1
|
Dai J, Yi G, Philip AA, Patton JT. Rotavirus NSP1 Subverts the Antiviral Oligoadenylate Synthetase-RNase L Pathway by Inducing RNase L Degradation. mBio 2022; 13:e0299522. [PMID: 36413023 PMCID: PMC9765674 DOI: 10.1128/mbio.02995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
The interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway plays a critical role in antiviral immunity. Group A rotaviruses, including the simian SA11 strain, inhibit this pathway through two activities: an E3-ligase related activity of NSP1 that degrades proteins necessary for IFN signaling, and a phosphodiesterase (PDE) activity of VP3 that hydrolyzes the RNase L-activator 2',5'-oligoadenylate. Unexpectedly, we found that a recombinant (r) SA11 double mutant virus deficient in both activities (rSA11-VP3H797R-NSP1ΔC17) retained the ability to prevent RNase L activation. Mass spectrometry led to the discovery that NSP1 interacts with RNase L in rSA11-infected HT29 cells. This interaction was confirmed through copulldown assay of cells transiently expressing NSP1 and RNase L. Immunoblot analysis showed that infection with wild-type rSA11 virus, rSA11-VP3H797R-NSP1ΔC17 double mutant virus, or single mutant forms of the latter virus all resulted in the depletion of endogenous RNase L. The loss of RNase L was reversed by addition of the neddylation inhibitor MLN4924, but not the proteasome inhibitor MG132. Analysis of additional mutant forms of rSA11 showed that RNase L degradation no longer occurred when either the N-terminal RING domain of NSP1 was mutated or the C-terminal 98 amino acids of NSP1 were deleted. The C-terminal RNase L degradation domain is positioned upstream and is functionally independent of the NSP1 domain necessary for inhibiting IFN expression. Our studies reveal a new role for NSP1 and its E3-ligase related activity as an antagonist of RNase L and uncover a novel virus-mediated strategy of inhibiting the OAS-RNase L pathway. IMPORTANCE For productive infection, rotavirus and other RNA viruses must suppress interferon (IFN) signaling and the expression of IFN-stimulated antiviral gene products. Particularly important is inhibiting the interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway, as activated RNase L can direct the nonspecific degradation of viral and cellular RNAs, thereby blocking viral replication and triggering cell death pathways. In this study, we have discovered that the simian SA11 strain of rotavirus employs a novel strategy of inhibiting the OAS-RNase L pathway. This strategy is mediated by SA11 NSP1, a nonstructural protein that hijacks E3 cullin-RING ligases, causing the ubiquitination and degradation of host proteins essential for IFN induction. Our analysis shows that SA11 NSP1 also recognizes and causes the ubiquitination of RNase L, an activity resulting in depletion of endogenous RNase L. These data raise the possibility of using therapeutics targeting cellular E3 ligases to control rotavirus infections.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Guanghui Yi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Asha A. Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Polli A, Van Oosterwijck J, Meeus M, Lambrecht L, Nijs J, Ickmans K. Exercise-induce hyperalgesia, complement system and elastase activation in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - a secondary analysis of experimental comparative studies. Scand J Pain 2019; 19:183-192. [PMID: 30325737 DOI: 10.1515/sjpain-2018-0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
Abstract
Background and aims The interaction between the immune system and pain has been thoroughly explored in the recent decades. The release of inflammatory mediators from immune cells has the capability of activating neurons and glial cells, in turn sensitizing the nervous system. Both immune system alterations and pain modulation dysfunctions have been shown in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) following exercise. However, no studies tried to explore whether these two phenomena are linked and can explain exercise-induced symptoms worsening in people with ME/CFS. We hypothesized that exercise-induced changes in descending pain modulation is associated to changes in immune system functions. We used complement system product C4a and elastase activity as indicators of immune system activity. Methods The study design was a secondary analysis of controlled experimental studies. Twenty-two patients with ME/CFS and 22 healthy sedentary controls were enrolled. In experiment 1, subjects performed an aerobic submaximal exercise test; in experiment 2 they underwent a self-paced exercise test. One week of rest period were set between the two exercise tests. Before and after each experiment, subjects underwent clinical assessment, pain thresholds (PPTs) measurement, and blood sampling. Immune system function was assessed measuring complement system C4a products and elastase activity. Results Changes in elastase activity were not associated to changes in PPTs. Associations were observed in the ME/CFS group between changes in PPTs and C4a products, following both types of exercise. After submaximal exercise, the change in C4a products was associated with the change in PPT at the thumb in patients (r=0.669, p=0.001). Similarly, after self-paced exercise the change in C4a products was associated witht the change in PPT at the calf in patients (r=0.429, p=0.047). No such correlations were found in healthy controls. Regression analysis showed that C4a changes after the submaximal exercise significantly predicted the change in PPTs (R2=0.236; p=0.02). Conclusions Moderate associations between exercise-induced changes in PPTs and immune system activity were found only in ME/CFS. The change in the complement system following submaximal exercise might be able to explain part of the change in patient's pain thresholds, providing evidence for a potential link between immune system alteration and dysfunctional endogenous pain modulation. These results have to be taken with caution, as only one out of three measures of PPTs was found associated with C4a changes. We cannot reject the hypothesis that C4a might therefore be a confounding factor, and changes during exercise might be mediated by other mechanism. Implications Immune system changes following exercise might contribute to exercise-induced symptoms worsening in patients with ME/CFS. However, the role of the complement system is questionable.
Collapse
Affiliation(s)
- Andrea Polli
- Pain in Motion Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussels, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium, Phone/Fax: +32 (0) 2 477 45 29
| | - Jessica Van Oosterwijck
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Antwerp, Belgium
| | - Luc Lambrecht
- Private Practice for Internal Medicine, Ghent, Belgium
| | - Jo Nijs
- Pain in Motion Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussels, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Kelly Ickmans
- Pain in Motion Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussels, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| |
Collapse
|
4
|
Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med 2018; 16:268. [PMID: 30285773 PMCID: PMC6167797 DOI: 10.1186/s12967-018-1644-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background and main text Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS.
Collapse
Affiliation(s)
- Santa Rasa
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Nina Henning
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Eva Eliassen
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Thomas Harrer
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany. .,Institute for Virology and Immunobiology, Würzburg, Germany.
| | | |
Collapse
|
5
|
Mitchell WM. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Rev Clin Pharmacol 2017; 9:755-70. [PMID: 27045557 PMCID: PMC4917909 DOI: 10.1586/17512433.2016.1172960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic fatigue syndrome/ Myalgic encephalomyelitis (CFS/ME) is a poorly understood seriously debilitating disorder in which disabling fatigue is an universal symptom in combination with a variety of variable symptoms. The only drug in advanced clinical development is rintatolimod, a mismatched double stranded polymer of RNA (dsRNA). Rintatolimod is a restricted Toll-Like Receptor 3 (TLR3) agonist lacking activation of other primary cellular inducers of innate immunity (e.g.- cytosolic helicases). Rintatolimod also activates interferon induced proteins that require dsRNA for activity (e.g.- 2ʹ-5ʹ adenylate synthetase, protein kinase R). Rintatolimod has achieved statistically significant improvements in primary endpoints in Phase II and Phase III double-blind, randomized, placebo-controlled clinical trials with a generally well tolerated safety profile and supported by open-label trials in the United States and Europe. The chemistry, mechanism of action, clinical trial data, and current regulatory status of rintatolimod for CFS/ME including current evidence for etiology of the syndrome are reviewed.
Collapse
Affiliation(s)
- William M Mitchell
- a Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , USA
| |
Collapse
|
6
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
7
|
Sánchez-Fito MT, Oltra E. Optimized Treatment of Heparinized Blood Fractions to Make Them Suitable for Analysis. Biopreserv Biobank 2015; 13:287-295. [PMID: 26280503 DOI: 10.1089/bio.2015.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It has been known for decades that many cytokines, such as IL-2, IL-6, and IL-12, bind to heparin. Even though some enzyme-linked immunosorbent assays (ELISA) use antibody-recognizing epitopes not affected by this binding, ELISA manufacturers often warn that heparinized plasma or serum fractions containing more than 3 IU (international units)/mL of heparin should not be used in assays so as to prevent heparin interference in the reaction. In addition, enzyme-based nucleic acid amplifications from heparinized samples have been shown defective by several research groups. The aim of this study was to determine optimal degradation and/or removal of heparin from heparinized blood samples to best turn them into fractions for appropriate ELISA and RT-PCR analysis. METHODS AND RESULTS A colorimetric reporter assay based on the metachromatic effect of the binding of heparin to toluidine blue was shown to be a low-cost effective method to discriminate assay compatible blood fractions with heparin levels below 3 IU/mL. Heparin removal from human blood fractions was best achieved by treatment with either Bacteroides Heparinase II or the less expensive Heparinase I at a final concentration of 0.1 U/μL and incubations at 30°C for a period between 30 min and 4 h, or by adsorption to Ecteola slurries at a concentration of 20 mg/mL for 20 min at room temperature (RT). The fact that both enzymatic and resin-based optimized treatments allowed for replication of the readings obtained with heparin-free equivalent fractions in both ELISA and RT-PCR assays indicates they should be appropriate for quantitative studies such as expression profiling at both the protein and nucleic acid level. CONCLUSIONS The cost-effective protocols developed in this study could make heparinized, otherwise unusable, blood-derived collections suitable for analysis by ELISA and RT-PCR amplifications, among other analyses, enhancing the possibilities for studying valuable bio-banked heparinized human samples.
Collapse
Affiliation(s)
- María Teresa Sánchez-Fito
- 1 Facultad de Medicina, Universidad Católica de Valencia "San Vicente Mártir" , Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Elisa Oltra
- 1 Facultad de Medicina, Universidad Católica de Valencia "San Vicente Mártir" , Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- 2 Instituto Valenciano de Patología (IVP), Universidad Católica de Valencia "San Vicente Mártir" , Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
8
|
Cerdá-Olmedo G, Mena-Durán AV, Monsalve V, Oltra E. Identification of a microRNA signature for the diagnosis of fibromyalgia. PLoS One 2015; 10:e0121903. [PMID: 25803872 PMCID: PMC4372601 DOI: 10.1371/journal.pone.0121903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease. METHODS Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria. RESULTS Microarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group. CONCLUSIONS We propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic.
Collapse
Affiliation(s)
- Germán Cerdá-Olmedo
- Facultad de Medicina, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
- Cátedra Umivale en innovación e investigación en patologías del trabajo, Valencia, Spain
| | | | - Vicente Monsalve
- Facultad de Medicina, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia “San Vicente Mártir”, Valencia, Spain
- Instituto Valenciano de Patología (IVP) de la Universidad Católica de Valencia “San Vicente Mártir”, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
9
|
Oltra E, García-Escudero M, Mena-Durán AV, Monsalve V, Cerdá-Olmedo G. Lack of evidence for retroviral infections formerly related to chronic fatigue in Spanish fibromyalgia patients. Virol J 2013; 10:332. [PMID: 24216038 PMCID: PMC4226024 DOI: 10.1186/1743-422x-10-332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The etiology of fibromyalgia and chronic fatigue syndrome (FM/CFS) is currently unknown. A recurrent viral infection is an attractive hypothesis repeatedly found in the literature since it would explain the persistent pain and tiredness these patients suffer from. The initial striking link of two distinct orphan retroviruses: the gamma retroviruses murine leukemia virus (MLV)-related virus and the delta retrovirus T-lymphotropic virus type 2 (HTLV-2) to chronic fatigue have not been confirmed to date. RESULTS Genomic DNA (gDNA) from 75 fibromyalgia patients suffering from chronic fatigue and 79 age-matched local healthy controls were screened for the presence of MLV-related and HTLV-2 related proviral sequences. The XMRV env gene was amplified in 20% of samples tested (24% patients/15% healthy controls). Unexpectedly, no PCR amplifications from independent gDNA preparations of the same individuals were obtained. None of the positive samples showed presence of contaminating murine sequences previously reported by other investigators, neither contained additional regions of the virus making us conclude that the initial env amplification came from spurious air-driven amplicon contaminants. No specific HTLV-2 sequences were obtained at any time from any of the 154 quality-controlled gDNA preparations screened. CONCLUSIONS Previous associations between MLV-related or HTLV-2 retrovirus infection with chronic fatigue must be discarded. Thus, studies showing positive amplification of HTLV-2 sequences from chronic fatigue participants should be revised for possible undetected technical problems.To avoid false positives of viral infection, not only extreme precautions should be taken when nested-PCR reactions are prepared and exhaustive foreign DNA contamination controls performed, but also consistent amplification of diverse regions of the virus in independent preparations from the same individual must be demanded.The fact that our cohort of patients did not present evidence of any of the two types of retroviral infection formerly associated to chronic fatigue does not rule out the possibility that other viruses are involved in inciting or maintaining fibromyalgia and/or chronic fatigue conditions.
Collapse
Affiliation(s)
- Elisa Oltra
- Facultad de Medicina, C/Quevedo, 2, 46001 Valencia, Spain
| | | | | | | | - Germán Cerdá-Olmedo
- Cátedra Umivale en innovación e investigación en patologías del trabajo, C/Quevedo, 2, 46001 Valencia, Spain
- Facultad de Medicina, C/Quevedo, 2, 46001 Valencia, Spain
| |
Collapse
|
10
|
Kumar A, Vashist A, Kumar P, Kalonia H, Mishra J. Protective effect of HMG CoA reductase inhibitors against running wheel activity induced fatigue, anxiety like behavior, oxidative stress and mitochondrial dysfunction in mice. Pharmacol Rep 2013; 64:1326-36. [PMID: 23406743 DOI: 10.1016/s1734-1140(12)70930-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/09/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic fatigue stress (CFS) is an important health problem with unknown causes and unsatisfactory prevention strategies, often characterized by long-lasting and debilitating fatigue, myalgia, impairment of neuro-cognitive functions along with other common symptoms. The present study has been designed to explore the protective effect of statins against running wheel activity induced fatigue anxiety. METHODS Male albino Laca mice (20-30 g) were subjected to swim stress induced fatigue in a running wheel activity apparatus. Atorvastatin (10, 20 mg/kg, po) and fluvastatin (5, 10 mg/kg, po) were administered daily for 21 days, one hour prior to the animals being subjected to running wheel activity test session of 6 min. Various behavioral tests (running wheel activity, locomotor activity and elevated plus maze test), biochemical parameters (lipid peroxidation, nitrite concentration, glutathione levels and catalase activity) and mitochondrial complex enzyme dysfunctions (complex I, II, III and IV) were subsequently assessed. RESULTS Animals exposed to 6 min test session on running wheel for 21 days showed a significant decrease in number of wheel rotations per 6 min indicating fatigue stress like behavior. Treatment with atorvastatin (10 and 20 mg/kg) and fluvastatin (10 mg/kg) for 21 days significantly improved the behavioral alterations [increased number of wheel rotations and locomotor activity, and anxiety like behavior (decreased number of entries and time spent in open arm)], oxidative defence and mitochondrial complex enzyme activities in brain. CONCLUSION Present study suggests the protective role of statins against chronic fatigue induced behavioral, biochemical and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh-160014, India.
| | | | | | | | | |
Collapse
|
11
|
Maes M, Twisk FNM, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 2012; 136:909-17. [PMID: 21967891 DOI: 10.1016/j.jad.2011.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/19/2011] [Accepted: 09/08/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is accompanied by a) systemic IgA/IgM responses against the lipopolysaccharides (LPS) of commensal bacteria; b) inflammation, e.g. increased plasma interleukin-(IL)1 and tumor necrosis factor (TNF)α; and c) activation of cell-mediated immunity (CMI), as demonstrated by increased neopterin. METHODS To study the relationships between the IgA/IgM responses to the LPS of microbiota, inflammation, CMI and the symptoms of ME/CFS we measured the IgA/IgM responses to the LPS of 6 different enterobacteria, serum IL-1, TNFα, neopterin, and elastase in 128 patients with ME/CFS and chronic fatigue (CF). Severity of symptoms was assessed by the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. RESULTS Serum IL-1, TNFα, neopterin and elastase are significantly higher in patients with ME/CFS than in CF patients. There are significant and positive associations between the IgA responses to LPS and serum IL-1, TNFα, neopterin and elastase. Patients with an abnormally high IgA response show increased serum IL-1, TNFα and neopterin levels, and higher ratings on irritable bowel syndrome (IBS) than subjects with a normal IgA response. Serum IL-1, TNFα and neopterin are significantly related to fatigue, a flu-like malaise, autonomic symptoms, neurocognitive disorders, sadness and irritability. CONCLUSIONS The findings show that increased IgA responses to commensal bacteria in ME/CFS are associated with inflammation and CMI activation, which are associated with symptom severity. It is concluded that increased translocation of commensal bacteria may be responsible for the disease activity in some ME/CFS patients.
Collapse
|
12
|
Maes M, Twisk FNM, Kubera M, Ringel K. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin. J Affect Disord 2012; 136:933-9. [PMID: 21975140 DOI: 10.1016/j.jad.2011.09.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is evidence that inflammatory pathways and cell-mediated immunity (CMI) play an important role in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Activation of inflammatory and CMI pathways, including increased levels of cytokines, is known to induce fatigue and somatic symptoms. Given the broad spectrum inflammatory state in ME/CFS, the aim of this study was to examine whether inflammatory and CMI biomarkers are increased in individuals with ME/CFS. METHODS In this study we therefore measured plasma interleukin-(IL)1, tumor necrosis factor (TNF)α, and PMN-elastase, and serum neopterin and lysozyme in 107 patients with ME/CFS, 37 patients with chronic fatigue (CF), and 20 normal controls. The severity of ME/CFS was measured with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. RESULTS Serum IL-1, TNFα, neopterin and lysozyme are significantly higher in patients with ME/CFS than in controls and CF patients. Plasma PMN-elastase is significantly higher in patients with ME/CFS than in controls and CF patients and higher in the latter than in controls. Increased IL-1 and TNFα are significantly correlated with fatigue, sadness, autonomic symptoms, and a flu-like malaise; neopterin is correlated with fatigue, autonomic symptoms, and a flu-like malaise; and increased PMN-elastase is correlated with concentration difficulties, failing memory and a subjective experience of infection. CONCLUSIONS The findings show that ME/CFS is characterized by low-grade inflammation and activation of CMI. The results suggest that characteristic symptoms of ME/CFS, such as fatigue, autonomic symptoms and a flu-like malaise, may be caused by inflammatory mediators, e.g. IL-1 and TNFα.
Collapse
|
13
|
Ezelle HJ, Hassel BA. Pathologic effects of RNase-L dysregulation in immunity and proliferative control. Front Biosci (Schol Ed) 2012; 4:767-86. [PMID: 22202089 DOI: 10.2741/s298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoribonuclease RNase-L is the terminal component of an RNA cleavage pathway that mediates antiviral, antiproliferative and immunomodulatory activities. Inactivation or dysregulation of RNase-L is associated with a compromised immune response and increased risk of cancer, accordingly its activity is tightly controlled and requires an allosteric activator, 2',5'-linked oligoadenylates, for enzymatic activity. The biological activities of RNase-L are a result of direct and indirect effects of RNA cleavage and microarray analyses have revealed that RNase-L impacts the gene expression program at multiple levels. The identification of RNase-L-regulated RNAs has provided insights into potential mechanisms by which it exerts antiproliferative, proapoptotic, senescence-inducing and innate immune activities. RNase-L protein interactors have been identified that serve regulatory functions and are implicated as alternate mechanisms of its biologic functions. Thus, while the molecular details are understood for only a subset of RNase-L activities, its regulation by small molecules and critical roles in host defense and as a candidate tumor suppressor make it a promising therapeutic target.
Collapse
Affiliation(s)
- Heather J Ezelle
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
14
|
Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2010; 31:49-57. [PMID: 21190483 DOI: 10.1089/jir.2010.0120] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by some types of viruses through cleavage of viral and cellular single-stranded RNA. Viruses induce type I IFNs that initiate signaling to the OAS genes. OAS proteins are pathogen recognition receptors for the viral pathogen-associated molecular pattern, double-stranded RNA. Double-stranded RNA activates OAS to produce p(x)5'A(2'p5'A)(n); x = 1-3; n > 2 (2-5A) from ATP. Upon binding 2-5A, RNase L is converted from an inactive monomer to a potently active dimeric endoribonuclease for single-stranded RNA. RNase L contains, from N- to C-terminus, a series of 9 ankyrin repeats, a linker, several protein kinase-like motifs, and a ribonuclease domain homologous to Ire1 (involved in the unfolded protein response). In the past few years, it has become increasingly apparent that RNase L and OAS contribute to innate immunity in many ways. For example, small RNA cleavage products produced by RNase L during viral infections can signal to the retinoic acid-inducible-I like receptors to amplify and perpetuate signaling to the IFN-β gene. In addition, RNase L is now implicated in protecting the central nervous system against viral-induced demyelination. A role in tumor suppression was inferred by mapping of the RNase L gene to the hereditary prostate cancer 1 (HPC1) gene, which in turn led to discovery of the xenotropic murine leukemia-related virus. A broader role in innate immunity is suggested by involvement of RNase L in cytokine induction and endosomal pathways that suppress bacterial infections. These newly described findings about RNase L could eventually provide the basis for developing broad-spectrum antimicrobial drugs.
Collapse
Affiliation(s)
- Arindam Chakrabarti
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
15
|
Pigarova EA, Pleshcheva AV, Dzeranova LK, Rozhinskaya LY. Sindrom khronicheskoy ustalosti: sovremennye predstavleniya ob etiologii. OBESITY AND METABOLISM 2010. [DOI: 10.14341/2071-8713-4977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic fatigue syndrome is a disease of unexplained feeling of profound fatigue lasting for more than 6 months. This fatigue is
not relieved even after prolonged rest and is exacerbated after physical or mental work. More than 3000 scientific studies had proved that
chronic fatigue syndrome is not a form of depression or hypochondria. It is a real somatic illness that results in professional, social and
individual desadaptation. This article summarizes the contemporary etiological conceptions of this condition.
Collapse
|
16
|
|
17
|
Nijs J, Van Oosterwijck J, Meeus M, Lambrecht L, Metzger K, Frémont M, Paul L. Unravelling the nature of postexertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome: the role of elastase, complement C4a and interleukin-1beta. J Intern Med 2010; 267:418-35. [PMID: 20433584 DOI: 10.1111/j.1365-2796.2009.02178.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Too vigorous exercise or activity increase frequently triggers postexertional malaise in people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a primary characteristic evident in up to 95% of people with ME/CFS. The present study aimed at examining whether two different types of exercise results in changes in health status, circulating elastase activity, interleukin (IL)-1beta and complement C4a levels. DESIGN Comparative experimental design. SETTING University. SUBJECTS Twenty-two women with ME/CFS and 22 healthy sedentary controls INTERVENTIONS participants were subjected to a submaximal exercise (day 8) and a self-paced, physiologically limited exercise (day 16). Each bout of exercise was preceded and followed by blood sampling, actigraphy and assessment of their health status. RESULTS Both submaximal exercise and self-paced, physiologically limited exercise resulted in postexertional malaise in people with ME/CFS. However, neither exercise bout altered elastase activity, IL-1beta or complement C4a split product levels in people with ME/CFS or healthy sedentary control subjects (P > 0.05). Postexercise complement C4a level was identified as a clinically important biomarker for postexertional malaise in people with ME/CFS. CONCLUSIONS Submaximal exercise as well as self-paced, physiologically limited exercise triggers postexertional malaise in people with ME/CFS, but neither types of exercise alter acute circulating levels of IL-1beta, complement C4a split product or elastase activity. Further studying of immune alterations in relation to postexertional malaise in people with ME/CFS using multiple measurement points postexercise is required.
Collapse
Affiliation(s)
- J Nijs
- Department of Human Physiology, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hypermobility in Patients with Chronic Fatigue Syndrome: Preliminary Observations. ACTA ACUST UNITED AC 2010. [DOI: 10.1300/j094v12n01_03] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Lyle N, Gomes A, Sur T, Munshi S, Paul S, Chatterjee S, Bhattacharyya D. The role of antioxidant properties of Nardostachys jatamansi in alleviation of the symptoms of the chronic fatigue syndrome. Behav Brain Res 2009; 202:285-90. [PMID: 19375459 DOI: 10.1016/j.bbr.2009.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 04/03/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
An experimental model of chronic fatigue syndrome (CFS) is utilized for evaluation of antidepressant, anti-stress effects, wherein the rat is forced to swim in water for 15 min/day on 21 consecutive days. Rats were divided into stressed control, stressed plus standard drug (Panax ginseng) and stressed plus 200 and 500 mg/kg of test drug, i.e., Nardostachys jatamansi extract (NJE) given orally. The immobility during each 5 min periods of 0-5, 5-10 and 10-15 min of stress were noted. Similarly the climbing (struggling) behaviour was noted in the above four groups of rats in intervals of 5 min. The locomotor activity and also the anxiety state in animals were evaluated in an elevated plus maze after CFS in all the four groups. There was a significant increase in despair behaviour and anxiety in stressed control animals on successive days of CFS. Locomotor activity gradually decreased in stressed control group. Treatment with NJE (200 and 500 mg/kg) significantly reversed both paradigms. Biochemical analysis showed that CFS significantly increased lipid peroxidation, nitrite and superoxide dismutase levels and decreased catalase level in rat brain. Administration of NJE (200 and 500 mg/kg) tended to normalize both augmented lipid peroxidation, nitrite, superoxide dismutase activities and catalase level significantly. NJE per se has an antioxidant effect. The results indicate that CFS may lead to oxidative stress, which is mitigated by NJE and so its antioxidant property may be responsible for anti-stress effect of NJE.
Collapse
Affiliation(s)
- Nazmun Lyle
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, 244-B, A. J. C. Bose Road, Kolkata 700020, India.
| | | | | | | | | | | | | |
Collapse
|
20
|
Intracellular immune dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome: state of the art and therapeutic implications. Expert Opin Ther Targets 2008; 12:281-9. [PMID: 18269338 DOI: 10.1517/14728222.12.3.281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Evidence in support of intracellular immune dysfunctions in people with myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is accumulating, but few studies have addressed intracellular immunity as a potential therapeutic target. OBJECTIVE To provide an overview of our present understanding of intracellular immunity in ME/CFS, to relate the intracellular immune dysfunctions to other aspects of the illness like decreased natural killer cell function, the presence of infections and poor exercise performance, and to point to potential therapeutic targets. METHODS An in-depth review of the scientific literature of intracellular immunity in people with ME/CFS was performed. RESULTS/CONCLUSION From the scientific literature it is concluded that proteolytic cleavage of the native RNase L enzyme is characteristic of the dysregulation of intracellular immunity in people with ME/CFS, but the origin of the dysregulation is speculative. There is increasing evidence for immune cell apoptosis and upregulation of various aspects of the 2'-5' oligoadenylate (2-5A) synthetase/RNase L pathway in ME/CFS. This review provides the theoretical rationale for conducting studies examining the effectiveness of direct or indirect drug targeting of the 2-5A synthetase/RNase L pathway in ME/CFS patients.
Collapse
|
21
|
Abstract
The antiviral and antitumor actions of interferons are caused, in part, by a remarkable regulated RNA cleavage pathway known as the 2-5A/RNase L system. 2'-5' linked oligoadenylates (2-5A) are produced from ATP by interferon-inducible synthetases. 2-5A activates pre-existing RNase L, resulting in the cleavage of RNAs within single-stranded regions. Activation of RNase L by 2-5A leads to an antiviral response, although precisely how this happens is a subject of ongoing investigations. Recently, RNase L was identified as the hereditary prostate cancer 1 gene. That finding has led to the discovery of a novel human retrovirus, XMRV. My scientific journey through the 2-5A system recounts some of the highlights of these efforts. Knowledge gained from studies on the 2-5A system could have an impact on development of therapies for important viral pathogens and cancer.
Collapse
Affiliation(s)
- Robert H Silverman
- Department of Cancer Biology, NB40 Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Bisbal C, Silverman RH. Diverse functions of RNase L and implications in pathology. Biochimie 2007; 89:789-98. [PMID: 17400356 PMCID: PMC2706398 DOI: 10.1016/j.biochi.2007.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 02/06/2007] [Indexed: 01/16/2023]
Abstract
The endoribonuclease L (RNase L) is the effector of the 2-5A system, a major enzymatic pathway involved in the molecular mechanism of interferons (IFNs). RNase L is a very unusual nuclease with a complex mechanism of regulation. It is a latent enzyme, expressed in nearly every mammalian cell type. Its activation requires its binding to a small oligonucleotide, 2-5A. 2-5A is a series of unique 5'-triphosphorylated oligoadenylates with 2'-5' phosphodiester bonds. By regulating viral and cellular RNA expression, RNase L plays an important role in the antiviral and antiproliferative activities of IFN and contributes to innate immunity and cell metabolism. The 2-5A/RNase L pathway is implicated in mediating apoptosis in response to viral infections and to several types of external stimuli. Several recent studies have suggested that RNase L could have a role in cancer biology and evidence of a tumor suppressor function of RNase L has emerged from studies on the genetics of hereditary prostate cancer.
Collapse
Affiliation(s)
- Catherine Bisbal
- IGH UPR CNRS 1142. 141 rue de la Cardonille. 34396. Montpellier France. E-mail address: , Phone: 33 (0)4 99 61 99 73, Fax: 33 (0)4 99 61 99 01
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, 9500 Euclid Avenue NB40, Cleveland Clinic, Cleveland OH 44195 USA, E-mail address: , Phone: (1) 216 445 9650, Fax: (1) 216 445 6269
| |
Collapse
|
23
|
Van Hoof E, De Becker P, Lapp C, Cluydts R, De Meirleir K. Defining the Occurrence and Influence of Alpha-Delta Sleep in Chronic Fatigue Syndrome. Am J Med Sci 2007; 333:78-84. [PMID: 17301585 DOI: 10.1097/00000441-200702000-00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Patients with chronic fatigue syndrome (CFS) present a disordered sleep pattern and frequently undergo polysomnography to exclude a primary sleep disorder. Such studies have shown reduced sleep efficiency, a reduction of deep sleep, prolonged sleep initiation, and alpha-wave intrusion during deep sleep. Deregulation of the 2-5A synthetase/RNase L antiviral pathway and a potential acquired channelopathy are also found in a subset of CFS patients and could lead to sleep disturbances. This article compiles a large sleep study database on CFS patients and correlates these data with a limited number of immune parameters as it has been thought that RNase L could be associated with these sleep disturbances. METHODS Forty-eight patients who fulfilled 1994 Centers for Disease Control and Prevention criteria for CFS underwent extensive medical evaluation, routine laboratory testing, and a structured psychiatric interview. Subjects then completed a complaint checklist and a two-night polysomnographic investigation. RNase L analysis was performed by gel electrophoresis using a radiolabeled 2',5'-oligoadenylate trimer. Basic descriptive statistical parameters were calculated. RESULTS Patients experienced a prolonged sleep latency, showed a low sleep efficiency index, and had a low percentage of slow wave sleep. The present alpha-delta intrusion correlated with anxiety; no correlations appeared, however, between alpha-delta sleep and immunologic parameters, including RNase L. CONCLUSIONS The main findings are 1) validation of sleep latency problems and other sleep disturbances as already suggested by several authors; 2) alpha-delta intrusion seems associated with anxiety; and 3) elevated RNase L did not correlate with alpha-delta sleep.
Collapse
Affiliation(s)
- Elke Van Hoof
- Department of Human Physiology, Vrije Universiteit, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Abstract
2'-5'oligoadenylate-dependent ribonuclease L (RNase L) is one of the key enzymes involved in the function of interferons (IFNs), a family of cytokines participating in innate immunity against viruses and other microbial pathogens. Upon binding with its activator, 5'-phosphorylated, 2'-5' linked oligoadenylates (2-5A), RNase L degrades single-stranded viral and cellular RNAs and thus plays an important role in the antiviral and antiproliferative functions of IFNs. In recent years, evidence has revealed that RNase L displays a broad range of biological roles which are summarized in this review.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | |
Collapse
|
25
|
Rennert H, Sadowl C, Edwards J, Bantly D, Molinaro RJ, Orr-Urtreger A, Bagg A, Moore JS, Silverman RH. An Alternative SplicedRNASELVariant in Peripheral Blood Leukocytes. J Interferon Cytokine Res 2006; 26:820-6. [PMID: 17115900 DOI: 10.1089/jir.2006.26.820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2-5A-Dependent RNase L is an endoribonuclease that catalyzes RNA degradation and promotes apoptosis during the innate antiviral response in mammalian cells. Prior studies showed that RNASEL is widely expressed and suggested the presence of mRNA species of different sizes but lacked a characterization of these variants. Using RT-PCR, we show that RNASEL is expressed in all human tissues examined, whereas an alternatively generated spliced variant lacking the third exon (RNASEL del_Ex3) is solely expressed in peripheral blood leukocytes (PBL). Quantitative RT-PCR measurements of RNA from different PBL cell types separated by fluorescence activated cell sorting (FACS) showed that complete RNASEL mRNA levels were significantly elevated in granulocytes compared with all other PBL cell types, whereas expression was lowest in CD8(+) T cells. The alternatively spliced RNASEL del_Ex3 transcript was present in all PBL cell types examined but at lower levels than the full-length RNASEL mRNA. The presence of high levels of RNase L protein in granulocytes was confirmed by immunohistochemistry. Our findings are the first to demonstrate the presence of an alternatively spliced RNASEL mRNA and to demonstrate the variable expression of RNase L in different leukocytes. Our results suggest that RNase L plays an important role in granulocytes as an innate immunity enzyme that controls viral infections.
Collapse
Affiliation(s)
- Hanna Rennert
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10012, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakanishi M, Goto Y, Kitade Y. 2-5A induces a conformational change in the ankyrin-repeat domain of RNase L. Proteins 2006; 60:131-8. [PMID: 15849753 DOI: 10.1002/prot.20474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNase L is responsible for the 2-5A host defense system, an RNA degradation pathway present in cells of higher vertebrates that functions in both the antiviral and anticellular activities of interferon. The activity of RNase L is tightly regulated and is exerted only in the presence of 2-5A. The postulated mechanism of its regulation is as follows: the N-terminal half ankyrin-repeat domain masks the C-terminal half nuclease domain in the absence of 2-5A. On binding 2-5A at the ankyrin-repeat domain, RNase L forms a homodimer and removes the ankyrin-repeat domain from the nuclease domain to become the active form. A conformational change in the ankyrin-repeat domain is a key step in this hypothetical mechanism, but there is as yet no evidence for such a change. To clarify the events induced by 2-5A binding, we established procedures for expression and purification of the ankyrin-repeat domain of human RNase L. Fluorescence spectra of the protein showed clear difference in the presence and absence of 2-5A. The alterations in the spectra supported conformational changes of the protein. Time-resolved anisotropy measurements indicated that 2-5A binding led to a significant decrease in the rotational radius of the protein. In addition, 2-5A provided the domain with resistance to protease digestion as a result of a conformational change. These results indicated that the ankyrin-repeat domain of RNase L constricts its structure by binding of 2-5A. This observation suggests a revised model of the 2-5A-induced activation of RNase L.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Molecular Biochemistry, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | | | | |
Collapse
|
27
|
Nijs J, Meeus M, McGregor NR, Meeusen R, de Schutter G, van Hoof E, de Meirleir K. Chronic fatigue syndrome: exercise performance related to immune dysfunction. Med Sci Sports Exerc 2006; 37:1647-54. [PMID: 16260962 DOI: 10.1249/01.mss.0000181680.35503.ce] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE To date, the exact cause of abnormal exercise response in chronic fatigue syndrome (CFS) remains to be revealed, but evidence addressing intracellular immune deregulation in CFS is growing. Therefore, the aim of this cross-sectional study was to examine the interactions between several intracellular immune variables and exercise performance in CFS patients. METHODS After venous blood sampling, subjects (16 CFS patients) performed a maximal exercise stress test on a bicycle ergometer with continuous monitoring of cardiorespiratory variables. The following immune variables were assessed: the ratio of 37 kDa Ribonuclease (RNase) L to the 83 kDa native RNase L (using a radiolabeled ligand/receptor assay), RNase L enzymatic activity (enzymatic assay), protein kinase R activity assay (comparison Western blot), elastase activity (enzymatic-colorimetric assay), the percent of monocytes, and nitric oxide determination (for monocytes and lymphocytes; flow cytometry, live cell assay). RESULTS Forward stepwise multiple regression analysis revealed 1) that elastase activity was the only factor related to the reduction in oxygen uptake at a respiratory exchange ratio (RER) of 1.0 (regression model: R = 0.53, F (1,14) = 15.5, P < 0.002; elastase activity P < 0.002); 2) that the protein kinase R activity was the principle factor related to the reduction in workload at RER = 1.0; and 3) that elastase activity was the principle factor related to the reduction in percent of target heart rate achieved. CONCLUSION These data provide evidence for an association between intracellular immune deregulation and exercise performance in patients with CFS. To establish a causal relationship, further study of these interactions using a prospective longitudinal design is required.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Frémont M, Vaeyens F, Herst CV, De Meirleir K, Englebienne P. 37-Kilodalton/83-kilodalton RNase L isoform ratio in peripheral blood mononuclear cells: analytical performance and relevance for chronic fatigue syndrome. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1259-60; author reply 1260. [PMID: 16210496 PMCID: PMC1247842 DOI: 10.1128/cdli.12.10.1259-1260.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Tiev KP, Briant M, Ziani M, Cabane J, Demettre E, Lebleu B. Variability of the RNase L isoform ratio (37 kiloDaltons/83 kiloDaltons) in diagnosis of chronic fatigue syndrome. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:366. [PMID: 15699437 PMCID: PMC549313 DOI: 10.1128/cdli.12.2.366.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Nijs J, De Meirleir K. Oxidative stress might reduce essential fatty acids in erythrocyte membranes of chronic fatigue syndrome patients. Nutr Neurosci 2005; 7:251-3. [PMID: 15682653 DOI: 10.1080/10284150400004148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Frémont M, El Bakkouri K, Vaeyens F, Herst CV, De Meirleir K, Englebienne P. 2',5'-Oligoadenylate size is critical to protect RNase L against proteolytic cleavage in chronic fatigue syndrome. Exp Mol Pathol 2005; 78:239-46. [PMID: 15924878 DOI: 10.1016/j.yexmp.2005.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 01/04/2005] [Indexed: 11/18/2022]
Abstract
A dysregulation in the 2',5'-oligoadenylate (2-5A)-dependent RNase L antiviral pathway has been detected in peripheral blood mononuclear cells (PBMC) of chronic fatigue syndrome (CFS) patients, which is characterized by upregulated 2-5A synthetase and RNase L activities, as well as by the presence of a low molecular weight (LMW) 2-5A-binding protein of 37-kDa related to RNase L. This truncated protein has been shown to originate from proteolytic cleavage of the native 83-kDa RNase L by m-calpain and human leukocyte elastase (HLE). We investigated the possible role of 2-5A oligomers in the proteolytic action toward the endonuclease and show that incubation of CFS PBMC extracts with 2-5A trimer and tetramer, but not with the dimer, results in a significant protection of the native 83-kDa RNase L against cleavage by endogenous and purified proteases. Similar results are obtained with a purified recombinant RNase L. An analysis of the size of 2-5A oligomers produced by the catalytic activity of the 2-5A synthetase present in PBMC extracts further shows that samples containing the 37-kDa RNase L preferentially produce 2-5A dimers instead of higher oligomers. Taken together, our results indicate that homodimerization of RNase L by 2-5A oligomers higher than the dimer prevents its cleavage by proteolytic enzymes. The presence of the truncated 37-kDa RNase L in PBMC extracts is therefore likely to result, not only from the abnormal activation of inflammatory proteases, but also from a dysregulation in 2-5A synthetase induction or activation towards the preferential production of 2-5A dimers.
Collapse
Affiliation(s)
- Marc Frémont
- RED Laboratories, Pontbeek 61, B-1731 Zellik, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Nijs J, Van de Velde B, De Meirleir K. Pain in patients with chronic fatigue syndrome: Does nitric oxide trigger central sensitisation? Med Hypotheses 2005; 64:558-62. [PMID: 15617866 DOI: 10.1016/j.mehy.2004.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022]
Abstract
Previous studies have provided evidence supportive of the clinical importance of widespread pain in patients with chronic fatigue syndrome (CFS): pain severity may account for 26-34% of the variability in the CFS patient's activity limitations and participation restrictions. The etiology of widespread pain in CFS remains to be elucidated, but sensitisation of the central nervous system has been suggested to take part of CFS pathophysiology. It is hypothesised that a nitric oxide (NO)-dependent reduction in inhibitory activity of the central nervous system and consequent central sensitisation accounts for chronic widespread pain in CFS patients. In CFS patients, deregulation of the 2',5'-oligoadenylate synthetase/RNase L pathway is accompanied by activation of the protein kinase R enzyme. Activation of the protein kinase R and subsequent nuclear factor-kappaB activation might account for the increased production of NO, while infectious agents frequently associated with CFS (Coxsackie B virus, Epstein-Barr Virus, Mycoplasma) might initiate or accelerate this process. In addition, the evidence addressing behavioural changes in CFS patients fits the central sensitisation-hypothesis: catastrophizing, avoidance behaviour, and somatization may result in, or are initiated by sensitisation of the central nervous system.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel (VUB), Belgium.
| | | | | |
Collapse
|
33
|
Nijs J, De Meirleir K, Meeus M, McGregor NR, Englebienne P. Chronic fatigue syndrome: intracellular immune deregulations as a possible etiology for abnormal exercise response. Med Hypotheses 2004; 62:759-65. [PMID: 15082102 DOI: 10.1016/j.mehy.2003.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/09/2003] [Indexed: 02/06/2023]
Abstract
The exacerbation of symptoms after exercise differentiates Chronic fatigue syndrome (CFS) from several other fatigue-associated disorders. Research data point to an abnormal response to exercise in patients with CFS compared to healthy sedentary controls, and to an increasing amount of evidence pointing to severe intracellular immune deregulations in CFS patients. This manuscript explores the hypothetical interactions between these two separately reported observations. First, it is explained that the deregulation of the 2-5A synthetase/RNase L pathway may be related to a channelopathy, capable of initiating both intracellular hypomagnesaemia in skeletal muscles and transient hypoglycemia. This might explain muscle weakness and the reduction of maximal oxygen uptake, as typically seen in CFS patients. Second, the activation of the protein kinase R enzyme, a characteristic feature in atleast subsets of CFS patients, might account for the observed excessive nitric oxide (NO) production in patients with CFS. Elevated NO is known to induce vasidilation, which may limit CFS patients to increase blood flow during exercise, and may even cause and enhanced postexercise hypotension. Finally, it is explored how several types of infections, frequently identified in CFS patients, fit into these hypothetical pathophysiological interactions.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy Science, Vrije Universiteit Brussel, Brussel 1090, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Torpy DJ, Bachmann AW, Gartside M, Grice JE, Harris JM, Clifton P, Easteal S, Jackson RV, Whitworth JA. Association between chronic fatigue syndrome and the corticosteroid-binding globulin gene ALA SER224 polymorphism. Endocr Res 2004; 30:417-29. [PMID: 15554358 DOI: 10.1081/erc-200035599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G-->T, Ala-Ser224). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine224 homozygosity among the CFS patients was noted, compared with controls (chi2 = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1+/-1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4+/-1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8+/-1.7 microg/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3+/-1.4 (n = 34) vs. Ser/Ala: 14.0+/-0.7 (n = 66) vs. Ala/Ala: 15.4+/-1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.
Collapse
Affiliation(s)
- David J Torpy
- University of Queensland Department of Medicine, Greenslopes Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ikuta K, Yamada T, Shimomura T, Kuratsune H, Kawahara R, Ikawa S, Ohnishi E, Sokawa Y, Fukushi H, Hirai K, Watanabe Y, Kurata T, Kitani T, Sairenji T. Diagnostic evaluation of 2′, 5′-oligoadenylate synthetase activities and antibodies against Epstein–Barr virus and Coxiella burnetii in patients with chronic fatigue syndrome in Japan. Microbes Infect 2003; 5:1096-102. [PMID: 14554250 DOI: 10.1016/j.micinf.2003.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the association of viral infections with chronic fatigue syndrome (CFS), we assayed 2', 5'-oligoadenylate synthetase (2-5AS) activities in peripheral blood mononuclear cells from CFS patients in Japan. These patients were diagnosed in two hospitals, H1 and H2, located in different areas of the country. The activities were detected in 19 (86%) and 7 (32%) of each of the 22 patients in H1 and H2, respectively, while they were detected in only four (11%) out of the 38 healthy controls. IFN-alpha was similarly detected in a few CFS patients and healthy controls. We also assayed the antibody titers against Epstein-Barr virus (EBV) and Coxiella burnetii in these patients. The EBV anti-EA-IgG antibodies were detected in two (9%) and seven (32%) of each of the 22 patients in H1 and H2, respectively. Anti-C. burnetii IgG antibodies were detected in six (27%) out of 22 patients in H1 but not in 22 patients in H2, while they were detected in one (11%) of the nine healthy controls. Some CFS patients may be associated with EBV or C. burnetii infection. There were some statistical correlations between the 2-5AS activities and antibody titers of EA-IgG (P < 0.05, Student's t-test) but not to the antibody titers of C. burnetii. The up-regulation of 2-5AS activities suggests immunological dysfunctions with some virus infections in the CFS patients. Our results indicate that 2-5AS activities are useful for a diagnostic marker of CFS and for exploring the complicated pathogenesis of CFS.
Collapse
Affiliation(s)
- Kazufumi Ikuta
- Division of Biosignaling, Department of Biomedical Sciences, Faculty of Medicine, School of Life Science, Tottori University, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Recently, the interferon (IFN) antiviral pathways and prostate cancer genetics and have surprisingly converged on a single-strand specific, regulated endoribonuclease. Genetics studies from several laboratories in the U.S., Finland, and Israel, support the recent identification of the RNase L gene, RNASEL, as a strong candidate for the long sought after hereditary prostate cancer 1 (HPC1) allele. Results from these studies suggest that mutations in RNASEL predispose men to an increased incidence of prostate cancer, which in some cases reflect more aggressive disease and/or decreased age of onset compared with non-RNASEL linked cases. RNase L is a uniquely regulated endoribonuclease that requires 5'-triphosphorylated, 2',5'-linked oligoadenylates (2-5A) for its activity. The presence of both germline mutations in RNASEL segregating with disease within HPC-affected families and loss of heterozygosity (LOH) in tumor tissues suggest a novel role for the regulated endoribonuclease in the pathogenesis of prostate cancer. The association of mutations in RNASEL with prostate cancer cases further suggests a relationship between innate immunity and tumor suppression. It is proposed here that RNase L functions in counteracting prostate cancer by virtue of its ability to degrade RNA, thus initiating a cellular stress response that leads to apoptosis. This monograph reviews the biochemistry and genetics of RNase L as it relates to the pathobiology of prostate cancer and considers implications for future screening and therapy of this disease.
Collapse
Affiliation(s)
- Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| |
Collapse
|