Axin-2 in patients with abnormal scars, using immunohistochemical study. METHODS This case-control study enrolled a total of 60 participants: 30 patients with abnormal scars (12 hypertrophic scars, 13 atrophic scars, and 5 keloid scars) and 30 age, sex, and site matched, apparently healthy controls. For immunohistochemistry examination of Axin-2 expression, skin samples were obtained from (i) lesional and (ii) perilesional skin of patients with aberrant scars, as well as (iii) normal control's skin. RESULTS Epidermal Axin-2 expression positivity, cellular topography, intensity, and H score showed significant differences between the groups (p < 0.05). In the dermis (fibroblast/myofibroblast), there were significant differences in Axin-2 expression positivity, location, intensity, and H score (p < 0.001 for all). The epidermal Axin-2 H score and the Manchester scale had a significant positive correlation (r = 0.832, p = 0.001). The epidermal Axin-2 H score and age (r = -0.576, p = 0.001), and the Stony Brook scale (r = -0.419, p = 0.021), had significant negative correlations. CONCLUSION Axin-2 overexpression might be accused in pathogenesis of abnormal scar and clinical worse scar outcome. In order to deprive scars of their regenerative cell pools, future scar therapies may target Axin-2 as a stem cell marker.
Collapse
Affiliation(s)
- Heba A S Bazid
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Rehab Monir Samaka
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Marwa E A Mousa
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Iman Seleit
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
24
|
Fregnani A, Saggin L, Gianesin K, Quotti Tubi L, Carraro M, Barilà G, Scapinello G, Bonetto G, Pesavento M, Berno T, Branca A, Gurrieri C, Zambello R, Semenzato G, Trentin L, Manni S, Piazza F. CK1α/RUNX2 Axis in the Bone Marrow Microenvironment: A Novel Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174173. [PMID: 36077711 PMCID: PMC9454895 DOI: 10.3390/cancers14174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable disease for which novel therapeutic approaches targeting the malignant cells and the associated bone disease are urgently needed. CK1α is a protein kinase that plays a crucial role in the signaling network that sustains plasma cell (PC) survival and bone disease. This protein regulates Wnt/β-catenin signaling, which is fundamental for both MM cell survival and mesenchymal stromal cell (MSC) osteogenic differentiation. In this study, we investigated its involvement in MM–MSC cross-talk. We found that, by lowering CK1α expression levels in co-cultures of MM and MSC cells, expression of RUNX2—the master regulator of osteogenic differentiation—was regulated differently in the two cell types. Our data suggest the possibility of using a specific CK1α inhibitor as part of a novel therapeutic approach to selectively kill malignant PCs and overcome the blocking of osteogenic differentiation induced by MM cells in MSCs. Abstract Multiple myeloma (MM) is a malignant plasma cell (PC) neoplasm, which also displays pathological bone involvement. Clonal expansion of MM cells in the bone marrow causes a perturbation of bone homeostasis that culminates in MM-associated bone disease (MMABD). We previously demonstrated that the S/T kinase CK1α sustains MM cell survival through the activation of AKT and β-catenin signaling. CK1α is a negative regulator of the Wnt/β-catenin cascade, the activation of which promotes osteogenesis by directly stimulating the expression of RUNX2, the master gene regulator of osteoblastogenesis. In this study, we investigated the role of CK1α in the osteoblastogenic potential of mesenchymal stromal cells (MSCs) and its involvement in MM–MSC cross-talk. We found that CK1α silencing in in vitro co-cultures of MMs and MSCs modulated RUNX2 expression differently in PCs and in MSCs, mainly through the regulation of Wnt/β-catenin signaling. Our findings suggest that the CK1α/RUNX2 axis could be a potential therapeutic target for constraining malignant PC expansion and supporting the osteoblastic transcriptional program of MSCs, with potential for ameliorating MMABD. Moreover, considering that Lenalidomide treatment leads to MM cell death through Ikaros, Aiolos and CK1α proteasomal degradation, we examined its effects on the osteoblastogenic potential of MSC compartments.
Collapse
Affiliation(s)
- Anna Fregnani
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Lara Saggin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Ketty Gianesin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Laura Quotti Tubi
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Carraro
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Greta Scapinello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgia Bonetto
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Pesavento
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Tamara Berno
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Antonio Branca
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Carmela Gurrieri
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sabrina Manni
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| | - Francesco Piazza
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| |
Collapse
|
25
|
Mukherjee S, Luedeke DM, McCoy L, Iwafuchi M, Zorn AM. SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep 2022; 40:111247. [PMID: 36001974 PMCID: PMC10123531 DOI: 10.1016/j.celrep.2022.111247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
WNT/β-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How β-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors. We demonstrate that SOX17 and SOX2 are required to recruit β-catenin to lineage-specific WNT-responsive enhancers, many of which are not occupied by TCFs. At TCF-independent enhancers, SOX TFs establish a permissive chromatin landscape and recruit a WNT-enhanceosome complex to activate SOX/ß-catenin-dependent transcription. Given that SOX TFs and the WNT pathway are critical for specification of most cell types, these results have broad mechanistic implications for the specificity of WNT responses across developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| | - David M Luedeke
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leslie McCoy
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Makiko Iwafuchi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati Department of Pediatrics, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Byun WS, Bae ES, Kim WK, Lee SK. Antitumor Activity of Rutaecarpine in Human Colorectal Cancer Cells by Suppression of Wnt/β-Catenin Signaling. JOURNAL OF NATURAL PRODUCTS 2022; 85:1407-1418. [PMID: 35544614 DOI: 10.1021/acs.jnatprod.2c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alkaloids derived from natural products have been traditionally used to treat various diseases, including cancers. Rutaecarpine (1), a β-carboline-type alkaloid obtained from Evodia rutaecarpa, has been previously reported as an anti-inflammatory agent. Nonetheless, its anticancer activity and the underlying molecular mechanisms remain to be explored. In the procurement of Wnt/β-catenin inhibitors from natural alkaloids, 1 was found to exhibit activity against the Wnt/β-catenin-response reporter gene. Since the abnormal activation of Wnt/β-catenin signaling is highly involved in colon carcinogenesis, the antitumor activity and molecular mechanisms of 1 were investigated in colorectal cancer (CRC) cells. The antiproliferative activity of 1 was associated with the suppression of the Wnt/β-catenin-mediated signaling pathway and its target gene expression in human CRC cells. 1 also induced G0/G1 cell cycle arrest and apoptotic cell death, and the antimigration and anti-invasion potential of 1 was confirmed through epithelial-mesenchymal transition biomarker inhibition by the regulation of Wnt signaling. The antitumor activity of 1 was supported in an Ls174T-implanted xenograft mouse model via Wnt target gene regulation. Overall, these findings suggest that targeting the Wnt/β-catenin signaling pathway by 1 is a promising therapeutic option for the treatment of human CRC harboring β-catenin mutation.
Collapse
Affiliation(s)
- Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol (Lausanne) 2022; 13:887037. [PMID: 35600583 PMCID: PMC9120667 DOI: 10.3389/fendo.2022.887037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - May M. Noe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
28
|
Llimos G, Gardeux V, Koch U, Kribelbauer JF, Hafner A, Alpern D, Pezoldt J, Litovchenko M, Russeil J, Dainese R, Moia R, Mahmoud AM, Rossi D, Gaidano G, Plass C, Lutsik P, Gerhauser C, Waszak SM, Boettiger A, Radtke F, Deplancke B. A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nat Commun 2022; 13:2042. [PMID: 35440565 PMCID: PMC9018852 DOI: 10.1038/s41467-022-29625-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding variants coordinate transcription factor (TF) binding and chromatin mark enrichment changes over regions spanning >100 kb. These molecularly coordinated regions are named "variable chromatin modules" (VCMs), providing a conceptual framework of how regulatory variation might shape complex traits. To better understand the molecular mechanisms underlying VCM formation, here, we mechanistically dissect a VCM-modulating noncoding variant that is associated with reduced chronic lymphocytic leukemia (CLL) predisposition and disease progression. This common, germline variant constitutes a 5-bp indel that controls the activity of an AXIN2 gene-linked VCM by creating a MEF2 binding site, which, upon binding, activates a super-enhancer-like regulatory element. This triggers a large change in TF binding activity and chromatin state at an enhancer cluster spanning >150 kb, coinciding with subtle, long-range chromatin compaction and robust AXIN2 up-regulation. Our results support a model in which the indel acts as an AXIN2 VCM-activating TF nucleation event, which modulates CLL pathology.
Collapse
Affiliation(s)
- Gerard Llimos
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ute Koch
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Judith F Kribelbauer
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria Litovchenko
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, Cancer Genome Evolution Research Group, London, UK
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Riccardo Dainese
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Freddy Radtke
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
29
|
The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. ZYGOTE 2022; 30:536-542. [PMID: 35357301 DOI: 10.1017/s0967199422000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a chronic hormonal turmoil that is demonstrated in 2.2-27% of women of pre-menopausal age. This disease is a complex multigenic disorder that results from the interaction between excess androgen expression, genetic susceptibility and environmental influences. PCOS is associated with 40% of female infertility and endometrial cancer. The WNT/β-catenin signalling transduction pathway regulates aspects of cell proliferation, migration and cell fate determination in the tissue along with early embryonic development and controls the proper activation of the female reproductive system, along with regulating hormonal activity in ovarian granulosa cells. In the current study, we investigated the expression profiles of WNT/β-catenin signalling pathway genes (AXIN2, FZD4, TCF4, WNT3, WNT4, WNT5A, WNT7A, WNT1, APC, GSK3B and β-catenin) in a total of 13 oocyte samples. Seven of these samples were from polycystic women and six were from healthy women. The results of this study displayed the absence of expression of AXIN2, FZD4, TCF4, WNT5A, WNT3, WNT4 and WNT7A genes in ovaries from women with PCOS and from healthy women. While APC and β-catenin expression levels were similar in the oocytes of both patients and controls, conversely, WNT1 and GSK3β genes both showed elevated expression in the oocytes of patients with PCOS, therefore suggesting an association between aberrant expression of WNT1 and GSK3β and the pathogenesis of PCOS. The observations of the current study could be helpful to provide evidence regarding the pathogenesis of PCOS and its treatment.
Collapse
|
30
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
31
|
S-SCAM inhibits Axin-dependent synaptic function of GSK3β in a sex-dependent manner. Sci Rep 2022; 12:4090. [PMID: 35260764 PMCID: PMC8904762 DOI: 10.1038/s41598-022-08220-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
S-SCAM/MAGI-2 gene duplication is associated with schizophrenia (SCZ). S-SCAM overexpression in the forebrain induces SCZ-like phenotypes in a transgenic (Tg) mouse model. Interestingly, S-SCAM Tg mice show male-specific impairments in synaptic plasticity and working memory. However, mechanisms underlying the sex-specific deficits remain unknown. Here we report that S-SCAM Tg mice have male-specific deficits in synaptic GSK3β functions, as shown by reduced synaptic protein levels and increased inhibitory phosphorylation of GSK3β. This GSK3β hyper-phosphorylation was associated with increased CaMKII activities. Notably, synaptic levels of Axin1, to which GSK3β binds in competition with S-SCAM, were also reduced in male S-SCAM Tg mice. We demonstrated that Axin-binding is required for the S-SCAM overexpression-induced synaptic GSK3β reduction. Axin stabilization using XAV939 rescued the GSK3β deficits and restored the temporal activation of GSK3β during long-term depression in S-SCAM overexpressing neurons. Interestingly, synaptic Axin2 levels were increased in female S-SCAM Tg mice. Female sex hormone 17β-estradiol increased Axin2 expression and increased synaptic GSK3β levels in S-SCAM overexpressing neurons. These results reveal the role of S-SCAM in controlling Axin-dependent synaptic localization of GSK3β. Moreover, our studies point out the pathological relevance of GSK3β hypofunction found in humans and contribute to understanding the molecular underpinnings of sex differences in SCZ.
Collapse
|
32
|
The nonredundant nature of the Axin2 regulatory network in the canonical Wnt signaling pathway. Proc Natl Acad Sci U S A 2022; 119:2108408119. [PMID: 35197279 PMCID: PMC8892335 DOI: 10.1073/pnas.2108408119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 01/03/2023] Open
Abstract
The mystery of two functionally redundant Axin genes in all vertebrates can now be explained by the demonstration that they form a nested proteostatic and transcriptional feedback system that confers regulatory options in different developmental settings, a form of dynamic versatility that may explain the widespread occurrence of closely related seemingly redundant genes with similar functions. Axin is one of two essential scaffolds in the canonical Wnt pathway that converts signals at the plasma membrane to signals inhibiting the degradation of β-catenin, leading to its accumulation and specific gene activation. In vertebrates, there are two forms of Axin, Axin1 and Axin2, which are similar at the protein level and genetically redundant. We show here that differential regulation of the two genes on the transcriptional and proteostatic level confers differential responsiveness that can be used in tissue-specific regulation. Such subtle features may distinguish other redundant gene pairs that are commonly found in vertebrates through gene knockout experiments.
Collapse
|
33
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
34
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
35
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
36
|
Zhang R, Yu S, Shen Q, Zhao W, Zhang J, Wu X, Zhu Z, Wu X, Li N, Peng S, Hua J. AXIN2 Reduces the Survival of Porcine Induced Pluripotent Stem Cells (piPSCs). Int J Mol Sci 2021; 22:ijms222312954. [PMID: 34884759 PMCID: PMC8658036 DOI: 10.3390/ijms222312954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
The establishment of porcine pluripotent stem cells (piPSCs) is critical but remains challenging. All piPSCs are extremely sensitive to minor perturbations of culture conditions and signaling network. Inhibitors, such as CHIR99021 and XAV939 targeting the WNT signaling pathway, have been added in a culture medium to modify the cell regulatory network. However, potential side effects of inhibitors could confine the pluripotency and practicability of piPSCs. This study aimed to investigate the roles of AXIN, one component of the WNT pathway in piPSCs. Here, porcine AXIN1 and AXIN2 genes were knocked-down or overexpressed. Digital RNA-seq was performed to explore the mechanism of cell proliferation and apoptosis. We found that (1) overexpression of the porcine AXIN2 gene significantly reduced survival and negatively impacted the pluripotency of piPSCs, and (2) knockdown of AXIN2, a negative effector of the WNT signaling pathway, enhanced the expression of genes involved in cell cycle but reduced the expression of genes related to cell differentiation, death, and apoptosis.
Collapse
|
37
|
Niclosamide and Pyrvinium Are Both Potential Therapeutics for Osteosarcoma, Inhibiting Wnt-Axin2-Snail Cascade. Cancers (Basel) 2021; 13:cancers13184630. [PMID: 34572856 PMCID: PMC8464802 DOI: 10.3390/cancers13184630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Epithelial–mesenchymal transition (EMT) regulated by Wnt signaling is known as a key mechanism of cancer progression. Although evidence has suggested that the oncogenic Wnt signaling pathway and EMT program are important in the progression of osteosarcoma, there is no known therapeutic drug targeting EMT for osteosarcoma. We investigated whether Axin2, an important EMT target, could be a suitable molecular target and biomarker for osteosarcoma. Furthermore, we showed that both niclosamide and pyrvinium target Axin2, and effectively induce EMT reversion in osteosarcoma cell lines. Our findings suggest an effective biomarker and potential EMT therapeutics for osteosarcoma patients. Abstract Osteosarcoma, the most common primary bone malignancy, is typically related to growth spurts during adolescence. Prognosis is very poor for patients with metastatic or recurrent osteosarcoma, with survival rates of only 20–30%. Epithelial–mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and Wnt signaling activates the EMT program by stabilizing Snail and β-catenin in tandem. Although the Wnt/Snail axis is known to play significant roles in the progression of osteosarcoma, and the anthelmintic agents, niclosamide and pyrvinium, have been studied as inhibitors of the Wnt pathway, their therapeutic effects and regulatory mechanisms in osteosarcoma remain unidentified. In this study, we show that both niclosamide and pyrvinium target Axin2, resulting in the suppression of EMT by the inhibition of the Wnt/Snail axis in osteosarcoma cells. Axin2 and Snail are abundant in patient samples and cell lines of osteosarcoma. The treatment of niclosamide and pyrvinium inhibits the migration of osteosarcoma cells at nanomolar concentrations. These results suggest that Axin2 and Snail are candidate therapeutic targets in osteosarcoma, and that anthelminthic agents, niclosamide and pyrvinium, may be effective for osteosarcoma patients.
Collapse
|
38
|
Ramakrishnan AB, Chen L, Burby PE, Cadigan KM. Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucleic Acids Res 2021; 49:8625-8641. [PMID: 34358319 PMCID: PMC8421206 DOI: 10.1093/nar/gkab657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation by Wnt signalling is primarily thought to be accomplished by a complex of β-catenin and TCF family transcription factors (TFs). Although numerous studies have suggested that additional TFs play roles in regulating Wnt target genes, their mechanisms of action have not been investigated in detail. We characterised a Wnt-responsive element (WRE) downstream of the Wnt target gene Axin2 and found that TCFs and Caudal type homeobox (CDX) proteins were required for its activation. Using a new separation-of-function TCF mutant, we found that WRE activity requires the formation of a TCF/CDX complex. Our systematic mutagenesis of this enhancer identified other sequences essential for activation by Wnt signalling, including several copies of a novel CAG DNA motif. Computational and experimental evidence indicates that the TCF/CDX/CAG mode of regulation is prevalent in multiple WREs. Put together, our results demonstrate the complex nature of cis- and trans- interactions required for signal-dependent enhancer activity.
Collapse
Affiliation(s)
| | - Lisheng Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
39
|
Zhao Y, Meng K, Yan Y, Miao Y, Zhao X, Wei Q, Ma B. Inhibition of cell proliferation and promotion of acinus-like structure formation from goat mammary epithelial cells via Wnt/β-catenin signaling. In Vitro Cell Dev Biol Anim 2021; 57:676-684. [PMID: 34312803 DOI: 10.1007/s11626-021-00600-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Mammary epithelial cells have been suggested to be central to control the expansion and remodeling of mammary gland. Wnt/β-catenin signaling modulates cell fate in animals throughout their life span, and represents indispensable roles in tissue homeostasis, cell renewal, and regeneration in organs. Here, we utilized the small molecule 6-bromoindirubin-3'-oxime (BIO), an activator of Wnt/β-catenin signaling, and investigated whether Wnt/β-catenin signaling regulated the proliferation and acinus-like structure formation of goat mammary epithelial cells (GMECs). We showed that isolated GMECs displayed the typical epithelial cobblestone morphology and expressed specific markers of mammary epithelial cells. BIO inhibited the proliferation of GMECs and decreased the expression of proliferation marker c-myc and cell cycle protein cyclin D1. However, the ability of GMECs to form spheroids was accelerated, and the level of E-cadherin mRNA was upregulated with BIO treatment. E-cadherin showed a bright cytomembrane with DMSO treatment, yet E-cadherin was present in cytomembrane and cytoplasm in GMECs with BIO treatment. Meanwhile, BIO increased the protein level of β-catenin and enhanced the translocation of β-catenin into the nucleus in GMECs. Furthermore, the mRNA level of Axin2 was also upregulated. This study suggested that Wnt/β-catenin signaling may play an important role in the proliferation and the acinus-like formation of GMECs.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kai Meng
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yutong Yan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
40
|
Metformin and Niclosamide Synergistically Suppress Wnt and YAP in APC-Mutated Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143437. [PMID: 34298652 PMCID: PMC8308039 DOI: 10.3390/cancers13143437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Hyperactivation of the canonical Wnt and inactivation of the Hippo pathway are well-known genetic backgrounds for familial adenomatosis polyposis (FAP) and colorectal cancer (CRC), although the reciprocal regulation between those pathways is not yet clear. In this study, we found that Axin2, a bona fide downstream target of canonical Wnt, activates the Hippo pathway in APC-mutated CRC, limiting the therapeutic potential of niclosamide on advanced CRC through the inactivation of the Hippo pathway. To overcome the limitation, we combined niclosamide with AMPK activator metformin to activate Hippo and found that this combination synergistically suppressed canonical Wnt and activated Hippo in APC-mutated CRC. Using patient-derived cancer organoid and an APC-MIN mice model, we found the combinatory approach to be effective for APC-mutated CRC. Our results provide not only the reciprocal link between Wnt and Hippo in APC-mutated CRC, but they also provide an effective therapeutic approach with clinically available drugs for FAP and CRC patients. Abstract The Wnt and Hippo pathways are tightly coordinated and understanding their reciprocal regulation may provide a novel therapeutic strategy for cancer. Anti-helminthic niclosamide is an effective inhibitor of Wnt and is now in a phase II trial for advanced colorectal cancer (CRC) patients. We found that Axin2, an authentic target gene of canonical Wnt, acts as aYAP phosphorylation activator in APC-mutated CRC. While niclosamide effectively suppresses Wnt, it also inhibits Hippo, limiting its therapeutic potential for CRC. To overcome this limitation, we utilized metformin, a clinically available AMPK activator. This combinatory approach not only suppresses canonical Wnt activity, but also inhibits YAP activity in CRC cancer cells and in patient-derived cancer organoid through the suppression of cancer stemness. Further, combinatory oral administration suppressed in vivo tumorigenesis and the cancer progression of APC-MIN mice models. Our observations provide not only a reciprocal link between Wnt and Hippo, but also clinically available novel therapeutics that are able to target Wnt and YAP in APC-mutated CRC.
Collapse
|
41
|
Xu Z, Zheng J, Chen Z, Guo J, Li X, Wang X, Qu C, Yuan L, Cheng C, Sun X, Yu J. Multilevel regulation of Wnt signaling by Zic2 in colon cancer due to mutation of β-catenin. Cell Death Dis 2021; 12:584. [PMID: 34099631 PMCID: PMC8184991 DOI: 10.1038/s41419-021-03863-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/22/2023]
Abstract
Zinc-finger of the cerebellum 2 (Zic2) is widely implicated in cancers, but the role of Zic2 in tumorigenesis is bilateral. A recent study indicated that Zic2 could render colon cancer cells more resistant to low glucose-induced apoptosis. However, the functional roles of Zic2 in colon cancer and the underlying molecular mechanism remain elusive. Herein, we demonstrated that Zic2 was highly expressed in colon cancer tissues and correlated with poor survival. Knockdown of Zic2 inhibited colon cancer cell growth, arrested the cell cycle transition from G0/G1 to S phase, and suppressed tumor sphere formation in vitro; in addition, silencing Zic2 retarded xenograft tumor formation in vivo. Consistently, ectopic expression of Zic2 had the opposite effects. Mechanistically, Zic2 executed its oncogenic role in colon cancer by enhancing Wnt/β-catenin signaling. Zic2 directly binds to the promoter of Axin2 and transcriptionally represses Axin2 expression and subsequently promotes the accumulation and nuclear translocation of β-catenin. Meanwhile, Zic2 could activate Wnt signaling by interacting with β-catenin. Intriguingly, in HCT116 cells with intrinsic Ser45 mutation of β-catenin, which blocks the degradation-related phosphorylation of β-catenin by CK1, modified Zic2 expression did not affect the protein level of β-catenin. Altogether, our findings uncover a novel multilevel mechanism for the oncogenic activity of Zic2 in colon cancer and suggest Zic2 as a potential therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Zilu Chen
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jing Guo
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xingjie Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chao Qu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Liyue Yuan
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chen Cheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| | - Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| |
Collapse
|
42
|
Animireddy S, Kavadipula P, Kotapalli V, Gowrishankar S, Rao S, Bashyam MD. Aberrant cytoplasmic localization of ARID1B activates ERK signaling and promotes oncogenesis. J Cell Sci 2021; 134:jcs251637. [PMID: 33443092 DOI: 10.1242/jcs.251637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The ARID1B (BAF250b) subunit of the human SWI/SNF chromatin remodeling complex is a canonical nuclear tumor suppressor. We employed in silico prediction, intracellular fluorescence and cellular fractionation-based subcellular localization analyses to identify the ARID1B nuclear localization signal (NLS). A cytoplasm-restricted ARID1B-NLS mutant was significantly compromised in its canonical transcription activation and tumor suppressive functions, as expected. Surprisingly however, cytoplasmic localization appeared to induce a gain of oncogenic function for ARID1B, as evidenced from several cell line- and mouse xenograft-based assays. Mechanistically, cytoplasm-localized ARID1B could bind c-RAF (RAF1) and PPP1CA causing stimulation of RAF-ERK signaling and β-catenin (CTNNB1) transcription activity. ARID1B harboring NLS mutations derived from tumor samples also exhibited aberrant cytoplasmic localization and acquired a neo-morphic oncogenic function via activation of RAF-ERK signaling. Furthermore, immunohistochemistry on a tissue microarray revealed significant correlation of ARID1B cytoplasmic localization with increased levels of active forms of ERK1 and ERK2 (also known as MAPK3 and MAPK1) and of β-catenin, as well as with advanced tumor stage and lymph node positivity in human primary pancreatic tumor tissues. ARID1B therefore promotes oncogenesis through cytoplasm-based gain-of-function mechanisms in addition to dysregulation in the nucleus.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srinivas Animireddy
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Satish Rao
- Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
43
|
de Winter TJJ, Nusse R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front Cell Dev Biol 2021; 9:627429. [PMID: 33634128 PMCID: PMC7900430 DOI: 10.3389/fcell.2021.627429] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) give rise to adipocytes, osteocytes, and chondrocytes and reside in various tissues, including bone marrow and adipose tissue. The differentiation choices of MSCs are controlled by several signaling pathways, including the Wnt/β-catenin signaling. When MSCs undergo adipogenesis, they first differentiate into preadipocytes, a proliferative adipocyte precursor cell, after which they undergo terminal differentiation into mature adipocytes. These two steps are controlled by the Wnt/β-catenin pathway, in such a way that when signaling is abrogated, the next step in adipocyte differentiation can start. This sequence suggests that the main role of Wnt/β-catenin signaling is to suppress differentiation while increasing MSC and preadipocytes cell mass. During later steps of MSC differentiation, however, active Wnt signaling can promote osteogenesis instead of keeping the MSCs undifferentiated and proliferative. The exact mechanisms behind the various functions of Wnt signaling remain elusive, although recent research has revealed that during lineage commitment of MSCs into preadipocytes, Wnt signaling is inactivated by endogenous Wnt inhibitors. In part, this process is regulated by histone-modifying enzymes, which can lead to increased or decreased Wnt gene expression. The role of Wnt in adipogenesis, as well as in osteogenesis, has implications for metabolic diseases since Wnt signaling may serve as a therapeutic target.
Collapse
Affiliation(s)
- Twan J J de Winter
- Faculty of Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Roeland Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford, CA, United States.,School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
44
|
Juhl OJ, Merife AB, Zhang Y, Lemmon CA, Donahue HJ. Hydroxyapatite Particle Density Regulates Osteoblastic Differentiation Through β-Catenin Translocation. Front Bioeng Biotechnol 2021; 8:591084. [PMID: 33490047 PMCID: PMC7820766 DOI: 10.3389/fbioe.2020.591084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Substrate surface characteristics such as roughness, wettability and particle density are well-known contributors of a substrate's overall osteogenic potential. These characteristics are known to regulate cell mechanics as well as induce changes in cell stiffness, cell adhesions, and cytoskeletal structure. Pro-osteogenic particles, such as hydroxyapatite, are often incorporated into a substrate to enhance the substrates osteogenic potential. However, it is unknown which substrate characteristic is the key regulator of osteogenesis. This is partly due to the lack of understanding of how these substrate surface characteristics are transduced by cells. In this study substrates composed of polycaprolactone (PCL) and carbonated hydroxyapatite particles (HAp) were synthesized. HAp concentration was varied, and a range of surface characteristics created. The effect of each substrate characteristic on osteoblastic differentiation was then examined. We found that, of the characteristics examined, only HAp density, and indeed a specific density (85 particles/cm2), significantly increased osteoblastic differentiation. Further, an increase in focal adhesion maturation and turnover was observed in cells cultured on this substrate. Moreover, β-catenin translocation from the membrane bound cell fraction to the nucleus was more rapid in cells on the 85 particle/cm2 substrate compared to cells on tissue culture polystyrene. Together, these data suggest that particle density is one pivotal factor in determining a substrates overall osteogenic potential. Additionally, the observed increase in osteoblastic differentiation is a at least partly the result of β-catenin translocation and transcriptional activity suggesting a β-catenin mediated mechanism by which substrate surface characteristics are transduced.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna-Blessing Merife
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher A Lemmon
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
45
|
Cavallo JC, Scholpp S, Flegg MB. Delay-driven oscillations via Axin2 feedback in the Wnt/β-catenin signalling pathway. J Theor Biol 2020; 507:110458. [DOI: 10.1016/j.jtbi.2020.110458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
|
46
|
Rezasoltani S, Hadizadeh M, Golmohammadi M, Nazemalhossini-Mojarad E, Salari S, Rezvani H, Asadzadeh-Aghdaei H, Ladomery M, Young C, Anaraki F, Almond S, Ashrafian Bonab M. APC and AXIN2 Are Promising Biomarker Candidates for the Early Detection of Adenomas and Hyperplastic Polyps. Cancer Inform 2020; 19:1176935120972383. [PMID: 33239858 PMCID: PMC7672736 DOI: 10.1177/1176935120972383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the WNT/CTNNB1 pathway is notorious in colorectal cancer (CRC). Here, we demonstrate that the expression of specific and crucial WNT signaling pathway genes is linked to disease progression in colonic adenomatous (AP) and hyperplastic (HP) polyps in an Iranian patient population. Thus, we highlight potential gene expression profiles as candidate novel biomarkers for the early detection of CRC. From a 12-month study (2016-2017), 44 biopsy samples were collected during colonoscopy from the patients with colorectal polyps and 10 healthy subjects for normalization. Clinical and demographic data were collected in all cases, and mRNA expression of APC, CTNNB1, CDH1, AXIN1, and AXIN2 genes was investigated using real-time polymerase chain reaction (PCR). CTNNB1 and CDH1 expression levels were unaltered in AP and HP subjects, whereas mRNA expression of APC was decreased in AP contrasted with HP subjects, with a significant association between APC downregulation and polyp size. Although AXIN1 showed no changes between AP and HP groups, a significant association between AXIN1 and dysplasia grade was found. Also, significant upregulation of AXIN2 in both AP and HP subjects was detected. In summary, we have shown increased expression of AXIN2 and decreased expression of APC correlating with grade of dysplasia and polyp size. Hence, AXIN2 and APC should be explored as biomarker candidates for early detection of AP and HP polyps in CRC.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mina Golmohammadi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhossini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Department of Medical Oncology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael Ladomery
- Department of Applied Sciences, University of the West of England (UWE-Bristol), Bristol, UK
| | - Chris Young
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Fakhrosadat Anaraki
- Colorectal Division of Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarah Almond
- Department of Applied Sciences, University of the West of England (UWE-Bristol), Bristol, UK
| | | |
Collapse
|
47
|
Mak KM, Shin DW. Hepatic sinusoids versus central veins: Structures, markers, angiocrines, and roles in liver regeneration and homeostasis. Anat Rec (Hoboken) 2020; 304:1661-1691. [PMID: 33135318 DOI: 10.1002/ar.24560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023]
Abstract
The blood circulates through the hepatic sinusoids delivering nutrients and oxygen to the liver parenchyma and drains into the hepatic central vein, yet the structures and phenotypes of these vessels are distinctively different. Sinusoidal endothelial cells are uniquely fenestrated, lack basal lamina and possess organelles involved in endocytosis, pinocytosis, degradation, synthesis and secretion. Hepatic central veins are nonfenestrated but are also active in synthesis and secretion. Endothelial cells of sinusoids and central veins secrete angiocrines that play respective roles in hepatic regeneration and metabolic homeostasis. The list of markers for identifying sinusoidal endothelial cells is long and their terminologies are complex. Further, their uses vary in different investigations and, in some instances, could be confusing. Central vein markers are fewer but more distinctive. Here we analyze and categorize the molecular pathways/modules associated with the sinusoid-mediated liver regeneration in response to partial hepatectomy and chemical-induced acute or chronic injury. Similarly, we highlight the findings that central vein-derived angiocrines interact with Wnt/β-catenin in perivenous hepatocytes to direct gene expression and maintain pericentral metabolic zonation. The proposal that perivenous hepatocytes behave as stem/progenitor cells to provoke hepatic homeostatic cell renewal is reevaluated and newer concepts of broad zonal distribution of hepatocyte proliferation in liver homeostasis and regeneration are updated. Thus, this review integrates the structures, biology and physiology of liver sinusoids and central veins in mediating hepatic regeneration and metabolic homeostasis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Da Wi Shin
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
48
|
Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K, Theiss AL. Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene 2020; 40:369-383. [PMID: 33144683 PMCID: PMC7856018 DOI: 10.1038/s41388-020-01538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin signaling pathway is aberrantly activated in the majority of colorectal cancer cases due to somatic mutations in the adenomatous polyposis coli (APC) gene. Prohibitin 1 (PHB1) serves pleiotropic cellular functions with dynamic subcellular trafficking facilitating signaling crosstalk between organelles. Nuclear-localized PHB1 is an important regulator of gene transcription. Using mice with inducible intestinal epithelial cell (IEC)-specific deletion of Phb1 (Phb1iΔIEC) and mice with IEC-specific overexpression of Phb1 (Phb1Tg), we demonstrate that IEC-specific PHB1 combats intestinal tumorigenesis in the ApcMin/+ mouse model by inhibiting Wnt/β-catenin signaling. Forced nuclear accumulation of PHB1 in human RKO or SW48 CRC cell lines increased AXIN1 expression and decreased cell viability. PHB1 deficiency in CRC cells decreased AXIN1 expression and increased β-catenin activation that was abolished by XAV939, a pharmacological AXIN stabilizer. These results define a role of PHB1 in inhibiting the Wnt/β-catenin pathway to influence the development of intestinal tumorigenesis. Induction of nuclear PHB1 trafficking provides a novel therapeutic option to influence AXIN1 expression and the β-catenin destruction complex in Wnt-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Kibrom M Alula
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Dakota N Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, TX, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
49
|
Wnt Signaling Regulates Ipsilateral Pathfinding in the Zebrafish Forebrain through slit3. Neuroscience 2020; 449:9-20. [DOI: 10.1016/j.neuroscience.2020.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
|
50
|
Tabibzadeh A, Tameshkel FS, Moradi Y, Soltani S, Moradi-Lakeh M, Ashrafi GH, Motamed N, Zamani F, Motevalian SA, Panahi M, Esghaei M, Ajdarkosh H, Mousavi-Jarrahi A, Niya MHK. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Sci Rep 2020; 10:18713. [PMID: 33127962 PMCID: PMC7599243 DOI: 10.1038/s41598-020-73770-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted to evaluate the prevalence of the signaling pathways mutation rate in the Gastrointestinal (GI) tract cancers in a systematic review and meta-analysis study. The study was performed based on the PRISMA criteria. Random models by confidence interval (CI: 95%) were used to calculate the pooled estimate of prevalence via Metaprop command. The pooled prevalence indices of signal transduction pathway mutations in gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer were 5% (95% CI: 3-8%), 12% (95% CI: 8-18%), 17% (95% CI: 14-20%), and 20% (95% CI: 5-41%), respectively. Also, the mutation rates for Wnt pathway and MAPK pathway were calculated to be 23% (95% CI, 14-33%) and 20% (95% CI, 17-24%), respectively. Moreover, the most popular genes were APC (in Wnt pathway), KRAS (in MAPK pathway) and PIK3CA (in PI3K pathway) in the colorectal cancer, pancreatic cancer, and gastric cancer while they were beta-catenin and CTNNB1 in liver cancer. The most altered pathway was Wnt pathway followed by the MAPK pathway. In addition, pancreatic cancer was found to be higher under the pressure of mutation compared with others based on pooled prevalence analysis. Finally, APC mutations in colorectal cancer, KRAS in gastric cancer, and pancreatic cancer were mostly associated gene alterations.
Collapse
Affiliation(s)
- Alireza Tabibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Safarnezhad Tameshkel
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saber Soltani
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - G Hossein Ashrafi
- Cancer Theme SEC Faculty, Kingston University, Penrhyn Road, London, KT1 2EE, UK
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|