1
|
Li W, Sparks RP, Sun C, Yang Y, Pantano L, Kirchner R, Arghiani N, Weilheimer A, Toles BJ, Chen JY, Moran SP, Barrera V, Li Z, Zhou P, Brassil ML, Wrobel D, Ho Sui SJ, Aspnes G, Schuler M, Smith J, Medoff BD, Zhou C, Boustany-Kari CM, Rippmann JF, Santos DM, Doerner JF, Mullen AC. Screening the human druggable genome identifies ABHD17B as an anti-fibrotic target in hepatic stellate cells. Nat Commun 2025; 16:2109. [PMID: 40025044 PMCID: PMC11873113 DOI: 10.1038/s41467-025-56900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Hepatic stellate cells (HSCs) are activated with chronic liver injury and transdifferentiate into myofibroblasts, which produce excessive extracellular matrices that form the fibrotic scar. While the progression of fibrosis is understood to be the cause of end-stage liver disease, there are no approved therapies directed at interfering with the activity of HSC myofibroblasts. Here, we perform a high-throughput small interfering RNA (siRNA) screen in primary human HSC myofibroblasts to identify gene products necessary for the fibrotic phenotype of HSCs. We find that depletion of ABHD17B promotes the inactivation of HSCs, characterized by reduced COL1A1 and ACTA2 expression and accumulation of lipid droplets. Mice deficient in Abhd17b are also protected from fibrosis in the setting of in vivo liver injury. While ABHD17B is a depalmitoylase, our data suggest that ABHD17B promotes fibrosis through pathways independent of depalmitoylation that include interaction with MYO1B to modulate gene expression and HSC migration. Together, our results provide an analysis of the phenotypic consequences for siRNAs targeting RNAs from >9500 genes in primary human HSCs and identify ABHD17B as a potential therapeutic target to inhibit liver fibrosis.
Collapse
Affiliation(s)
- Wenyang Li
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Robert P Sparks
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yang Yang
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lorena Pantano
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rory Kirchner
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nahid Arghiani
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arden Weilheimer
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer Y Chen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Liver Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sean P Moran
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Victor Barrera
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zixiu Li
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Peng Zhou
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Meghan L Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Wrobel
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Aspnes
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Jennifer Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Chan Zhou
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Jörg F Rippmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | | | - Julia F Doerner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Alan C Mullen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Nishanth MJ, Jha S. Evolutionary Analysis of the hnRNP Interactomes and Their Functions in Eukaryotes. Biochem Genet 2024:10.1007/s10528-024-10956-6. [PMID: 39540958 DOI: 10.1007/s10528-024-10956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are central regulators of several fundamental biological processes across eukaryotes. hnRNPs have been implicated in transcriptional and post-transcriptional regulation, telomere maintenance, stem cell maintenance, among other processes in major model organisms. Though hnRNPs are known to be conserved in eukaryotes, the evolutionary conservation/diversification of their functions across species is yet to be understood. To this end, the present work employed computational analyses to identify potential hnRNP orthologs in eighty eukaryotic species, and their interactors. Subsequently, a comprehensive analysis of the biological processes influenced by hnRNP interactomes showed alternative splicing and splicing regulation to be commonly associated with most species, while a few processes were uniquely associated with particular species. Further studies of the clustering patterns of the top-ranking hub nodes of the hnRNP protein networks revealed a notable clustering pattern of hnRNP K orthologs from five species. Subsequent analysis of the genes with overrepresented hnRNP K target sites within their untranslated regions showed hnRNP K orthologs from humans and Ciona intestanilis to potentially target transcripts involved in membrane-related processes. Remarkably, the hnRNP K ortholog from Lottia gigantea was found to possibly regulate other RNA-binding proteins (RBPs), suggesting a regulatory cascade involving hnRNPs and other RBPs. Further experimental studies in this regard would be of scientific and clinical importance, owing to the druggability of several human hnRNPs.
Collapse
Affiliation(s)
- M J Nishanth
- Department of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, 560027, India.
| | - Shanker Jha
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
3
|
Wang J, Yan L, Wang X, Jia R, Guo J. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3. Inflamm Res 2024; 73:1123-1135. [PMID: 38698180 DOI: 10.1007/s00011-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
5
|
Amara U, Hu J, Cai J, Kang H. FLK is an mRNA m 6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis. MOLECULAR PLANT 2023; 16:919-929. [PMID: 37050878 DOI: 10.1016/j.molp.2023.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
N6-methyladenosine (m6A), which is added, removed, and interpreted by m6A writers, erasers, and readers, respectively, is the most abundant modification in eukaryotic mRNAs. The m6A marks play a pivotal role in the regulation of floral transition in plants. FLOWERING LOCUS K (FLK), an RNA-binding protein harboring K-homology (KH) motifs, is known to regulate floral transition by repressing the levels of a key floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. However, the molecular mechanism underlying FLK-mediated FLC regulation remains unclear. In this study, we identified FLK as a novel mRNA m6A reader protein that directly binds the m6A site in the 3'-untranslated region of FLC transcripts to repressing FLC levels by reducing its stability and splicing. Importantly, FLK binding of FLC transcripts was abolished in vir-1, an m6A writer mutant, and the late-flowering phenotype of the flk mutant could not be rescued by genetic complementation using the mutant FLKm gene, in which the m6A reader encoding function was eliminated, indicating that FLK binds and regulates FLC expression in an m6A-dependent manner. Collectively, our study has addressed a long-standing question of how FLK regulates FLC transcript levels and established a molecular link between the FLK-mediated recognition of m6A modifications on FLC transcripts and floral transition in Arabidopsis.
Collapse
Affiliation(s)
- Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
6
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Cho E, Che X, Ang MJ, Cheon S, Lee J, Kim KS, Lee CH, Lee SY, Yang HY, Moon C, Park C, Choi JY, Lee TH. Peroxiredoxin 5 regulates osteogenic differentiation through interaction with hnRNPK during bone regeneration. eLife 2023; 12:80122. [PMID: 36735291 PMCID: PMC9897727 DOI: 10.7554/elife.80122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Mary Jasmin Ang
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los BañosLos BañosPhilippines
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea,Proteomics Core Facility, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Jinkyung Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Department of Molecular Medicine (BK21plus), Chonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Chang Hoon Lee
- Therapeutic & Biotechnology Division, Drug Discovery Platform Research Center, Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science InstituteOchangRepublic of Korea
| | - Hee-Young Yang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation FoundationDaeguRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| |
Collapse
|
8
|
Wang Z, Chen J, Sun F, Zhao X, Dong Y, Yu S, Li J, Liang H. LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer. Cell Biosci 2022; 12:120. [PMID: 35907898 PMCID: PMC9338583 DOI: 10.1186/s13578-022-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal liver metastases (CRLM) continue to have a low survival rate. The number of CRLM regulators and clinical indicators remains limited. Long non-coding RNAs (lncRNAs) are a new master regulator of cell invasion and metastasis. However, the function and regulation mechanism of lncRNAs in colorectal cancer (CRC) metastasis are yet unknown. Methods To screen and identify CRLM-related lncRNAs, public transcriptome data were used. Gain and loss of function experiments were carried out to investigate the biological activities of lncRNA CRLM1 in vitro and in vivo. RNA sequencing (RNA-seq), chromatin isolation by RNA purification (ChIRP), immunofluorescence (IF), quantitative real-time PCR (qRT-PCR), western blotting, and rescue experiments were performed to explore the molecular mechanism of CRLM1. Moreover, identified the proteins, DNAs, and RNAs that interact with CRLM1. Results The investigation of lncRNA expression dynamics in CRLM, primary CRC, and normal tissues in this work resulted in identifying a series of lncRNAs associated with metastasis, including CRLM1. CRLM1 inhibited apoptosis of CRC cells and promoted liver metastasis in Balb/C nude mice. CRLM1 was weakly associated with the chromatin regions of genes involved in cell adhesion and DNA damage, and this association was bidirectionally correlated with CRLM1-regulated pro-metastatic gene expression. CRLM1 physically interacts with the hnRNPK protein and promotes its nuclear localization. CRLM1 effectively enhances hnRNPK promoter occupancy and co-regulates the expression of a panel of metastatic genes. Conclusions The finding of the clinically significant lncRNA CRLM1 in promoting metastasis and regulating gene expression suggests a potential biomarker and target for CRLM therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00849-9.
Collapse
|
9
|
Lefaudeux D, Sen S, Jiang K, Hoffmann A. Kinetics of mRNA nuclear export regulate innate immune response gene expression. Nat Commun 2022; 13:7197. [PMID: 36424375 PMCID: PMC9691726 DOI: 10.1038/s41467-022-34635-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The abundance and stimulus-responsiveness of mature mRNA is thought to be determined by nuclear synthesis, processing, and cytoplasmic decay. However, the rate and efficiency of moving mRNA to the cytoplasm almost certainly contributes, but has rarely been measured. Here, we investigated mRNA export rates for innate immune genes. We generated high spatio-temporal resolution RNA-seq data from endotoxin-stimulated macrophages and parameterized a mathematical model to infer kinetic parameters with confidence intervals. We find that the effective chromatin-to-cytoplasm export rate is gene-specific, varying 100-fold: for some genes, less than 5% of synthesized transcripts arrive in the cytoplasm as mature mRNAs, while others show high export efficiency. Interestingly, effective export rates do not determine temporal gene responsiveness, but complement the wide range of mRNA decay rates; this ensures similar abundances of short- and long-lived mRNAs, which form successive innate immune response expression waves.
Collapse
Affiliation(s)
- Diane Lefaudeux
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
| | - Supriya Sen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kevin Jiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Esparza M, Bhat P, Fontoura BMA. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs. Curr Opin Virol 2022; 55:101254. [PMID: 35908311 PMCID: PMC9945342 DOI: 10.1016/j.coviro.2022.101254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
As influenza-A viruses (IAV) replicate in the host cell nucleus, intranuclear pathways are usurped for viral gene expression. The eight genomic viral ribonucleoproteins (vRNPs) segments of IAV are transcribed and two generate viral mRNAs (M and NS) that undergo alternative splicing followed by export from the nucleus. The focus of this review is on viral RNA splicing and nuclear export. Recent mechanistic advances on M and NS splicing show differential regulation by RNA-binding proteins as well as distinct intranuclear localization. After a review of IAV splicing, we will discuss the nuclear export of viral mRNAs, which occur by interacting with specific constituents of the host mRNA export machinery that translocate viral mRNAs through the nuclear pore complex for translation in the cytoplasm.
Collapse
|
11
|
Peng C, Tan Y, Yang P, Jin K, Zhang C, Peng W, Wang L, Zhou J, Chen R, Wang T, Jin C, Ji J, Feng Y, Tang J, Sun Y. Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK. J Exp Clin Cancer Res 2021; 40:272. [PMID: 34452628 PMCID: PMC8400830 DOI: 10.1186/s13046-021-02074-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies have investigated the role of circular RNAs (circRNAs) as significant regulatory factors in multiple cancer progression. Nevertheless, the biological functions of circRNAs and the underlying mechanisms by which they regulate colorectal cancer (CRC) progression remain unclear. METHODS A novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of in vitro and in vivo phenotype experiments were performed to investigate the role of circ-GALNT16 in CRC. The FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were performed to investigate the molecular mechanisms of circ-GALNT16 in CRC progression. RESULTS Circ-GALNT16 was downregulated in CRC and was negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastatic ability of CRC cells in vitro and in vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which promoted the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the formation of the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO-specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex. CONCLUSIONS Circ-GALNT16 suppressed CRC progression by inhibiting Serpine1 expression through regulating the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might function as a biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Chaofan Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yuqian Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Peng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Wen Peng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Ranran Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Jiangzhou Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, Nanjing, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Jiang H, Hou P, He H, Wang H. Cell apoptosis regulated by interaction between viral gene alpha 3 and host heterogeneous nuclear ribonucleoprotein K facilitates bovine ephemeral fever virus replication. Vet Microbiol 2020; 240:108510. [DOI: 10.1016/j.vetmic.2019.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
|
13
|
Nazarov IB, Bakhmet EI, Tomilin AN. KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:205-219. [PMID: 31221059 DOI: 10.1134/s0006297919030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein-protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naïve to primed pluripotency cell state.
Collapse
Affiliation(s)
- I B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - E I Bakhmet
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
14
|
Smirnova VV, Shestakova ED, Bikmetov DV, Chugunova AA, Osterman IA, Serebryakova MV, Sergeeva OV, Zatsepin TS, Shatsky IN, Terenin IM. eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. RNA (NEW YORK, N.Y.) 2019; 25:757-767. [PMID: 31010886 PMCID: PMC6573783 DOI: 10.1261/rna.065623.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ekaterina D Shestakova
- Department of Biochemistry, School of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russian Federation
| | - Dmitry V Bikmetov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Anastasia A Chugunova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ilya A Osterman
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Timofey S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation
| |
Collapse
|
15
|
Makokha GN, Abe-Chayama H, Chowdhury S, Hayes CN, Tsuge M, Yoshima T, Ishida Y, Zhang Y, Uchida T, Tateno C, Akiyama R, Chayama K. Regulation of the Hepatitis B virus replication and gene expression by the multi-functional protein TARDBP. Sci Rep 2019; 9:8462. [PMID: 31186504 PMCID: PMC6560085 DOI: 10.1038/s41598-019-44934-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infects the liver and is a key risk factor for hepatocellular carcinoma. Identification of host factors that support viral replication is important to understand mechanisms of viral replication and to develop new therapeutic strategies. We identified TARDBP as a host factor that regulates HBV. Silencing or knocking out the protein in HBV infected cells severely impaired the production of viral replicative intermediates, mRNAs, proteins, and virions, whereas ectopic expression of TARDBP rescued production of these products. Mechanistically, we found that the protein binds to the HBV core promoter, as shown by chromatin precipitation as well as mutagenesis and protein-DNA interaction assays. Using LC-MS/MS analysis, we also found that TARDBP binds to a number of other proteins known to support the HBV life cycle, including NPM1, PARP1, Hsp90, HNRNPC, SFPQ, PTBP1, HNRNPK, and PUF60. Interestingly, given its key role as a regulator of RNA splicing, we found that TARDBP has an inhibitory role on pregenomic RNA splicing, which might help the virus to export its non-canonical RNAs from the nucleus without being subjected to unwanted splicing, even though mRNA nuclear export is normally closely tied to RNA splicing. Taken together, our results demonstrate that TARDBP is involved in multiple steps of HBV replication via binding to both HBV DNA and RNA. The protein's broad interactome suggests that TARDBP may function as part of a RNA-binding scaffold involved in HBV replication and that the interaction between these proteins might be a target for development of anti-HBV drugs.
Collapse
Affiliation(s)
- Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
- Center for Medical Specialist Graduate Education and Research, Hiroshima, Japan
| | - Sajeda Chowdhury
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima, Japan
| | - Tadahiko Yoshima
- Liver Research Project Center, Hiroshima, Japan
- Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, 734-8551, Japan
| | - Yuji Ishida
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, 739-0046, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - Chise Tateno
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, 739-0046, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan
- Liver Research Project Center, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Science, Hiroshima, Japan.
- Liver Research Project Center, Hiroshima, Japan.
- Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, 734-8551, Japan.
| |
Collapse
|
16
|
Ostareck DH, Ostareck-Lederer A. RNA-Binding Proteins in the Control of LPS-Induced Macrophage Response. Front Genet 2019; 10:31. [PMID: 30778370 PMCID: PMC6369361 DOI: 10.3389/fgene.2019.00031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules. As trans-acting factors RNA binding proteins (RBPs) contribute significantly to the surveillance of gene expression. RBPs are involved in the regulation of mRNA processing, localization, stability and translation. Thereby they enable rapid cellular responses to inflammatory mediators and facilitate a coordinated systemic immune response. Specific RBP binding to conserved sequence motifs in their target mRNAs is mediated by RNA binding domains, like Zink-finger domains, RNA recognition motifs (RRM), and hnRNP K homology domains (KH), often arranged in modular arrays. In this review, we focus on RBPs Tristetraprolin (TTP), human antigen R (HUR), T-cell intracellular antigen 1 related protein (TIAR), and heterogeneous ribonuclear protein K (hnRNP K) in LPS induced macrophages as primary responding immune cells. We discuss recent experiments employing RNA immunoprecipitation and microarray analysis (RIP-Chip) and newly developed individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP), photoactivatable ribonucleoside-enhanced crosslinking (PAR-iCLIP) and RNA sequencing techniques (RNA-Seq). The global mRNA interaction profile analysis of TTP, HUR, TIAR, and hnRNP K exhibited valuable information about the post-transcriptional control of inflammation related gene expression with a broad impact on intracellular signaling and temporal cytokine expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
17
|
Thompson MG, Muñoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, García-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun 2018; 9:2407. [PMID: 29921878 PMCID: PMC6008300 DOI: 10.1038/s41467-018-04779-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Three of the eight RNA segments encoded by the influenza A virus (IAV) undergo alternative splicing to generate distinct proteins. Previously, we found that host proteins hnRNP K and NS1-BP regulate IAV M segment splicing, but the mechanistic details were unknown. Here we show NS1-BP and hnRNP K bind M mRNA downstream of the M2 5′ splice site (5′ss). NS1-BP binds most proximal to the 5′ss, partially overlapping the U1 snRNP binding site, while hnRNP K binds further downstream and promotes U1 snRNP recruitment. Mutation of either or both the hnRNP K and NS1-BP-binding sites results in M segment mis-splicing and attenuated IAV replication. Additionally, we show that hnRNP K and NS1-BP regulate host splicing events and that viral infection causes mis-splicing of some of these transcripts. Therefore, our proposed mechanism of hnRNP K/NS1-BP mediated IAV M splicing provides potential targets of antiviral intervention and reveals novel host functions for these proteins. Alternative splicing of influenza A virus (IAV) M transcript is regulated by hnRNP K and NS1-BP, but mechanistic details are unknown. Here, Thompson et al. show how hnRNP K and NS1-BP bind M mRNA and that these proteins regulate splicing of host transcripts in both the absence and presence of IAV infection.
Collapse
Affiliation(s)
- Matthew G Thompson
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Renat Roytenberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John Lindberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Michael J Mallory
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ke Zhang
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kristen W Lynch
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Wang W, Chen J, Luo L, Li Y, Liu J, Zhang W. Effect of cadmium on kitl pre-mRNA alternative splicing in murine ovarian granulosa cells and its associated regulation by miRNAs. J Appl Toxicol 2017; 38:227-239. [DOI: 10.1002/jat.3516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health; Fujian Medical University; Fuzhou Fujian China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Jie Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Lingfeng Luo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Yuchen Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Jin Liu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Wenchang Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
- Fujian Province Key Laboratory of Environment and Cancer, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| |
Collapse
|
19
|
Soemedi R, Cygan KJ, Rhine CL, Glidden DT, Taggart AJ, Lin CL, Fredericks AM, Fairbrother WG. The effects of structure on pre-mRNA processing and stability. Methods 2017; 125:36-44. [PMID: 28595983 DOI: 10.1016/j.ymeth.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA molecules can form a variety of structures, and both secondary and tertiary structures have important effects on processing, function and stability of these molecules. The prediction of RNA secondary structure is a challenging problem and various algorithms that use minimum free energy, maximum expected accuracy and comparative evolutionary based methods have been developed to predict secondary structures. However, these tools are not perfect, and this remains an active area of research. The secondary structure of pre-mRNA molecules can have an enhancing or inhibitory effect on pre-mRNA splicing. An example of enhancing structure can be found in a novel class of introns in zebrafish. About 10% of zebrafish genes contain a structured intron that forms a bridging hairpin that enforces correct splice site pairing. Negative examples of splicing include local structures around splice sites that decrease splicing efficiency and potentially cause mis-splicing leading to disease. Splicing mutations are a frequent cause of hereditary disease. The transcripts of disease genes are significantly more structured around the splice sites, and point mutations that increase the local structure often cause splicing disruptions. Post-splicing, RNA secondary structure can also affect the stability of the spliced intron and regulatory RNA interference pathway intermediates, such as pre-microRNAs. Additionally, RNA secondary structure has important roles in the innate immune defense against viruses. Finally, tertiary structure can also play a large role in pre-mRNA splicing. One example is the G-quadruplex structure, which, similar to secondary structure, can either enhance or inhibit splicing through mechanisms such as creating or obscuring RNA binding protein sites.
Collapse
Affiliation(s)
- Rachel Soemedi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Kamil J Cygan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Christy L Rhine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - David T Glidden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Alger M Fredericks
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| |
Collapse
|
20
|
Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6972030. [PMID: 28265575 PMCID: PMC5318639 DOI: 10.1155/2017/6972030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development.
Collapse
|
21
|
Zhang P, Wang N, Lin X, Jin L, Xu H, Li R, Huang H. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos. Biochem Biophys Res Commun 2016; 471:260-5. [PMID: 26850853 DOI: 10.1016/j.bbrc.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development.
Collapse
Affiliation(s)
- Ping Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningling Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianhua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Poenisch M, Metz P, Blankenburg H, Ruggieri A, Lee JY, Rupp D, Rebhan I, Diederich K, Kaderali L, Domingues FS, Albrecht M, Lohmann V, Erfle H, Bartenschlager R. Identification of HNRNPK as regulator of hepatitis C virus particle production. PLoS Pathog 2015; 11:e1004573. [PMID: 25569684 PMCID: PMC4287573 DOI: 10.1371/journal.ppat.1004573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses.
Collapse
Affiliation(s)
- Marion Poenisch
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Philippe Metz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hagen Blankenburg
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy, Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ilka Rebhan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Kathrin Diederich
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- ViroQuant Research Group Modeling, University of Heidelberg, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Francisco S. Domingues
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy, Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Mario Albrecht
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
23
|
Abelin ACT, Marinov GK, Williams BA, McCue K, Wold BJ. A ratiometric-based measure of gene co-expression. BMC Bioinformatics 2014; 15:331. [PMID: 25411051 PMCID: PMC4289233 DOI: 10.1186/1471-2105-15-331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/02/2022] Open
Abstract
Background Gene co-expression analysis has previously been based on measures that include correlation coefficients and mutual information, as well as newcomers such as MIC. These measures depend primarily on the degree of association between the RNA levels of two genes and to a lesser extent on their variability. They focus on the similarity of expression value trajectories that change in like manner across samples. However there are relationships of biological interest for which these classical measures are expected to be insensitive. These include genes whose expression levels are ratiometrically stable and genes whose variance is tightly constrained. Large-scale studies of relatively homogeneous samples, including single cell RNA-seq, are experimental settings in which such relationships might be especially pertinent. Results We develop and implement a ratiometric approach for detecting gene associations (abbreviated RA). It is based on the coefficient of variation of the measured expression ratio of each pair of genes. We apply it to a collection of lymphoblastoid RNA-seq data from the 1000 Genomes Project Consortium, a typical sample set with high overall homogeneity. RA is a selective method, reporting in this case ~1/4 of all possible gene pairs, yet these relationships include a distilled picture of biological relationships previously found by other methods. In addition, RA reveals expression relationships that are not detected by traditional correlation and mutual information methods. We also analyze data from individual lymphoblastoid cells and show that desirable properties of the RA method extend to single-cell RNA-seq. Conclusion We show that our ratiometric method identifies biologically significant relationships that are often missed or low-ranked by conventional association-based methods when applied to a relatively homogenous dataset. The results open new questions about the regulatory mechanisms that produce strong RA relationships. RA is scalable and potentially well suited for the analysis of thousands of bulk-RNA or single-cell transcriptomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-331) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
25
|
Kamtchueng C, Stébenne MÉ, Delannoy A, Wilhelm E, Léger H, Benecke AG, Bell B. Alternative splicing of TAF6: downstream transcriptome impacts and upstream RNA splice control elements. PLoS One 2014; 9:e102399. [PMID: 25025302 PMCID: PMC4099370 DOI: 10.1371/journal.pone.0102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
The TAF6δ pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6δ is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6δ has been shown to be a pivotal event in triggering death via the TAF6δ pathway, yet nothing is currently known about the mechanisms that promote TAF6δ splicing. Furthermore the transcriptome impact of the gain of function of TAF6δ versus the loss of function of the major TAF6α splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6δ drives a transcriptome profile distinct from that resulting from depletion of TAF6α. To define the cis-acting RNA elements responsible for TAF6δ alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6δ and also reveal a role for RNA secondary structure in the selection of TAF6δ.
Collapse
Affiliation(s)
- Catherine Kamtchueng
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Marie-Éve Stébenne
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Aurélie Delannoy
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Emmanuelle Wilhelm
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
| | - Hélène Léger
- Institut des Hautes Etudes Scientifiques, Centre National de la Recherche Scientifique, 35 route de Chartres, Bures sur Yvette, France
| | - Arndt G. Benecke
- Institut des Hautes Etudes Scientifiques, Centre National de la Recherche Scientifique, 35 route de Chartres, Bures sur Yvette, France
- Université Pierre et Marie Curie, UMR8246 CNRS, 7 quai Saint Bernard, Paris, France
| | - Brendan Bell
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Pavillon de recherche appliquée sur le cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
26
|
Qiu J, Chen S, Su L, Liu J, Xiao N, Ou TM, Tan JH, Gu LQ, Huang ZS, Li D. Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells. Biochim Biophys Acta Gen Subj 2014; 1840:2244-52. [DOI: 10.1016/j.bbagen.2014.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
|
27
|
Suzuki MG, Ito H, Aoki F. Effects of RNAi-mediated knockdown of histone methyltransferases on the sex-specific mRNA expression of Imp in the silkworm Bombyx mori. Int J Mol Sci 2014; 15:6772-96. [PMID: 24758924 PMCID: PMC4013661 DOI: 10.3390/ijms15046772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/25/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity.
Collapse
Affiliation(s)
- Masataka G Suzuki
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | - Haruka Ito
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | - Fugaku Aoki
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
28
|
Chapman KM, Powell HM, Chaudhary J, Shelton JM, Richardson JA, Richardson TE, Hamra FK. Linking spermatid ribonucleic acid (RNA) binding protein and retrogene diversity to reproductive success. Mol Cell Proteomics 2013; 12:3221-36. [PMID: 23938467 DOI: 10.1074/mcp.m113.030585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spermiogenesis is a postmeiotic process that drives development of round spermatids into fully elongated spermatozoa. Spermatid elongation is largely controlled post-transcriptionally after global silencing of mRNA synthesis from the haploid genome. Here, rats that differentially express EGFP from a lentiviral transgene during early and late steps of spermiogenesis were used to flow sort fractions of round and elongating spermatids. Mass-spectral analysis of 2D gel protein spots enriched >3-fold in each fraction revealed a heterogeneous RNA binding proteome (hnRNPA2/b1, hnRNPA3, hnRPDL, hnRNPK, hnRNPL, hnRNPM, PABPC1, PABPC4, PCBP1, PCBP3, PTBP2, PSIP1, RGSL1, RUVBL2, SARNP2, TDRD6, TDRD7) abundantly expressed in round spermatids prior to their elongation. Notably, each protein within this ontology cluster regulates alternative splicing, sub-cellular transport, degradation and/or translational repression of mRNAs. In contrast, elongating spermatid fractions were enriched with glycolytic enzymes, redox enzymes and protein synthesis factors. Retrogene-encoded proteins were over-represented among the most abundant elongating spermatid factors identified. Consistent with these biochemical activities, plus corresponding histological profiles, the identified RNA processing factors are predicted to collectively drive post-transcriptional expression of an alternative exome that fuels finishing steps of sperm maturation and fitness.
Collapse
|
29
|
Hörnberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 2013; 7:81. [PMID: 23734093 PMCID: PMC3661996 DOI: 10.3389/fnins.2013.00081] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/06/2013] [Indexed: 01/11/2023] Open
Abstract
RNA localization and regulation play an important role in the developing and adult nervous system. In navigating axons, extrinsic cues can elicit rapid local protein synthesis that mediates directional or morphological responses. The mRNA repertoire in axons is large and dynamically changing, yet studies suggest that only a subset of these mRNAs are translated after cue stimulation, suggesting the need for a high level of translational regulation. Here, we review the role of RNA-binding proteins (RBPs) as local regulators of translation in developing axons. We focus on their role in growth, guidance, and synapse formation, and discuss the mechanisms by which they regulate translation in axons.
Collapse
Affiliation(s)
- Hanna Hörnberg
- Department of Physiology Development and Neuroscience, University of Cambridge Cambridge, UK
| | | |
Collapse
|
30
|
Poly(C)-binding protein 1, a novel N(pro)-interacting protein involved in classical swine fever virus growth. J Virol 2012; 87:2072-80. [PMID: 23221550 DOI: 10.1128/jvi.02807-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N(pro) is a multifunctional autoprotease unique to pestiviruses. The interacting partners of the N(pro) protein of classical swine fever virus (CSFV), a swine pestivirus, have been insufficiently defined. Using a yeast two-hybrid screen, we identified poly(C)-binding protein 1 (PCBP1) as a novel interacting partner of the CSFV N(pro) protein and confirmed this by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and confocal assays. Knockdown of PCBP1 by small interfering RNA suppressed CSFV growth, while overexpression of PCBP1 promoted CSFV growth. Furthermore, we showed that type I interferon was downregulated by PCBP1, as well as N(pro). Our results suggest that cellular PCBP1 positively modulates CSFV growth.
Collapse
|
31
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
32
|
Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, Marie J. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res 2011; 40:3159-71. [PMID: 22156369 PMCID: PMC3326330 DOI: 10.1093/nar/gkr1228] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type I (DM1) is caused by an abnormal expansion of CTG triplets in the 3′ UTR of the dystrophia myotonica protein kinase (DMPK) gene, leading to the aggregation of the mutant transcript in nuclear RNA foci. The expanded mutant transcript promotes the sequestration of the MBNL1 splicing factor, resulting in the misregulation of a subset of alternative splicing events. In this study, we identify the DEAD-box RNA helicase p68 (DDX5) in complexes assembled onto in vitro-transcribed CUG repeats. We showed that p68 colocalized with RNA foci in cells expressing the 3′UTR of the DMPK gene containing expanded CTG repeats. We found that p68 increased MBNL1 binding onto pathological repeats and the stem–loop structure regulatory element within the cardiac Troponin T (TNNT2) pre-mRNA, splicing of which is misregulated in DM1. Mutations in the helicase core of p68 prevented both the stimulatory effect of the protein on MBNL1 binding and the colocalization of p68 with CUG repeats, suggesting that remodeling of RNA secondary structure by p68 facilitates MBNL1 binding. We also found that the competence of p68 for regulating TNNT2 exon 5 inclusion depended on the integrity of MBNL1 binding sites. We propose that p68 acts as a modifier of MBNL1 activity on splicing targets and pathogenic RNA.
Collapse
Affiliation(s)
- François-Xavier Laurent
- Centre de Génétique Moléculaire, CNRS, UPR 3404, Avenue de Terrasse, 91198 Gif-sur-Yvette, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Mikula M, Bomsztyk K. Direct recruitment of ERK cascade components to inducible genes is regulated by heterogeneous nuclear ribonucleoprotein (hnRNP) K. J Biol Chem 2011; 286:9763-75. [PMID: 21233203 DOI: 10.1074/jbc.m110.213330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Components of the ERK cascade are recruited to genes, but it remains unknown how they are regulated at these sites. The RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) K interacts with kinases and is found along genes including the mitogen-inducible early response gene EGR-1. Here, we used chromatin immunoprecipitations to study co-recruitment of hnRNP K and ERK cascade activity along the EGR-1 gene. These measurements revealed that the spatiotemporal binding patterns of ERK cascade transducers (GRB2, SOS, B-Raf, MEK, and ERK) at the EGR-1 locus resemble both hnRNP K and RNA polymerase II (Pol II). Inhibition of EGR-1 transcription with either serum-responsive factor knockdown or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole altered recruitment of all of the above ERK cascade components along this locus that mirrored the changes in Pol II and hnRNP K profiles. siRNA knockdown of hnRNP K decreased the levels of active MEK and ERK at the EGR-1, changes associated with decreased levels of elongating pre-mRNA and less efficient splicing. The hnRNP K dependence and pattern of ERK cascade activation at the c-MYC locus were different from at EGR-1. Ribonucleoprotein immunoprecipitations revealed that hnRNP K was associated with the EGR-1 but not c-MYC mRNAs. These data suggest a model where Pol II transcription-driven recruitment of hnRNP K along the EGR-1 locus compartmentalizes activation of the ERK cascade at these genes, events that regulate synthesis of mature mRNA.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
34
|
Xiao X, Lee JH. Systems analysis of alternative splicing and its regulation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:550-565. [PMID: 20836047 DOI: 10.1002/wsbm.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alternative splicing (AS) has emerged as a key mechanism that accounts for gene expression diversity in metazoan organisms. Splicing is tightly regulated by a repertoire of RNA and protein factors and RNA sequence elements that function in a cooperative manner. Systems-level experimental and computational approaches have been instrumental in establishing comprehensive profiles of transcript variants generated by AS. In addition, systems biology approaches are starting to define how combinatorial splicing regulation shapes the complex splicing phenotypes observed in different tissue types and developmental stages and under different conditions. Here, we review recent progress in these areas.
Collapse
Affiliation(s)
- Xinshu Xiao
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jae-Hyung Lee
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2010; 2011:532908. [PMID: 21234377 PMCID: PMC3017892 DOI: 10.1155/2011/532908] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studied in vitro and in vivo using oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here.
Collapse
|
36
|
Identification of a male-specific RNA binding protein that regulates sex-specific splicing of Bmdsx by increasing RNA binding activity of BmPSI. Mol Cell Biol 2010; 30:5776-86. [PMID: 20956562 DOI: 10.1128/mcb.00444-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bmdsx is a sex-determining gene in the silkworm and is alternatively spliced in males and females. CE1 is a splicing silencer element responsible for the sex-specific splicing of Bmdsx. To identify sex-specific factors implicated in the sex-specific splicing of Bmdsx, we performed RNA affinity chromatography using CE1 RNA as a ligand. We have identified BmIMP, a Bombyx homolog of IGF-II mRNA binding protein (IMP), as a male-specific factor that specifically binds to CE1. The gene encoding BmIMP is localized on the Z chromosome and is male-specifically expressed in various tissues. Antisense inhibition of BmIMP expression increased female-specific splicing of Bmdsx pre-mRNA. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown analyses demonstrated that BmIMP physically interacts with BmPSI, which has been identified as a factor implicated in the sex-specific splicing of Bmdsx, through the KH domains of BmIMP. The functional consequence of this interaction was examined using RNA mobility shift analysis. BmIMP increased BmPSI-CE1 RNA binding activity by decreasing the rate of BmPSI dissociation from CE1 RNA. Truncation analysis of BmIMP suggested that the KH domains are responsible for enhancing BmPSI-CE1 RNA binding activity. These results suggest that BmIMP may enhance the male-specific splicing of Bmdsx pre-mRNA by increasing RNA binding activity of BmPSI.
Collapse
|
37
|
Abstract
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and functional properties. Although the traditional grouping of the hnRNPs as a collection of proteins provided a practical framework, which has guided much of the research on them, this approach is becoming increasingly incompatible with current knowledge about their structural and functional divergence. Hence, we review the current literature to examine hnRNP diversity, and discuss how this impacts upon approaches to the classification of RNA-binding proteins in general.
Collapse
|
38
|
White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, Wakamiya M, Edwards SF, Raskin S, Teive HAG, Zoghbi HY, Sarkar PS, Ashizawa T. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 2010; 6:e1000984. [PMID: 20548952 PMCID: PMC2883596 DOI: 10.1371/journal.pgen.1000984] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/12/2010] [Indexed: 01/20/2023] Open
Abstract
We have identified a large expansion of an ATTCT repeat within intron 9 of ATXN10 on chromosome 22q13.31 as the genetic mutation of spinocerebellar ataxia type 10 (SCA10). Our subsequent studies indicated that neither a gain nor a loss of function of ataxin 10 is likely the major pathogenic mechanism of SCA10. Here, using SCA10 cells, and transfected cells and transgenic mouse brain expressing expanded intronic AUUCU repeats as disease models, we show evidence for a key pathogenic molecular mechanism of SCA10. First, we studied the fate of the mutant repeat RNA by in situ hybridization. A Cy3-(AGAAU)10 riboprobe detected expanded AUUCU repeats aggregated in foci in SCA10 cells. Pull-down and co-immunoprecipitation data suggested that expanded AUUCU repeats within the spliced intronic sequence strongly bind to hnRNP K. Co-localization of hnRNP K and the AUUCU repeat aggregates in the transgenic mouse brain and transfected cells confirmed this interaction. To examine the impact of this interaction on hnRNP K function, we performed RT–PCR analysis of a splicing-regulatory target of hnRNP K, and found diminished hnRNP K activity in SCA10 cells. Cells expressing expanded AUUCU repeats underwent apoptosis, which accompanied massive translocation of PKCδ to mitochondria and activation of caspase 3. Importantly, siRNA–mediated hnRNP K deficiency also caused the same apoptotic event in otherwise normal cells, and over-expression of hnRNP K rescued cells expressing expanded AUUCU repeats from apoptosis, suggesting that the loss of function of hnRNP K plays a key role in cell death of SCA10. These results suggest that the expanded AUUCU–repeat in the intronic RNA undergoes normal transcription and splicing, but causes apoptosis via an activation cascade involving a loss of hnRNP K activities, massive translocation of PKCδ to mitochondria, and caspase 3 activation. In an earlier study, we showed that the mutation of spinocerebellar ataxia 10 (SCA10) is an enormous expansion of a gene segment, which contains a tandemly repeated 5-base (ATTCT) unit. Since SCA10 is the only known human disease that is proven to be caused by 5-base repeat expansion, it is important to learn how this novel class of mutation causes the disease. We found that the mutation produces an expanded RNA repeat, which aberrantly accumulates in SCA10 cells and interacts with a major RNA–binding protein. When we expressed expanded RNA repeats or decreased the RNA–binding protein level in cultured cells, either of these manipulations produced a specific type of cell death that is associated with a massive transfer of a key enzyme called protein kinase C delta to mitochondria. We also showed that either blocking the expanded AUUCU repeat or replenishing hnRNP K rescues cells from the cell death induced by the SCA10 mutation. Together, we conclude that the mutant RNA inactivates hnRNP K and kills cells by triggering the specific cell-death mechanism. Our data provide important clues for therapeutic intervention in SCA10.
Collapse
Affiliation(s)
- Misti C. White
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Weidong Xu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Santi M. Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jung G. Lim
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sharon F. Edwards
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Salmo Raskin
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Huda Y. Zoghbi
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li H, Liu J. Identification of heterogeneous nuclear ribonucleoprotein K as a transactivator for human low density lipoprotein receptor gene transcription. J Biol Chem 2010; 285:17789-97. [PMID: 20371611 PMCID: PMC2878543 DOI: 10.1074/jbc.m109.082057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/05/2010] [Indexed: 01/09/2023] Open
Abstract
hnRNP K, a member of the family of heterogeneous ribonucleoproteins, is known to exert various functional roles in the nucleus, cytoplasm, and mitochondria to affect different cellular processes including chromatin remodeling, transcription, splicing, and translation. Here we report, for the first time, that hnRNP K is specifically involved in human LDL receptor (LDLR) gene transcription in HepG2 cells. We show that depletion of hnRNP K by siRNA transfection reduces the expression of LDLR mRNA and protein by more than 50% as measured by quantitative real-time PCR and Western blot analysis. Importantly, we show that the decay rate of LDLR mRNA is not affected by hnRNP K siRNA transfection, whereas the LDLR promoter activity is significantly decreased. Furthermore, overexpression of hnRNP K increased the LDLR promoter activity by the luciferase reporter assay. By utilizing a series of mutational and deletional constructs of LDLR promoter luciferase reporters, we mapped the K-responsive element to the repeat 3 (R3) sequence of the LDLR promoter. Electrophoretic mobility shift assays show that the K protein binds to a single-stranded DNA probe containing the CT-rich element of R3, which is in contrast to the requirement of double-stranded DNA for Sp1 to bind to R3. Finally, chromatin immunoprecipitation assays reveal a direct interaction of hnRNP K with the LDLR promoter in intact HepG2 cells. These new findings provide strong evidence demonstrating that hnRNP K is an important transactivator for human LDLR gene transcription. This work sheds new light on our current understanding of how LDLR gene expression is controlled at the transcriptional level.
Collapse
Affiliation(s)
- Hai Li
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Jingwen Liu
- From the Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
40
|
Sokolowska M, Wodz-Naskiewicz K, Cieslak M, Seta K, Bednarek AK, Pawliczak R. Variable expression of cysteinyl leukotriene type I receptor splice variants in asthmatic females with different promoter haplotypes. BMC Immunol 2009; 10:63. [PMID: 20003473 PMCID: PMC2805608 DOI: 10.1186/1471-2172-10-63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/15/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cysteinyl leukotrienes are potent inflammatory mediators implicated in the pathogenesis of asthma. Human cysteinyl leukotriene receptor 1 (CYSLTR1) gene contains five exons that are variably spliced. Within its promoter few polymorphisms were described. To date, there has been no evidence about the expression of different splice variants of CysLT1 in asthma and their association with CYSLTR1 promoter polymorphisms.The goal of our study was to investigate CysLT1 alternative transcripts expression in asthmatic patients with different CYSLTR1 promoter haplotypes.The study groups consisted of 44 patients with asthma, diagnosed according to GINA 2008 criteria and 18 healthy subjects. Genomic DNA and total RNA was extracted from peripheral blood mononuclear cells. Real-time PCR was performed with specific primers for transcript I [GenBank:DQ131799] and II [GenBank:DQ131800]. Fragments of the CYSLTR1 promoter were amplified by PCR and sequenced directly to identify four single nucleotide polymorphisms: C/T [SNP:rs321029], A/C [SNP:rs2637204], A/G [SNP:rs2806489] and C/T [SNP:rs7066737]. RESULTS The expression of CysLT1 transcript I and II in asthma did not differ from its expression in healthy control group. However, in major alleles homozygotic CAAC/CAAC women with asthma we found significantly higher expression of transcript I as compared to heterozygous CAAC/TCGC women in that loci. CysLT1 transcript I expression tended to negative correlation with episodes of acute respiratory infection in our asthmatic population. Moreover, expression of CysLT1 transcript II in CAAC/CAAC homozygotic women with asthma was significantly lower than in CAAC/CAAC healthy control females. CONCLUSIONS Genetic variants of CYSLTR1 promoter might be associated with gender specific expression of CysLT1 alternative transcripts in patients with asthma. CysLT1 splice variants expression might also correlate with the susceptibility to infection in asthmatic population.
Collapse
Affiliation(s)
- Milena Sokolowska
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Karolina Wodz-Naskiewicz
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Malgorzata Cieslak
- Department of Immunology, Rheumatology and Allergy, Chair of Clinical Immunology and Microbiology, Faculty of Medicine, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| | - Karolina Seta
- Department of Molecular Carcinogenesis, Chair of Molecular Medicine and Biotechnology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Mazowiecka 6/8 str, 92-215 Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Chair of Molecular Medicine and Biotechnology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Mazowiecka 6/8 str, 92-215 Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Chair of Allergology, Immunology and Dermatology, Faculty of Medical Science and Postgraduate Training, Medical University of Lodz, Pomorska 251 str, 92-213 Lodz, Poland
| |
Collapse
|
41
|
Gao FH, Wu YL, Zhao M, Liu CX, Wang LS, Chen GQ. Protein Kinase C-δ mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction. Exp Cell Res 2009; 315:3250-8. [DOI: 10.1016/j.yexcr.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 01/02/2023]
|
42
|
Grillari J, Löscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-Pso4. J Biol Chem 2009; 284:29193-204. [PMID: 19641227 PMCID: PMC2781463 DOI: 10.1074/jbc.m109.036632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Indexed: 02/05/2023] Open
Abstract
The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ripoll JJ, Rodríguez-Cazorla E, González-Reig S, Andújar A, Alonso-Cantabrana H, Perez-Amador MA, Carbonell J, Martínez-Laborda A, Vera A. Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C. Dev Biol 2009; 333:251-62. [DOI: 10.1016/j.ydbio.2009.06.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
|
44
|
Revil T, Pelletier J, Toutant J, Cloutier A, Chabot B. Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform. J Biol Chem 2009; 284:21458-67. [PMID: 19520842 DOI: 10.1074/jbc.m109.019711] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Bcl-x pre-mRNA is alternatively spliced to produce the anti-apoptotic Bcl-x(L) and the pro-apoptotic Bcl-x(S) isoforms. By performing deletion mutagenesis on a human Bcl-x minigene, we have identified a novel exonic element that controls the use of the 5' splice site of Bcl-x(S). The proximal portion of this element acts as a repressor and is located downstream of an enhancer. Further mutational analysis provided a detailed topological map of the regulatory activities revealing a sharp transition between enhancer and repressor sequences. Portions of the enhancer can function when transplanted in another alternative splicing unit. Chromatography and immunoprecipitation assays indicate that the silencer element interacts with heterogeneous ribonucleoprotein particle (hnRNP) K, consistent with the presence of putative high affinity sites for this protein. Finally, down-regulation of hnRNP K by RNA interference enhanced splicing to Bcl-x(S), an effect seen only when the sequences bound by hnRNP K are present. Our results therefore document a clear role for hnRNP K in preventing the production of the pro-apoptotic Bcl-x(S) splice isoform.
Collapse
Affiliation(s)
- Timothée Revil
- RNA/RNP Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
45
|
Venables JP, Koh CS, Froehlich U, Lapointe E, Couture S, Inkel L, Bramard A, Paquet ER, Watier V, Durand M, Lucier JF, Gervais-Bird J, Tremblay K, Prinos P, Klinck R, Elela SA, Chabot B. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 2008; 28:6033-43. [PMID: 18644864 PMCID: PMC2547008 DOI: 10.1128/mcb.00726-08] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/30/2008] [Accepted: 07/11/2008] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.
Collapse
Affiliation(s)
- Julian P Venables
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, 3001, 12th Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol 2008; 9:R97. [PMID: 18549497 PMCID: PMC2481429 DOI: 10.1186/gb-2008-9-6-r97] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/27/2007] [Accepted: 06/12/2008] [Indexed: 01/22/2023] Open
Abstract
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests a novel mechanism for intron recognition that compensates for a weakened canonical pre-mRNA splicing motif. Background While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. Results Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. Conclusion The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif.
Collapse
Affiliation(s)
- Jill I Murray
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
47
|
Gonnet F, Bouazza B, Millot GA, Ziaei S, Garcia L, Butler-Browne GS, Mouly V, Tortajada J, Danos O, Svinartchouk F. Proteome analysis of differentiating human myoblasts by dialysis-assisted two-dimensional gel electrophoresis (DAGE). Proteomics 2008; 8:264-78. [PMID: 18203276 DOI: 10.1002/pmic.200700261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, modifications in cytosolic expressed proteins during human myoblast differentiation were studied by dialysis-assisted 2-DE (DAGE, [1]). About 1000 spots were analysed on the 5th and 13th day of differentiation with a dynamic range of protein expression exceeding 1000-fold. During myogenic differentiation, the number of nonmatching spots as well as the extent of quantitative differences between matched spots significantly increased. Over one hundred differentially expressed spots were excised and identified by MALDI-TOF MS. The differentiation-associated expression pattern of eight proteins was validated by Western blot analysis. Differential expression of several proteins was demonstrated for the first time in human myotubes. Interestingly, Ingenuity pathway analysis grouped 30 of these proteins into two overlapping networks containing as principal nodes IGF-1 and tumour necrosis factor, two proteins known to play a crucial role in cytogenesis. Our results illustrate the large rearrangement of the proteome during the differentiation of human myoblasts and provide evidence for new partners involved in this complex process.
Collapse
Affiliation(s)
- Florence Gonnet
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Université d'Evry Val d'Essonne, CNRS UMR 8587, Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Allemand E, Batsché E, Muchardt C. Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev 2008; 18:145-51. [PMID: 18372167 DOI: 10.1016/j.gde.2008.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 01/31/2023]
Abstract
Alternative splicing allows for one gene to encode multiple proteins. This mechanism is regulated by dedicated splicing factors. However, recent data have shown that these factors contact the RNA polymerase II as well as transcription factors and chromatin remodeling enzymes present inside the coding region of the gene. These observations favor a model where cotranscriptional splice decisions are assisted by factors recruited at the promoter or by the elongating polymerase. We also suggest that chromatin could function as an RNA-binding matrix displaying the immature transcripts to the spliceosomes.
Collapse
Affiliation(s)
- Eric Allemand
- Institut Pasteur, CNRS URA2578, Unité de Régulation Epigénétique, Avenir INSERM, Département de Biologie du Développement, Paris, France
| | | | | |
Collapse
|
49
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
50
|
|