1
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. Gene 2024; 893:147897. [PMID: 37832806 PMCID: PMC10841394 DOI: 10.1016/j.gene.2023.147897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
Affiliation(s)
| | - Jason A Abele
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Sydney A Anas
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Paul F James
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
2
|
Gardner CC, Abele JA, Winkler TJ, Reckers CN, Anas SA, James PF. Common as well as unique methylation-sensitive DNA regulatory elements in three mammalian SLC9C1 genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555319. [PMID: 37693488 PMCID: PMC10491193 DOI: 10.1101/2023.08.29.555319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.
Collapse
|
3
|
McCartney AM, Hyland EM, Cormican P, Moran RJ, Webb AE, Lee KD, Hernandez-Rodriguez J, Prado-Martinez J, Creevey CJ, Aspden JL, McInerney JO, Marques-Bonet T, O'Connell MJ. Gene Fusions Derived by Transcriptional Readthrough are Driven by Segmental Duplication in Human. Genome Biol Evol 2020; 11:2678-2690. [PMID: 31400206 PMCID: PMC6764479 DOI: 10.1093/gbe/evz163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.
Collapse
Affiliation(s)
- Ann M McCartney
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Institute for Global Food Security, Queens University Belfast, United Kingdom
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Raymond J Moran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Kate D Lee
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,School of Biological Sciences, University of Auckland, New Zealand.,School of Fundamental Sciences, Massey University, New Zealand
| | | | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queens University Belfast, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.,NAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Lu Y, Liao S, Tu W, Yang B, Liu S, Pei X, Tao D, Lu Y, Ma Y, Yang Y, Liu Y. DNA demethylation facilitates the specific transcription of the mouse X-linked Tsga8 gene in round spermatids†. Biol Reprod 2019; 100:994-1007. [PMID: 30541061 DOI: 10.1093/biolre/ioy255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Some X-linked genes necessary for spermiogenesis are specifically activated in the postmeiotic germ cells. However, the regulatory mechanism about this activation is not clearly understood. Here, we examined the potential mechanism controlling the transcriptional activation of the mouse testis specific gene A8 (Tsga8) gene in round spermatids. We observed that the Tsga8 expression was negatively correlated with the methylation level of the CpG sites in its core promoter. During spermatogenesis, the Tsga8 promoter was methylated in spermatogonia, and then demethylated in spermatocytes. The demethylation status of Tsga8 promoter was maintained through the postmeiotic germ cells, providing a potentially active chromatin for Tsga8 transcription. In vitro investigation showed that the E12 and Spz1 transcription factors can enhance the Tsga8 promoter activity by binding to the unmethylated E-box motif within the Tsga8 promoter. Additionally, the core Tsga8 promoter drove green fluorescent protein (GFP) expression in the germ cells of Tsga8-GFP transgenic mice, and the GFP expression pattern was similar to that of endogenous Tsga8. Moreover, the DNA methylation profile of the Tsga8-promoter-driven transgene was consistent with that of the endogenous Tsga8 promoter, indicating the existence of a similar epigenetic modification for the Tsga8 promoter to ensure its spatiotemporal expression in vivo. Taken together, this study reports the details of a regulatory mechanism that includes DNA methylation and transcription factors to mediate the postmeiotic expression of an X-linked gene.
Collapse
Affiliation(s)
- Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Shunyao Liao
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wenling Tu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Liu
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xue Pei
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilu Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Kumar DL, Kumar PL, James PF. Methylation-dependent and independent regulatory regions in the Na,K-ATPase alpha4 (Atp1a4) gene may impact its testis-specific expression. Gene 2016; 575:339-52. [PMID: 26343794 PMCID: PMC4662617 DOI: 10.1016/j.gene.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
The α4 Na,K-ATPase is a sperm-specific protein essential for sperm motility and fertility yet little is known about the mechanisms that regulate its expression in germ cells. Here, the potential involvement of DNA methylation in regulating the expression of this sperm-specific protein is explored. A single, intragenic CpG island (Mα4-CGI) was identified in the gene encoding the mouse α4 Na,K-ATPase (Atp1a4), which displayed reduced methylation in mouse sperm (cells that contain α4) compared to mouse kidney (tissue that lacks α4 expression). Unlike the intragenic CGI, the putative promoter (the -700 to +200 region relative to the transcriptional start site) of Atp1a4 did not show differential methylation between kidney and sperm nevertheless it did drive methylation-dependent reporter gene expression in the male germ cell line GC-1spg. Furthermore, treatment of GC-1spg cells with 5-aza2-deoxycytidine led to upregulation of the α4 transcript and decreased methylation of both the Atp1a4 promoter and the Mα4-CGI. In addition, Atp1a4 expression in mouse embryonic stem cells deficient in DNA methyltransferases suggests that both maintenance and de novo methylation are involved in regulating its expression. In an attempt to define the regulatory function of the Mα4-CGI, possible roles of the Mα4-CGI in regulating Atp1a4 expression via methylation-dependent transcriptional elongation inhibition in somatic cells and via its ability to repress promoter activity in germ cells were uncovered. In all, our data suggests that both the promoter and the intragenic CGI could combine to provide multiple modes of regulation for optimizing the Atp1a4 expression level in a cell type-specific manner.
Collapse
Affiliation(s)
- Deepti L Kumar
- Department of Biology, Miami University, Oxford, OH, United States
| | - Priya L Kumar
- Department of Biology, Miami University, Oxford, OH, United States
| | - Paul F James
- Department of Biology, Miami University, Oxford, OH, United States.
| |
Collapse
|
6
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
7
|
Kumar PL, James PF. Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 2015; 561:235-48. [PMID: 25701605 DOI: 10.1016/j.gene.2015.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 12/15/2022]
Abstract
The human NHEDC1 (hNHEDC1) protein is thought to be essential for sperm motility and fertility however the mechanisms regulating its gene expression are largely unknown. In this study we have identified multiple DNA regulatory elements in the 5' end of the gene encoding hNHEDC1 (SLC9B1) and have explored the role that DNA methylation at these elements plays in the regulation of its expression. We first show that the full-length hNHEDC1 protein is testis-specific for the tissues that we tested and that it localizes to the cells of the seminiferous tubules. In silico analysis of the SLC9B1 gene locus identified two putative promoters (P1 and P2) and two CpG islands - CpGI (overlapping with P1) and CpGII (intragenic) - at the 5' end of the gene. By deletion analysis of P1, we show that the region from -23 bp to +200 bp relative to the transcription start site (TSS) is sufficient for optimal promoter activity in a germ cell line. Additionally, in vitro methylation of the P1 (the -500 bp to +200 bp region relative to the TSS) abolishes its activity in germ cells and somatic cells strongly suggesting that DNA methylation at this promoter could regulate SLC9B1 expression. Furthermore, bisulfite-sequencing analysis of the P1/CpGI uncovered reduced methylation in the testis vs. lung whereas CpGII displayed no differences in methylation between these two tissues. Additionally, treatment of HEK 293 cells with 5-aza-2-Deoxycytidine led to upregulation of NHEDC1 transcript and reduced methylation in the promoter CpGI. Finally, we have uncovered both enhancer and silencer functions of the intragenic SLC9B1 CpGII. In all, our data suggests that SLC9B1 gene expression could be regulated via a concerted action of DNA methylation-dependent and independent mechanisms mediated by these multiple DNA regulatory elements.
Collapse
Affiliation(s)
- Priya L Kumar
- Department of Biology, Miami University, Oxford, OH, United States
| | - Paul F James
- Department of Biology, Miami University, Oxford, OH, United States.
| |
Collapse
|
8
|
Panigrahi SK, Vasileva A, Wolgemuth DJ. Sp1 transcription factor and GATA1 cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS One 2012; 7:e47862. [PMID: 23112860 PMCID: PMC3480434 DOI: 10.1371/journal.pone.0047862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023] Open
Abstract
Cyclin A1 is a male germ cell-specific cell cycle regulator that is essential for spermatogenesis. It is unique among the cyclins by virtue of its highly restricted expression in vivo, being present in pachytene and diplotene spermatocytes and not in earlier or later stages of spermatogenesis. To begin to understand the molecular mechanisms responsible for this narrow window of expression of the mouse cyclin A1 (Ccna1) gene, we carried out a detailed analysis of its promoter. We defined a 170-bp region within the promoter and showed that it is involved in repression of Ccna1 in cultured cells. Within this region we identified known cis-acting transcription factor binding sequences, including an Sp1-binding site and two GATA1-binding sites. Neither Sp1 nor GATA1 is expressed in pachytene spermatocytes and later stages of germ cell differentiation. Sp1 is readily detected at earlier stages of spermatogenesis. Site-directed mutagenesis demonstrated that neither factor alone was sufficient to significantly repress expression driven by the Ccna1 promoter, while concurrent binding of Sp1, and most likely GATA1 and possibly additional factors was inhibitory. Occupancy of Sp1 on the Ccna1 promoter and influence of GATA1-dependent cis-acting elements was confirmed by ChIP analysis in cell lines and most importantly, in spermatogonia. In contrast with many other testis-specific genes, the CpG island methylation status of the Ccna1 promoter was similar among various tissues examined, irrespective of whether Ccna1 was transcriptionally active, suggesting that this regulatory mechanism is not involved in the restricted expression of Ccna1.
Collapse
Affiliation(s)
- Sunil K. Panigrahi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Debra J. Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Identification and characterization of promoter and regulatory regions for mouse Adam2 gene expression. Mol Biol Rep 2012; 40:787-96. [PMID: 23065232 DOI: 10.1007/s11033-012-2116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
ADAM2, a member of the 'a disintegrin and metalloprotease' (ADAM) family, is a key protein in mammalian fertilization that is specifically expressed in testicular germ cells. Here, we investigated the transcriptional regulation of the mouse Adam2 gene. An in silico analysis identified two conserved non-coding sequences located upstream of the mouse and human ADAM2 genes. The upstream region of the mouse Adam2 gene was found to lack typical TATA and CAAT boxes, and to have a high GC content. Our in vitro transient transfection-reporter analysis identified a promoter in this region of the mouse Adam2 gene, along with regulatory regions that inhibit the activity of this promoter in somatic cells. Site-directed mutagenesis revealed that the caudal-type homeobox 1 and CCTC-binding factor motifs are responsible for the inhibitory activities of the repressor regions. Finally, electrophoretic mobility shift assays showed putative transcription factor-promoter DNA complexes, and DNA-affinity chromatography and proteomic analyses identified myelin gene regulatory factor as a binding partner of the Adam2 promoter. This provides the first identification and characterization of promoter and repressor regions that regulate the transcription of the mouse Adam2 gene, and offers insights into the regulation of this germ-cell-specific gene.
Collapse
|
10
|
Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R. DNA demethylation and USF regulate the meiosis-specific expression of the mouse Miwi. PLoS Genet 2012; 8:e1002716. [PMID: 22661915 PMCID: PMC3355075 DOI: 10.1371/journal.pgen.1002716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/30/2012] [Indexed: 01/01/2023] Open
Abstract
Miwi, a member of the Argonaute family, is required for initiating spermiogenesis; however, the mechanisms that regulate the expression of the Miwi gene remain unknown. By mutation analysis and transgenic models, we identified a 303 bp proximal promoter region of the mouse Miwi gene, which controls specific expression from midpachytene spermatocytes to round spermatids during meiosis. We characterized the binding sites of transcription factors NF-Y (Nuclear Factor Y) and USF (Upstream Stimulatory Factor) within the core promoter and found that both factors specifically bind to and activate the Miwi promoter. Methylation profiling of three CpG islands within the proximal promoter reveals a markedly inverse correlation between the methylation status of the CpG islands and germ cell type–specific expression of Miwi. CpG methylation at the USF–binding site within the E2 box in the promoter inhibits the binding of USF. Transgenic Miwi-EGFP and endogenous Miwi reveal a subcellular co-localization pattern in the germ cells of the Miwi-EGFP transgenic mouse. Furthermore, the DNA methylation profile of the Miwi promoter–driven transgene is consistent with that of the endogenous Miwi promoter, indicating that Miwi transgene is epigenetically modified through methylation in vivo to ensure its spatio-temporal expression. Our findings suggest that USF controls Miwi expression from midpachytene spermatocytes to round spermatids through methylation-mediated regulation. This work identifies an epigenetic regulation mechanism for the spatio-temporal expression of mouse Miwi during spermatogenesis. Germ cell differentiation is a key process in the formation of functional spermatozoa. Despite the wealth of information about gene expression patterns and regulations important for this process, it is not clear how spatio-temporal expression of the key factor Miwi during spermatogenesis is controlled. We have characterized the functional promoter of the mouse Miwi gene. Transgenic mice harboring EGFP under the Miwi core promoter containing just the functional CCAAT box and E2 box were generated and demonstrated that it can direct germ cell–specific expression. We further identified the transcription factors NF-Y and USF1/2 as activators of Miwi gene expression, through their binding to the CCAAT box and E-box/E2 site of the Miwi promoter, respectively. A CpG dinucleotide just located within the USF binding site is responsible for mediating methylation-dependent silencing of the Miwi gene. Our findings provide new insight into an epigenetic regulation mechanism for the spatio-temporal expression of the mouse Miwi during spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (HC); (RZ)
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (HC); (RZ)
| |
Collapse
|
11
|
Sato S, Maeda C, Hattori N, Yagi S, Tanaka S, Shiota K. DNA methylation-dependent modulator of Gsg2/Haspin gene expression. J Reprod Dev 2011; 57:526-33. [PMID: 21606629 DOI: 10.1262/jrd.11-031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gsg2 (Haspin) gene encodes a serine/threonine protein kinase and is predominantly expressed in haploid germ cells. In proliferating somatic cells, Gsg2 is shown to be expressed weakly but plays an essential role in mitosis. Although the Gsg2 minimal promoter recognized by the spermatogenic cell-specific nuclear factor(s) has been found, to date, the molecular mechanism that differentially controls Gsg2 expression levels in germ and somatic cells remains to be sufficiently clarified. In this study, we analyzed the DNA methylation status of the upstream region containing the Gsg2 promoter. We found a tissue-dependent and differentially methylated region (T-DMR) upstream (-641 to -517) of the authentic promoter that is hypomethylated in germ cells but hypermethylated in other somatic tissues. Profiling of Gsg2 expression and DNA methylation status at the T-DMR in spermatogenic cells indicated that the hypomethylation of the T-DMR is maintained during spermatogenesis. Using the reporter assay, we also demonstrated that DNA methylation at the T-DMR of Gsg2 reduced the promoter activity by 60-80%, but did not fully suppress it. Therefore, the T-DMR functions as a modulator in a DNA methylation-dependent manner. In conclusion, Gsg2 is under epigenetic control.
Collapse
Affiliation(s)
- Shun Sato
- The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Germ Cell Cancer, Testicular Dysgenesis Syndrome and Epigenetics. EPIGENETICS AND HUMAN REPRODUCTION 2011. [DOI: 10.1007/978-3-642-14773-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Li D, Raza A, DeJong J. Regulation of ALF promoter activity in Xenopus oocytes. PLoS One 2009; 4:e6664. [PMID: 19684851 PMCID: PMC2721981 DOI: 10.1371/journal.pone.0006664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022] Open
Abstract
Background In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. Principal Findings The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B) were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. Conclusions Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Abbas Raza
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Polymorphisms of the luteinizing hormone/chorionic gonadotropin receptor gene: association with maldescended testes and male infertility. Pharmacogenet Genomics 2008; 18:193-200. [PMID: 18300940 DOI: 10.1097/fpc.0b013e3282f4e98c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Maldescended testes are the most common genital anomaly in newborns and are associated with testicular malignancy and infertility. As the inguinoscrotal phase of testis descent is androgen-dependent and requires integrity of the luteinizing hormone/chorionic gonadotropin receptor (LHCGR), we investigated whether nonsynonymous polymorphisms of the LHCGR gene are associated with maldescended testes. METHODS This was a retrospective case-control study including 278 patients with maldescended testes, 277 infertile men without maldescensus and 271 controls with normal sperm concentrations. Clinical and endocrinological workup of the patients was performed. Single nucleotide polymorphism (SNP) analysis was performed by GeneScan and TaqMan technology. RESULTS Men with maldescended testes had significantly lower testis volumes, higher serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) but similar testosterone levels compared with both the control groups. The insLQ polymorphism in exon 1 (rs4539842) and the N291S SNP in exon 10 (rs12470652), showing increased receptor sensitivity in vitro, were not differently distributed between patients and controls. The S312N SNP in exon 10 (rs2293275) was significantly less frequent in men with maldescended testes than in controls. This difference was confirmed when infertile men with and without maldescensus were considered together. CONCLUSIONS In men with maldescensus, a high LH drive maintains normal testosterone levels but this LH resistance is not associated with any particular LHCGR genotype. A significant association with the S312N polymorphism in exon 10 of the LHCGR is correlated to the spermatogenetic damage rather than to the maldescensus itself. Either the LHCGR itself or another genomic region linked to this SNP, possibly the germ cell-specific TFIIA-alpha/beta-like factor gene transcribed from the same genomic region in the opposite direction, is a risk factor for male infertility.
Collapse
|
15
|
Suzuki M, Sato S, Arai Y, Shinohara T, Tanaka S, Greally JM, Hattori N, Shiota K. A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse. Genes Cells 2008; 12:1305-14. [PMID: 18076568 DOI: 10.1111/j.1365-2443.2007.01136.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CpG islands, which have higher GC content and CpG frequencies compared to the genome as a whole, are generally believed to be unmethylated in tissues except at promoters of genes undergoing X chromosome inactivation or genomic imprinting. Recent studies, however, have shown that CpG islands at promoters of a number of genes contain tissue-dependent, differentially methylated regions (T-DMRs). In general, the tissue-specific methylation is restricted to a part of the promoter CpG island, with hypomethylation of the remaining sequence. In the current study, using comparison between Restriction Landmark Genomic Scanning (RLGS) and in silico RLGS, we identified ten sperm-specific unmethylated NotI sites, T-DMRs located in CpG islands that were hypomethylated in sperm but near-completely methylated in the kidney and brain. Unusually, these T-DMRs involve the whole CpG island at each of these loci. We characterized one of these genes, adenine nucleotide translocator 4 (Ant4), which is expressed in germ cells. Using a promoter assay, we demonstrated that expression of Ant4 gene is controlled by DNA methylation at the CpG island sequences within the promoter region. Ant4 and other sperm-specific hypomethylated loci represent a new class of CpG islands that become completely methylated in different cell lineages. T-DMRs at CpG islands are functionally important gene regulatory elements that may now be categorized into two classes: T-DMRs involving a subregion of the CpG island and those that occupy the whole CpG island.
Collapse
Affiliation(s)
- Masako Suzuki
- Laboratory of Cellular Biochemistry, Veterinary Medical Sciences/Animal Resource Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tokuhiro K, Miyagawa Y, Yamada S, Hirose M, Ohta H, Nishimune Y, Tanaka H. The 193-Base Pair Gsg2 (Haspin) Promoter Region Regulates Germ Cell-Specific Expression Bidirectionally and Synchronously. Biol Reprod 2007; 76:407-14. [PMID: 17123944 DOI: 10.1095/biolreprod.106.055236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.
Collapse
Affiliation(s)
- Keizo Tokuhiro
- Tanaka Project, Center for Advanced Science and Innovation, and Research Collaboration Center on Emerging and Re-emerging Infections, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Chang HS, Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 2006; 147:5524-41. [PMID: 16973722 DOI: 10.1210/en.2006-0987] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identified 25 candidate DNA sequences with altered methylation patterns in the vinclozolin generation sperm. These sequences were identified and mapped to specific genes and noncoding DNA regions. Bisulfite sequencing was used to confirm the altered methylation pattern of 15 of the candidate DNA sequences. Alterations in the epigenetic pattern (i.e. methylation) of these genes/DNA sequences were found in the F2 and F3 generation germline. Therefore, the reprogramming of the male germline involves the induction of new imprinted-like genes/DNA sequences that acquire an apparent permanent DNA methylation pattern that is passed at least through the paternal allele. The expression pattern of several of the genes during embryonic development were found to be altered in the vinclozolin F1 and F2 generation testis. A number of the imprinted-like genes/DNA sequences identified are associated with epigenetic linked diseases. In summary, an endocrine disruptor exposure during embryonic gonadal sex determination was found to promote an alteration in the epigenetic (i.e. induction of imprinted-like genes/DNA sequences) programming of the male germline, and this is associated with the development of transgenerational disease states.
Collapse
Affiliation(s)
- Hung-Shu Chang
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | | | |
Collapse
|
18
|
Kim M, Li D, Cui Y, Mueller K, Chears WC, DeJong J. Regulatory Factor Interactions and Somatic Silencing of the Germ Cell-specific ALF Gene. J Biol Chem 2006; 281:34288-98. [PMID: 16966320 DOI: 10.1074/jbc.m607168200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell-specific genes are active in oocytes and spermatocytes but are silent in all other cell types. To understand the basis for this seemingly simple pattern of regulation, we characterized factors that recognize the promoter-proximal region of the germ cell-specific TFIIA alpha/beta-like factor (ALF) gene. Two of the protein-DNA complexes formed with liver extracts (C4 and C5) are due to the zinc finger proteins Sp1 and Sp3, respectively, whereas another complex (C6) is due to the transcription factor RFX1. Two additional complexes (C1 and C3) are due to the multivalent zinc finger protein CTCF, a factor that plays a role in gene silencing and chromatin insulation. An investigation of CTCF binding revealed a recognition site of only 17 bp that overlaps with the Sp1/Sp3 site. This site is predictive of other genomic CTCF sites and can be aligned to create a functional consensus. Studies on the activity of the ALF promoter in somatic 293 cells revealed mutations that result in increased reporter activity. In addition, RNAi-mediated down-regulation of CTCF is associated with activation of the endogenous ALF gene, and both CTCF and Sp3 repress the promoter in transient transfection assays. Overall, the results suggest a role for several factors, including the multivalent zinc finger chromatin insulator protein CTCF, in mediating somatic repression of the ALF gene. Release of such repression, perhaps in conjunction with other members of the CTCF, RFX, and Sp1 families of transcription factors, could be an important aspect of germ cell gene activation.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Idiopathic oligoasthenoteratozoospermia (iOAT) affects approximately 30% of all infertile men. This mini-review discussed recent data in this field. Age, non-inflammatory functional alterations in post-testicular organs, infective agents (Chlamydia trachomatis, herpes virus and adeno-associated viruses), alterations in gamete genome, mitochondrial alterations, environmental pollutants and "subtle" hormonal alterations are all considered possible causes of iOAT. Increase of reactive oxygen species in tubules and in seminal plasma and of apoptosis are reputed to affect sperm concentration, motility and morphology. iOAT is commonly diagnosed by exclusion, nevertheless spectral traces of the main testicular artery may be used as a diagnostic tool for iOAT. The following can be considered therapies for iOAT: 1) tamoxifen citrate (20 mg/d) + testosterone undecanoate (120 mg/d) (pregnancy rate per couple/month [prcm]: 3.8%); 2) folic acid (66 mg/d) + zinc sulfate (5 mg/d); 3) L-carnitine (2 g/d) alone or in combination with acetyl-L-carnitine (1 g/d) (prcm: 2.3%); and 4) both carnitines = one 30 mg cinnoxicam suppository every 4 days (prcm: 8.5%). Alpha-blocking drugs improved sperm concentration but not morphology, motility or pregnancy rate. Tranilast (300 mg/d) increased sperm parameters and pregnancy rates in an initial uncontrolled study. Its efficacy on sperm concentration (but not on sperm motility, morphology or prcm) was confirmed in subsequent published reports. The efficacy of tamoxifen + testosterone undecanoate, tamoxifen alone, and recombinant follicle-stimulating hormone is still a matter for discussion.
Collapse
Affiliation(s)
- Giorgio Cavallini
- Operative Unit of Andrology, Società Italiana di Medicina della Riproduzione, Via Mazzini 12, 40138 Bologna, Italy.
| |
Collapse
|
20
|
DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene 2006; 366:39-50. [PMID: 16326034 DOI: 10.1016/j.gene.2005.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated. Part of the answer comes from the observation that germ cells express core promoter-associated regulatory factors that are different from those expressed in somatic cells. These factors supplement or replace their somatic counterparts to direct expression during meiosis and gametogenesis. In addition, germ cell transcription involves the recognition and use of specialized core promoter sequences. Finally, transcription must occur on chromosomal DNA templates that are reorganized into new chromatin-packaging configurations using alternate histone subunits. This article will review recent advances in our understanding of the factors and mechanisms that control transcription in ovary and testis and will discuss models for germ cell gene expression.
Collapse
Affiliation(s)
- Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, United States.
| |
Collapse
|
21
|
Chambers AE, Banerjee S. Natural antisense LHCGR could make sense of hypogonadism, male-limited precocious puberty and pre-eclampsia. Mol Cell Endocrinol 2005; 241:1-9. [PMID: 16087288 DOI: 10.1016/j.mce.2005.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
Abstract
The pleiotropic effects of human chorionic gonadotrophin (hCG), the key regulator of human pregnancy, are dependent upon cell surface expression of its functional cognate receptor LHCGR in the placental trophoblasts, corpus luteum, uterus, vascular endothelial and smooth muscle cells. Additionally, lutenizing hormone-mediated signalling failure has often been linked to activating/inactivating mutations in LHCGR. One of the intriguing aspects of these studies is that the mutations are most frequently located within C-terminal 200-350 residues of the receptor protein. In an attempt to reconcile the mechanistic basis of LHCGR regulation and mutations, we have carried out bioinformatic analyses to identify the CpG-rich regions and the major potential scaffold/matrix attachment sites (S/MARs) in LHCGR and neighbouring gene (ALF) at human chromosome 2p21. Based on these analyses, we propose a chromatin-loop model, which may explain the temporal regulation and susceptibility to mutation of the human LHCGR. One of the characteristic features of the model, is that the major potential S/MAR sequences of the human LHCGR gene (68 kb) are located at the 3' end of the gene, and unlike mouse, the transmembrane and C-terminal protein coding sequences at exon 11 are embedded in this S/MAR site. Moreover, this region is subject to antisense transcription from the neighbouring gene ALF, which is gonad-specific and is only activated in meiotic spermatocytes and oocytes. Together, these analyses suggest that exon 11 of human LHCGR could be more susceptible to mutation than the other 10 exons together and that activation of LHCGR, contingent to the somatic silencing of neighbouring ALF, could be linked to male-limited precocious puberty and pre-eclampsia.
Collapse
MESH Headings
- Animals
- Chorionic Gonadotropin/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/metabolism
- CpG Islands/genetics
- Exons/genetics
- Female
- Gene Expression Regulation/genetics
- Humans
- Hypogonadism/genetics
- Hypogonadism/metabolism
- Male
- Meiosis/genetics
- Mice
- Mutation
- Oocytes/metabolism
- Pre-Eclampsia/genetics
- Pre-Eclampsia/metabolism
- Pregnancy
- Puberty, Precocious/genetics
- Puberty, Precocious/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- Receptors, LH/biosynthesis
- Receptors, LH/genetics
- Spermatocytes/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Anne E Chambers
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital Medical School, Jubilee Wing, 3rd Floor, Denmark Hill, London SE5 9RS, UK
| | | |
Collapse
|
22
|
Ehrlich M. The controversial denouement of vertebrate DNA methylation research. BIOCHEMISTRY (MOSCOW) 2005; 70:568-75. [PMID: 15948710 DOI: 10.1007/s10541-005-0150-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The study of the biological role of DNA methylation in vertebrates has involved considerable controversy. Research in this area has proceeded well despite the complexity of the subject and the difficulties in establishing biological roles, some of which are summarized in this review. Now there is justifiably much more interest in DNA methylation than previously, and many more laboratories are engaged in this research. The results of numerous studies indicate that some tissue-specific differences in vertebrate DNA methylation help maintain patterns of gene expression or are involved in fine-tuning or establishing expression patterns. Therefore, vertebrate DNA methylation cannot just be assigned a role in silencing transposable elements and foreign DNA sequences, as has been suggested. DNA methylation is clearly implicated in modulating X chromosome inactivation and in establishing genetic imprinting. Also, hypermethylation of CpG-rich promoters of tumor suppressor genes in cancer has a critical role in downregulating expression of these genes and thus participating in carcinogenesis. The complex nature of DNA methylation patterns extends to carcinogenesis because global DNA hypomethylation is found in the same cancers displaying hypermethylation elsewhere in the genome. A wide variety of cancers display both DNA hypomethylation and hypermethylation, and either of these types of changes can be significantly associated with tumor progression. These findings and the independence of cancer-linked DNA hypomethylation from cancer-linked hypermethylation strongly implicate DNA hypomethylation, as well as hypermethylation, in promoting carcinogenesis. Furthermore, various DNA demethylation methodologies have been shown to increase the formation of certain types of cancers in animals, and paradoxically, DNA hypermethylation can cause carcinogenesis in other model systems. Therefore, there is a need for caution in the current use of demethylating agents as anti-cancer drugs. Nonetheless, DNA demethylation therapy clearly may be very useful in cases where better alternatives do not exist.
Collapse
Affiliation(s)
- M Ehrlich
- Human Genetics Program SL31, Tulane Medical School, New Orleans, LA 70112, USA.
| |
Collapse
|
23
|
Abstract
The oocyte is a highly differentiated cell. It makes organelles specialized to its unique functions and progresses through a series of developmental stages to acquire a fertilization competent phenotype. This review will integrate the biology of the oocyte with what is known about oocyte-specific gene regulation and transcription factors involved in oocyte development. We propose that oogenesis is reliant on a dynamic gene regulatory network that includes oocyte-specific transcriptional regulators.
Collapse
Affiliation(s)
- Jia L Song
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 69 Brown Street, Box G-J4, Providence, RI 02912, USA
| | | |
Collapse
|
24
|
Abstract
Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.
Collapse
Affiliation(s)
- James A Maclean
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Nojima H, Nagaoka K, Christenson RK, Shiota K, Imakawa K. Increase in DNA methylation downregulates conceptus interferon-tau gene expression. Mol Reprod Dev 2004; 67:396-405. [PMID: 14991730 DOI: 10.1002/mrd.20002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of ovine interferon-tau (oIFNtau) genes, essential for the maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast and is not detected in any other cell types or tissues. Substantial secretion of oIFNtau starts on day 12-13 of pregnancy (day 0 = day of estrus), reaches the highest on day 16-17, and then declines rapidly. Ovine IFNtau mRNA, on the other hand, reaches the highest level on day 14 of pregnancy, 2-3 days before peak production of the protein. In this study, day 14 and 17 conceptuses treated with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation, were cultured in vitro and only day 17, not day 14, conceptuses resulted in upregulation of oIFNtau gene expression. To gain insight into the molecular mechanism of oIFNtau gene downregulation, the methylation status within 1 kb of the 5'-flanking region of oIFNtau-o10 gene was investigated: CpG dinucleotides of this gene in day 14 ovine conceptuses were hypomethylated compared to day 20 conceptuses or other tissues. In vitro methylation of oIFNtau-o10-reporter constructs caused suppression of reporter activity in transient transfections. Cotransfection of methyl-CpG-binding protein (MeCP2) with the reporter construct elicited further suppression of the reporter activity. In electrophoretic mobility shift assay (EMSA), patterns of shifted bands did not show much difference between methylated and unmethylated probes in distal regions, but exhibited differences in the proximal region of upstream sequences of the oIFNtau gene. These results provide evidence that changes in the degree of DNA methylation could be one of the major mechanisms leading to downregulation of the oIFNtau-o10 gene during early gestation, and possibly its silencing in nonconceptus tissues.
Collapse
Affiliation(s)
- Hisashi Nojima
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Han S, Xie W, Kim SH, Yue L, DeJong J. A Short Core Promoter Drives Expression of the ALF Transcription Factor in Reproductive Tissues of Male and Female Mice1. Biol Reprod 2004; 71:933-41. [PMID: 15151936 DOI: 10.1095/biolreprod.104.030247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The control of gene expression in reproductive tissues involves a number of unique germ cell-specific transcription factors. One such factor, ALF (TFIIA tau), encodes a protein similar to the large subunit of general transcription factor TFIIA. To understand how this factor is regulated, we characterized transgenic mice that contain the ALF promoter linked to either beta-galactosidase or green fluorescent protein (GFP) reporters. The results show that as little as 133 base pairs are sufficient to drive developmentally accurate and cell-specific expression. Transgene DNA was methylated and inactive in liver, but could be reactivated in vivo by system administration of 5-aza, 2'-deoxycytidine. Fluorescence-activated cell sorting allowed the identification of male germ cells that express the GFP transgene and provides a potential method to collect cells that might be under the control of a nonsomatic transcription system. Finally, we found that transcripts from the endogenous ALF gene and derived transgenes can also be detected in whole ovary and in germinal vesicle-stage oocytes of female mice. The ALF sequence falls into a class of germ cell promoters whose features include small size, high GC content, numerous CpG dinucleotides, and an apparent TATA-like element. Overall, the results define a unique core promoter that is active in both male and female reproductive tissues, and suggest mouse ALF may have a regulatory role in male and female gametogenic gene expression programs.
Collapse
Affiliation(s)
- SangYoon Han
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
27
|
Marchal R, Chicheportiche A, Dutrillaux B, Bernardino-Sgherri J. DNA methylation in mouse gametogenesis. Cytogenet Genome Res 2004; 105:316-24. [PMID: 15237219 DOI: 10.1159/000078204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is involved in many biological processes and is particularly important for both development and germ cell differentiation. Several waves of demethylation and de novo methylation occur during both male and female germ line development. This has been found at both the gene and all genome levels, but there is no demonstrated correlation between them. During the postnatal germ line development of spermatogenesis, we found very complex and drastic DNA methylation changes that we could correlate with chromatin structure changes. Thus, detailed studies focused on localization and expression pattern of the chromatin proteins involved in both DNA methylation, histone tails modification, condensin and cohesin complex formation, should help to gain insights into the mechanisms at the origin of the deep changes occurring during this particular period.
Collapse
Affiliation(s)
- R Marchal
- Laboratoire de radiosensibilité des cellules germinales, Département de Radiobiologie et Radiopathologie, CEA/DSV/SEGG/LRCG Fontenay-aux-roses, France
| | | | | | | |
Collapse
|
28
|
Han S, Xie W, Hammes SR, DeJong J. Expression of the germ cell-specific transcription factor ALF in Xenopus oocytes compensates for translational inactivation of the somatic factor TFIIA. J Biol Chem 2003; 278:45586-93. [PMID: 12923189 DOI: 10.1074/jbc.m302884200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of germ cell-specific general transcription factor and coactivator variants has suggested that reproductive tissues control gene expression somewhat differently than somatic tissues. One of these factors, ALF (TFIIAtau), was first described as a testis-specific counterpart of the large (alpha/beta) subunit of TFIIA. Here we characterize endogenous ALF and TFIIA activities in the African clawed frog Xenopus laevis. ALF is present in both testis and ovary in this organism, and it completely replaces TFIIA in immature oocytes. When oocytes undergo progesterone-induced maturation, ALF activity disappears, and TFIIA activity is restored. Reactivation occurs through the translational up-regulation of two maternal TFIIAalpha/beta mRNAs and involves polyadenylation of a conserved 3'-untranslated region module. The effects of ALF overexpression and ALF immunodepletion on a thymidine kinase promoter construct demonstrate that this factor serves as an active replacement for TFIIA. In contrast, overexpression of TFIIA inhibits transcription, indicating that the somatic factor fails to function properly in the context of the oocyte transcription machinery. Overall, the results show that the translationally regulated reciprocal expression of ALF and TFIIA allows for the production of an active TFIIA-like general transcription factor throughout oogenesis.
Collapse
Affiliation(s)
- SangYoon Han
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | |
Collapse
|
29
|
Hisano M, Ohta H, Nishimune Y, Nozaki M. Methylation of CpG dinucleotides in the open reading frame of a testicular germ cell-specific intronless gene, Tact1/Actl7b, represses its expression in somatic cells. Nucleic Acids Res 2003; 31:4797-804. [PMID: 12907721 PMCID: PMC169926 DOI: 10.1093/nar/gkg670] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5'-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5' upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.
Collapse
Affiliation(s)
- Mizue Hisano
- Department of Laboratory for Science Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
30
|
Ehrlich M. Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 2003; 88:899-910. [PMID: 12616529 DOI: 10.1002/jcb.10464] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite thousands of articles about 5-methylcytosine (m(5)C) residues in vertebrate DNA, there is still controversy concerning the role of genomic m(5)C in normal vertebrate development. Inverse correlations between expression and methylation are seen for many gene regulatory regions [Heard et al., 1997; Attwood et al., 2002; Plass and Soloway, 2002] although much vertebrate DNA methylation is in repeated sequences [Ehrlich et al., 1982]. At the heart of this debate is whether vertebrate DNA methylation has mainly a protective role in limiting expression of foreign DNA elements and endogenous transposons [Walsh and Bestor, 1999] or also is important in the regulation of the expression of diverse vertebrate genes involved in differentiation [Attwood et al., 2002]. Enough thorough studies have now been reported to show that many tissue- or development-specific changes in methylation at vertebrate promoters, enhancers, or insulators regulate expression and are not simply inconsequential byproducts of expression differences. One line of evidence comes from mutants with inherited alterations in genes encoding DNA methyltransferases and from rodents or humans with somatically acquired changes in DNA methylation that illustrate the disease-producing effects of abnormal methylation. Another type of evidence derives from studies of in vivo correlations between tissue-specific changes in DNA methylation and gene expression coupled with experiments demonstrating cause-and-effect associations between DNA hyper- or hypomethylation and gene expression. In this review, I summarize some of the strong evidence from both types of studies. Taken together, these studies demonstrate that DNA methylation in mammals modulates expression of many genes during development, causing major changes in or important fine-tuning of expression. Also, I discuss previously established and newly hypothesized mechanisms for this epigenetic control.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Program in Human Genetics, Department of Biochemistry, and Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA.
| |
Collapse
|