1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Papaioannou I, Dritsoula A, Kang P, Baliga RS, Trinder SL, Cook E, Shiwen X, Hobbs AJ, Denton CP, Abraham DJ, Ponticos M. NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension. JCI Insight 2024; 9:e164191. [PMID: 38652537 PMCID: PMC11141943 DOI: 10.1172/jci.insight.164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Cell Proliferation/genetics
- Disease Models, Animal
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/etiology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Athina Dritsoula
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Ping Kang
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Sarah L. Trinder
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Emma Cook
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Xu Shiwen
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Christopher P. Denton
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - David J. Abraham
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
3
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
5
|
Mubeen H, Farooq M, Rehman AU, Zubair M, Haque A. Gene expression and transcriptional regulation driven by transcription factors involved in congenital heart defects. Ir J Med Sci 2022; 192:595-604. [PMID: 35441975 DOI: 10.1007/s11845-022-02974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most important birth defects caused by more than one mutated gene. Mutations in the genes could cause different types of congenital heart defects including atrial septal defect (ASD), tetralogy of Fallot (TOF), and ventricular septal defect (VSD). OBJECTIVES Cardiac transcription factors are key players for heart development and are actively involved in controlling stress regulation of the heart. Transcription factors are sequence-specific DNA binding proteins that control the process of transcription and work in a synergistic manner. We aim to characterize core cardiac transcription factors including NKX2-5, TBX, SRF, GATA4, and MEF2, which encode homeobox and MADS domain and play a crucial role in heart development. METHODS In this study, we have explored the important transcription factors involved in cardiac development and genes controlling the expression and regulation process by using the bioinformatics approach. RESULTS We have predicted the orthologs and homologs based on their evolutionary history, conserved protein domains, functional sites, and 3D structures for better understanding and presentation of factors responsible for causing CHD. Results showed the importance of these transcription factors for normal heart functioning and development. CONCLUSION Understanding the molecular pathways and genetic basis of CHD will help to open a new door for the treatment of patients with cardiac defects.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan. .,Department of Bioinformatics, Institute of Biochemistry, Biotechnology & Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | | | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
EL Bouchikhi I, Belhassan K, Moufid FZ, Bouguenouch L, Samri I, Iraqui Houssaïni M, Ouldim K, Atmani S. Screening of NKX2.5 gene in Moroccan Tetralogy of Fallot (TOF) patients: worldwide mutation rate comparisons show a significant association between R25C variant and TOF phenotype. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00136-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Tetralogy of Fallot is the most prevalent cyanotic congenital heart disease, occurring in 1/3 600 live births. This disorder comprises ventricular septal defect, right ventricular outflow obstruction, over-riding aorta, and right ventricular hypertrophy. The present study aims to reveal the spectrum of Nk2 homeobox 5 (NKX2-5) variants identified in a Moroccan non-syndromic tetralogy of Fallot cohort and to compare mutation rate with different studies from all over the world. Thirty-one patients with non-syndromic tetralogy of Fallot were recruited in this cross-sectional study. DNAs were extracted, and coding regions of NKX2.5 were PCR-amplified and sequenced. The obtained sequences were analyzed using different bioinformatics tools. Statistical comparisons were carried out using the R software.
Results
R25C mutation was found in two patients, in association with the E21E variant. The latter variant was frequently observed in the population and seems to have a potential altering effect on the splicing process. The NKX2.5 mutation rate in our tetralogy of Fallot population is around 6.4%, and no significant difference was noticed in comparison with previous studies. At the same time, a comparison of R25C mutation rate between atrial septal defect and tetralogy of Fallot worldwide populations shows a particular association of R25C mutation with tetralogy of Fallot phenotype.
Conclusions
This study reveals a consistency between our NKX2.5 mutation rate and those of different tetralogy of Fallot populations around the world. Our findings suggest a possible combined effect of R25C mutation and E21E variant on the carriers and emphasize particularly the significant association of R25C mutation with tetralogy of Fallot, which highlights the importance of an anticipative screening for TOF phenotype among the carriers’ offspring at the perinatal period.
Collapse
|
7
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chen QQ, Ma G, Liu JF, Cai YY, Zhang JY, Wei TT, Pan A, Jiang S, Xiao Y, Xiao P, Song J, Li P, Zhang L, Qi LW. Neuraminidase 1 is a driver of experimental cardiac hypertrophy. Eur Heart J 2021; 42:3770-3782. [PMID: 34179969 DOI: 10.1093/eurheartj/ehab347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Despite considerable therapeutic advances, there is still a dearth of evidence on the molecular determinants of cardiac hypertrophy that culminate in heart failure. Neuraminidases are a family of enzymes that catalyze the cleavage of terminal sialic acids from glycoproteins or glycolipids. This study sought to characterize the role of neuraminidases in pathological cardiac hypertrophy and identify pharmacological inhibitors targeting mammalian neuraminidases. METHODS AND RESULTS Neuraminidase 1 (NEU1) was highly expressed in hypertrophic hearts of mice and rats, and this elevation was confirmed in patients with hypertrophic cardiomyopathy (n = 7) compared with healthy controls (n = 7). The increased NEU1 was mainly localized in cardiomyocytes by co-localization with cardiac troponin T. Cardiomyocyte-specific NEU1 deficiency alleviated hypertrophic phenotypes in response to transverse aortic constriction or isoproterenol hydrochloride infusion, while NEU1 overexpression exacerbated the development of cardiac hypertrophy. Mechanistically, co-immunoprecipitation coupled with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated that NEU1 translocated into the nucleus and interacted with GATA4, leading to Foetal gene (Nppa and Nppb) expression. Virtual screening and experimental validation identified a novel compound C-09 from millions of compounds that showed favourable binding affinity to human NEU1 (KD = 0.38 μM) and effectively prevented the development of cardiac remodelling in cellular and animal models. Interestingly, anti-influenza drugs zanamivir and oseltamivir effectively inhibited mammalian NEU1 and showed new indications of cardio-protection. CONCLUSIONS This work identifies NEU1 as a critical driver of cardiac hypertrophy and inhibition of NEU1 opens up an entirely new field of treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Gaoxiang Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jin-Feng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Shujun Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Pingxi Xiao
- Department of Cardiology, The Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Nanjing 211166, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing 100037, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
9
|
Wang Z, Schwartz RJ, Liu J, Sun F, Li Q, Ma Y. Smyd1 Orchestrates Early Heart Development Through Positive and Negative Gene Regulation. Front Cell Dev Biol 2021; 9:654682. [PMID: 33869215 PMCID: PMC8047137 DOI: 10.3389/fcell.2021.654682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 01/09/2023] Open
Abstract
SET and MYND domain-containing protein 1 (Smyd1) is a striated muscle-specific histone methyltransferase. Our previous work demonstrated that deletion of Smyd1 in either cardiomyocytes or the outflow tract (OFT) resulted in embryonic lethality at E9.5, with cardiac structural defects such as truncation of the OFT and right ventricle and impaired expansion and proliferation of the second heart field (SHF). The cardiac phenotype was accompanied by the downregulation of ISL LIM Homeobox 1 (Isl1) and upregulation of atrial natriuretic factor (ANF). However, the mechanisms of Smyd1 regulating Isl1 and ANF during embryonic heart development remain to be elucidated. Here, we employed various biochemical and molecular biological approaches including chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR), pGL3 fluorescence reporter system, and co-immunoprecipitation (CoIP) and found that Smyd1 interacted with absent small homeotic-2-like protein (ASH2L) and activated the promoter of Isl1 by trimethylating H3K4. We also found that Smyd1 associated with HDAC to repress ANF expression using trichostatin A (TSA), a deacetylase inhibitor. In conclusion, Smyd1 participates in early heart development by upregulating the expression of Isl1 and downregulating the expression of ANF.
Collapse
Affiliation(s)
- Zhen Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jing Liu
- Department of Reproductive Medicine Center, Zhengzhou University, Zhengzhou, China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Bu H, Sun G, Zhu Y, Yang Y, Tan Z, Zhao T, Hu S. The M310T mutation in the GATA4 gene is a novel pathogenic target of the familial atrial septal defect. BMC Cardiovasc Disord 2021; 21:12. [PMID: 33413087 PMCID: PMC7788758 DOI: 10.1186/s12872-020-01822-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although most cases of atrial septal defect (ASD) are sporadic, familial cases have been reported, which may be caused by mutation of transcription factor GATA binding protein 4 (GATA4). Herein we combined whole-exome sequencing and bioinformatics strategies to identify a novel mutation in GATA4 accounting for the etiology in a Chinese family with ASD. METHODS We identified kindred spanning 3 generations in which 3 of 12 (25.0%) individuals had ASD. Punctilious records for the subjects included complete physical examination, transthoracic echocardiography, electrocardiograph and surgical confirming. Whole-exome capture and high-throughput sequencing were performed on the proband III.1. Sanger sequencing was used to validate the candidate variants, and segregation analyses were performed in the family members. RESULTS Direct sequencing of GATA4 from the genomic DNA of family members identified a T-to-C transition at nucleotide 929 in exon 5 that predicted a methionine to threonine substitution at codon 310 (M310T) in the nuclear localization signal (NLS) region. Two affected members (II.2 and III.3) and the proband (III.1) who was recognized as a carrier exhibited this mutation, whereas the other unaffected family members or control individuals did not. More importantly, the mutation GATA4 (c.T929C: p.M310T) has not been reported previously in either familial or sporadic cases of congenital heart defects (CHD). CONCLUSIONS We identified for the first time a novel M310T mutation in the GATA4 gene that is located in the NLS region and leads to family ASD with arrhythmias. However, the mechanism by which this pathogenic mutation contributes to the development of heart defect and tachyarrhythmias remains to be ascertained.
Collapse
Affiliation(s)
- Haisong Bu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Guowen Sun
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yun Zhu
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Tianli Zhao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shijun Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China. .,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Department of Cardiovascular Surgery, The German Heart Centre, 80636, Munich, Germany.
| |
Collapse
|
11
|
Zheng M, Kang L, Uchino T, Liu G, Wang Y, Ono K. Mitogen-activated protein kinase p38 modulates pacemaker ion channels differentiation in P19-derived pluripotent cells. J Physiol Sci 2020; 70:39. [PMID: 32895058 PMCID: PMC10717480 DOI: 10.1186/s12576-020-00766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Signal regulators during early cardiogenetic differentiation for the cellular automaticity are largely unknown. Our investigations were designed to clarify the role of transcription factors and their modulators in P19-derived cardiomyocytes to the expression of cardiac pacemaker ion channels. Transcription factors Csx/Nkx2.5 and GATA4 but not MEF2C were markedly inhibited by p38 MAP kinase inhibition in a distinct manner; expression but not phosphorylation of GATA4 was reduced by inhibition of p38 MAP kinase actions. In the presence of an ERK1/2,5 inhibitor PD98059 or a JNK MAP kinase inhibitor SP600125, P19 cells successfully differentiated into cardiomyocytes displaying spontaneous beatings with expression of three types of pacemaker ion channels. We demonstrate that acquisition of cellular automaticity and the expression of pacemaker ion channels are regulated by the transcription factors, Csx/Nkx2.5 and GATA4, through intracellular signals including p38 MAP kinase in the process of P19-derived pluripotent cells differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Mingqi Zheng
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Kang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tomoko Uchino
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anesthesiology, Oita University School of Medicine, Oita, Japan
| | - Gang Liu
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan.
| |
Collapse
|
12
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|
13
|
Mengmeng X, Yuejuan X, Sun C, Yanan L, Fen L, Kun S. Novel mutations of the SRF gene in Chinese sporadic conotruncal heart defect patients. BMC MEDICAL GENETICS 2020; 21:95. [PMID: 32380971 PMCID: PMC7203814 DOI: 10.1186/s12881-020-01032-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Conotruncal heart defects (CTDs) are a group of congenital heart malformations that cause anomalies of cardiac outflow tracts. In the past few decades, many genes related to CTDs have been reported. Serum response factor (SRF) is a ubiquitous nuclear protein that acts as transcription factor, and SRF was found to be a critical factor in heart development and to be strongly expressed in the myocardium of the developing mouse and chicken hearts. The targeted inactivation of SRF during heart development leads to embryonic lethality and myocardial defects in mice. METHODS To illustrate the relationship between SRF and human heart defects, we screened SRF mutations in 527 CTD patients, a cross sectional study. DNA was extracted from peripheral leukocyte cells for target sequencing. The mutations of SRF were detected and validated by Sanger sequencing. The affection of the mutations on wild-type protein was analyzed by in silico softwares. Western blot and real time PCR were used to analyze the changes of the expression of the mutant mRNA and protein. In addition, we carried out dual luciferase reporter assay to explore the transcriptional activity of the mutant SRF. RESULTS Among the target sequencing results of 527 patients, two novel mutations (Mut1: c.821A > G p.G274D, the adenine(A) was mutated to guanine(G) at position 821 of the SRF gene coding sequences (CDS), lead to the Glycine(G) mutated to Asparticacid(D) at position 274 of the SRF protein amino acid sequences; Mut2: c.880G > T p.G294C, the guanine(G) was mutated to thymine (T) at position 880 of the SRF CDS, lead to the Glycine(G) mutated to Cysteine (C) at position 294 of the SRF protein amino acid sequences.) of SRF (NM_003131.4) were identified. Western blotting and real-time PCR showed that there were no obvious differences between the protein expression and mRNA transcription of mutants and wild-type SRF. A dual luciferase reporter assay showed that both SRF mutants (G274D and G294C) impaired SRF transcriptional activity at the SRF promoter and atrial natriuretic factor (ANF) promoter (p < 0.05), additionally, the mutants displayed reduced synergism with GATA4. CONCLUSION These results suggest that SRF-p.G274D and SRF-p.G294C may have potential pathogenic effects.
Collapse
Affiliation(s)
- Xu Mengmeng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Xu Yuejuan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| | - Chen Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Lu Yanan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Li Fen
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678, Dongfang Road, Shanghai, 200127, China
| | - Sun Kun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Kim CW, Go RE, Ko EB, Jeung EB, Kim MS, Choi KC. Effects of cigarette smoke components on myocardial differentiation of mouse embryonic stem cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:66-77. [PMID: 31507073 DOI: 10.1002/tox.22843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The heart is the first organ formed in the developing fetus, and abnormal development of the heart is a major cause of fetal death. The adverse effects of cigarette smoke on the heart have been well established, but it is not well understood how cigarette smoke components regulate signaling molecules and cardiac specific functions during the early differentiation stage of the embryonic heart. In this study, we identified changes in the size of mouse embryoid bodies (mEBs) in response to treatment with cigarette smoke extract (CSE) via regulation of HDAC2, p53, p21, and cyclin D1 protein expression, which are cardiac differentiation and cell-cycle markers, respectively. In addition, exposure of mouse embryonic stem cells (mESCs) to cigarette smoke components inhibited myocardial differentiation and development through the expression of HDAC1, HDAC2, GATA4, NKX2-5, TBX5, HAND1, and Troponin I. Long-term exposure studies showed that CSE and nicotine may delay the development of mouse cardiomyocytes from mESCs and inhibit the contractibility, which is a fundamental function of the heart. Taken together, these findings suggest that cigarette smoke components, including nicotine, may affect abnormal myocardial differentiation and development.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eul Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Jeonbuk Department of Inhalation Research, Jeongeup, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Fearing BV, Jing L, Barcellona MN, Witte SE, Buchowski JM, Zebala LP, Kelly MP, Luhmann S, Gupta MC, Pathak A, Setton LA. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape. FASEB J 2019; 33:14022-14035. [PMID: 31638828 PMCID: PMC6894097 DOI: 10.1096/fj.201802725rrr] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/17/2019] [Indexed: 01/05/2023]
Abstract
Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Savannah Est Witte
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jacob M. Buchowski
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lukas P. Zebala
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael P. Kelly
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Scott Luhmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Munish C. Gupta
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amit Pathak
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Dal-Pra S, Hodgkinson CP, Dzau VJ. Induced cardiomyocyte maturation: Cardiac transcription factors are necessary but not sufficient. PLoS One 2019; 14:e0223842. [PMID: 31622977 PMCID: PMC6797484 DOI: 10.1371/journal.pone.0223842] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 01/06/2023] Open
Abstract
The process by which fibroblasts are directly reprogrammed into cardiomyocytes involves two stages; initiation and maturation. Initiation represents the initial expression of factors that induce fibroblasts to transdifferentiate into cardiomyocytes. Following initiation, the cell undergoes a period of maturation before becoming a mature cardiomyocyte. We wanted to understand the role of cardiac development transcription factors in the maturation process. We directly reprogram fibroblasts into cardiomyocytes by a combination of miRNAs (miR combo). The ability of miR combo to induce cardiomyocyte-specific genes in fibroblasts was lost following the knockdown of the cardiac transcription factors Gata4, Mef2C, Tbx5 and Hand2 (GMTH). To further clarify the role of GMTH in miR combo reprogramming we utilized a modified CRISPR-Cas9 approach to activate endogenous GMTH genes. Importantly, both miR combo and the modified CRISPR-Cas9 approach induced comparable levels of GMTH expression. While miR combo was able to reprogram fibroblasts into cardiomyocyte-like cells, the modified CRISPR-Cas9 approach could not. Indeed, we found that cardiomyocyte maturation only occurred with very high levels of GMT expression. Taken together, our data indicates that while endogenous cardiac transcription factors are insufficient to reprogram fibroblasts into mature cardiomyocytes, endogenous cardiac transcription factors are necessary for expression of maturation genes.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Conrad P. Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victor J. Dzau
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University, Durham, North Carolina, United States of America
- Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Association of functional variant in GDF1 promoter with risk of congenital heart disease and its regulation by Nkx2.5. Clin Sci (Lond) 2019; 133:1281-1295. [PMID: 31171573 DOI: 10.1042/cs20181024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
Abstract
GDF1 plays an important role in left–right patterning and genetic mutations in the coding region of GDF1 are associated with congenital heart disease (CHD). However, the genetic variation in the promoter of GDF1 with sporadic CHD and its expression regulation is little known. The association of the genetic variation in GDF1 promoter with CHD was examined in two case–control studies, including 1084 cases and 1198 controls in the first study and 582 cases and 615 controls in the second study. We identified one single nucleotide polymorphism (SNP) rs181317402 and two novel genetic mutations located in the promoter region of GDF1. Analysis of combined samples revealed a significant association in genotype and allele frequencies of rs181317402 T/G polymorphism between CHD cases in overall or ventricular septal defects or Tetralogy of Fallot and the control group. rs181317402 allele G polymorphism was significantly associated with a decreased risk of CHD. Furthermore, luciferase assay, chromatin immunoprecipitation and DNA pulldown assay indicated that Nkx2.5 transactivated the expression of GDF1 by binding to the promoter of GDF1. Luciferase activity assay showed that rs181317402 allele G significantly increased the basal and Nkx2.5-mediated activity of GDF1 promoter, while the two genetic mutations had the opposite effect. rs181317402 TG genotype was associated with significantly increased mRNA level of GDF1 compared with TT genotype in 18 CHD individuals. Our results demonstrate for the first time that Nkx2.5 acts upstream of GDF1 and the genetic variants in GDF1 promoter may confer genetic susceptibility to sporadic CHD potentially by altering its expression.
Collapse
|
18
|
Al-Maqtari T, Hong KU, Vajravelu BN, Moktar A, Cao P, Moore JB, Bolli R. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS One 2017; 12:e0174242. [PMID: 28355297 PMCID: PMC5371315 DOI: 10.1371/journal.pone.0174242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy.
Collapse
Affiliation(s)
- Tareq Al-Maqtari
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Kyung U. Hong
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Bathri N. Vajravelu
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Afsoon Moktar
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pengxiao Cao
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Joseph B. Moore
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
- * E-mail:
| |
Collapse
|
19
|
NKX2-5 molecular screening and assessment of variant rate and risk factors of secundum atrial septal defect in a Moroccan population. Anatol J Cardiol 2016; 17:217-223. [PMID: 27752029 PMCID: PMC5864982 DOI: 10.14744/anatoljcardiol.2016.7222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Secundum atrial septal defect (ASDII) has multifactorial etiology that is combination of environmental (e.g., mother's exposure to toxicity, ethnicity) and genetic causes. Aim of the present study was to screen a Moroccan population with ASDII for NKX2-5 variants and to assess risk factors that may contribute to emergence of the disorder. METHODS Thirty-two non-syndromic ASDII patients were screened for NKX2-5 variants using direct sequencing of polymerase chain reactionamplified coding regions. Risk factor rates were compared to general population and assessed using Fisher's exact and chi-square tests. In this retrospective study, criteria of exclusion were suggestive or confirmed syndrome association. RESULTS Three heterozygous variants were detected in 4 patients. NKX2-5 variant rate in present cohort is estimated to be about 9.4%. Two prominent risk factors in the Moroccan population were highlighted: consanguinity, rate of which was significantly high at 30.8%, and previous maternal miscarriage or sibling sudden death, observed in 34.6% of cohort. CONCLUSION Impact of identified variants was discussed and possible disease-predisposing effect is suggested. Findings indicate that ASD may be favored by consanguineous marriage and that NKX2-5 variant rate in ASD patients may be affected by ethnicity. High level of maternal miscarriage and sibling sudden death suggests potential non-sporadic nature as result of putative genetic defect.
Collapse
|
20
|
Waardenberg AJ, Homan B, Mohamed S, Harvey RP, Bouveret R. Prediction and validation of protein-protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach. Open Biol 2016; 6:rsob.160183. [PMID: 27683156 PMCID: PMC5043580 DOI: 10.1098/rsob.160183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 01/14/2023] Open
Abstract
The ability to accurately predict the DNA targets and interacting cofactors of transcriptional regulators from genome-wide data can significantly advance our understanding of gene regulatory networks. NKX2-5 is a homeodomain transcription factor that sits high in the cardiac gene regulatory network and is essential for normal heart development. We previously identified genomic targets for NKX2-5 in mouse HL-1 atrial cardiomyocytes using DNA-adenine methyltransferase identification (DamID). Here, we apply machine learning algorithms and propose a knowledge-based feature selection method for predicting NKX2-5 protein : protein interactions based on motif grammar in genome-wide DNA-binding data. We assessed model performance using leave-one-out cross-validation and a completely independent DamID experiment performed with replicates. In addition to identifying previously described NKX2-5-interacting proteins, including GATA, HAND and TBX family members, a number of novel interactors were identified, with direct protein : protein interactions between NKX2-5 and retinoid X receptor (RXR), paired-related homeobox (PRRX) and Ikaros zinc fingers (IKZF) validated using the yeast two-hybrid assay. We also found that the interaction of RXRα with NKX2-5 mutations found in congenital heart disease (Q187H, R189G and R190H) was altered. These findings highlight an intuitive approach to accessing protein-protein interaction information of transcription factors in DNA-binding experiments.
Collapse
Affiliation(s)
- Ashley J Waardenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia Children's Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Bernou Homan
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Stephanie Mohamed
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of Sydney, Westmead, New South Wales 2145, Australia School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
21
|
Liu P, Sun Y, Qiu G, Jiang H, Qiu G. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase. Mol Med Rep 2016; 14:2904-14. [PMID: 27572266 PMCID: PMC5042752 DOI: 10.3892/mmr.2016.5660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle arrest.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yueling Sun
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guangbin Qiu
- Department of Laboratory Medicine, 202 Hospital of People's Liberation Army, Shenyang, Heping 110003, P.R. China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital, China Medical University, Shenyang, Heping 110001, P.R. China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
22
|
Mariotto A, Pavlova O, Park HS, Huber M, Hohl D. HOPX: The Unusual Homeodomain-Containing Protein. J Invest Dermatol 2016; 136:905-911. [PMID: 27017330 DOI: 10.1016/j.jid.2016.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/15/2023]
Abstract
The homeodomain-only protein homeobox (HOPX) is the smallest known member of the homeodomain-containing protein family, atypically unable to bind DNA. HOPX is widely expressed in diverse tissues, where it is critically involved in the regulation of proliferation and differentiation. In human skin, HOPX controls epidermal formation through the regulation of late differentiation markers, and HOPX expression correlates with the level of differentiation in cutaneous pathologies. In mouse skin, Hopx was additionally identified as a lineage tracing marker of quiescent hair follicle stem cells. This review discusses current knowledge of HOPX structure and function in normal and pathological conditions.
Collapse
Affiliation(s)
- Anita Mariotto
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Olesya Pavlova
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hyun-Sook Park
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Marcel Huber
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
23
|
PKG-1α mediates GATA4 transcriptional activity. Cell Signal 2016; 28:585-94. [PMID: 26946174 DOI: 10.1016/j.cellsig.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease.
Collapse
|
24
|
Su Y, Fu Y, Zhang H, Shi Z, Zhang J, Gao L. Identification and expression of SRF targeted by miR-133a during early development of Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1093-1104. [PMID: 26036211 DOI: 10.1007/s10695-015-0071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Serum response factor (SRF) is a MADS-box transcription factor that regulates the expression of genes involved in development, metabolism, cell proliferation, and differentiation. In the present study, we cloned the full-length SRF cDNA which includes the coding region of 1503 bp, a 573-bp 5'untranslated region (UTR) and a 400-bp 3'-UTR. The deduced 501 amino acid sequence of the SRF protein contained a MADS domain and NLS at the N terminus, similar to other organisms, and it also is highly phylogenetically conserved. SRF mRNA is ubiquitously expressed in various tissues, with the highest level in the kidneys, and it is also highly expressed during the embryonic and metamorphic stages. During metamorphosis, the SRF mRNA levels are down-regulated by exogenous thyroid hormone (TH) at 17 dph and by thiourea (TU) at 29, 36, and 41 dph, whereas SRF mRNA levels were significantly up-regulated by the added exogenous TH to the TU-treated larvae at 41 dph, which indicates that thyroid hormone is essential for expression of SRF mRNA, so, higher levels of TH did not result in changes of SRF mRNA levels, while TH deficiency or inhibited by the non-specific TU toxicity cause down-regulation of SRF mRNA, which indicated that TH can indirectly affect the SRF mRNA levels. Meanwhile, using a luciferase reporter assay, we verified that SRF is a common target gene of miR-133a which is a muscle-specific microRNA (miRNA), which indicated that SRF may be involved in the signaling pathway of miRNA that regulates muscle development.
Collapse
Affiliation(s)
- Yanfang Su
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Hongmei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| | - Junling Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Lina Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| |
Collapse
|
25
|
Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:377-92. [PMID: 25813860 DOI: 10.1089/ten.teb.2014.0662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies.
Collapse
Affiliation(s)
- Abhirath Parikh
- 1 Lonza Walkersville, Inc. , Lonza Group, Walkersville, Maryland
| | - Jincheng Wu
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts
| | - Robert M Blanton
- 3 Division of Cardiology, Molecular Cardiology Research Institute , Tufts Medical Center, Tufts School of Medicine, Boston, Massachusetts
| | - Emmanuel S Tzanakakis
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts.,4 Tufts Clinical and Translational Science Institute (CTSI) , Boston, Massachusetts
| |
Collapse
|
26
|
The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One 2015; 10:e0117747. [PMID: 25679215 PMCID: PMC4334527 DOI: 10.1371/journal.pone.0117747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hibernation is an adaptive strategy used by various mammals to survive the winter under situations of low ambient temperatures and limited or no food availability. The heart of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) has the remarkable ability to descend to low, near 0°C temperatures without falling into cardiac arrest. We hypothesized that the transcription factors GATA4 and Nkx2-5 may play a role in cardioprotection by facilitating the expression of key downstream targets such as troponin I, troponin C, and ANP (atrial natriuretic peptide). This study measured relative changes in transcript levels, protein levels, protein post-translational modifications, and transcription factor binding over six stages: euthermic control (EC), entrance into torpor (EN), early torpor (ET), late torpor (LT), early arousal (EA), and interbout arousal (IA). We found differential regulation of GATA4 whereby transcript/protein expression, post-translational modification (phosphorylation of serine 261), and DNA binding were enhanced during the transitory phases (entrance and arousal) of hibernation. Activation of GATA4 was paired with increases in cardiac troponin I, troponin C and ANP protein levels during entrance, while increases in p-GATA4 DNA binding during early arousal was paired with decreases in troponin I and no changes in troponin C and ANP protein levels. Unlike its binding partner, the relative mRNA/protein expression and DNA binding of Nkx2-5 did not change during hibernation. This suggests that either Nkx2-5 does not play a substantial role or other regulatory mechanisms not presently studied (e.g. posttranslational modifications) are important during hibernation. The data suggest a significant role for GATA4-mediated gene transcription in the differential regulation of genes which aid cardiac-specific challenges associated with torpor-arousal.
Collapse
|
27
|
Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, Leuchs B, Nordheim A, Backs J, Engelhardt S, Katus HA, Müller OJ. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res 2014; 104:15-23. [PMID: 25082846 DOI: 10.1093/cvr/cvu174] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Inducible gene targeting in mice using the Cre/LoxP system has become a valuable tool to analyse the roles of specific genes in the adult heart. However, the commonly used Myh6-MerCreMer system requires time-consuming breeding schedules and is potentially associated with cardiac side effects, which may result in transient cardiac dysfunction. The aim of our study was to establish a rapid and simple system for cardiac gene inactivation in conditional knockout mice by gene transfer of a Cre recombinase gene using adeno-associated viral vectors of serotype 9 (AAV9). METHODS AND RESULTS AAV9 vectors expressing Cre under the control of a human cardiac troponin T promoter (AAV-TnT-Cre) enabled a highly efficient Cre/LoxP switching in cardiomyocytes 2 weeks after injection into 5- to 6-week-old ROSA26-LacZ reporter mice. Recombination efficiency was at least as high as observed with the Myh6-MerCreMer system. No adverse side effects were detected upon application of AAV-TnT-Cre. As proof of principle, we studied AAV-TnT-Cre in a conditional knockout model (Srf-flex1 mice) to deplete the myocardium of the transcription factor serum response factor (SRF). Four weeks after AAV-TnT-Cre injection, a strong decrease in the cardiac expression of SRF mRNA and protein was observed. Furthermore, mice developed a severe cardiac dysfunction with increased interstitial fibrosis in accordance with the central role of SRF for the expression of contractile and calcium trafficking proteins in the heart. CONCLUSIONS AAV9-mediated expression of Cre is a promising approach for rapid and efficient conditional cardiac gene knockout in adult mice.
Collapse
Affiliation(s)
- Stanislas Werfel
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Lorenz Lehmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Jan Ksienzyk
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Barbara Leuchs
- Applied Tumorvirology, German Cancer Research Center, Heidelberg, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Johannes Backs
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
28
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Reineke EL, Benham A, Soibam B, Stashi E, Taegtmeyer H, Entman ML, Schwartz RJ, O'Malley BW. Steroid receptor coactivator-2 is a dual regulator of cardiac transcription factor function. J Biol Chem 2014; 289:17721-31. [PMID: 24811170 DOI: 10.1074/jbc.m113.539908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously demonstrated the potential role of steroid receptor coactivator-2 (SRC-2) as a co-regulator in the transcription of critical molecules modulating cardiac function and metabolism in normal and stressed hearts. The present study seeks to extend the previous information by demonstrating SRC-2 fulfills this role by serving as a critical coactivator for the transcription and activity of critical transcription factors known to control cardiac growth and metabolism as well as in their downstream signaling. This knowledge broadens our understanding of the mechanism by which SRC-2 acts in normal and stressed hearts and allows further investigation of the transcriptional modifications mediating different types and degrees of cardiac stress. Moreover, the genetic manipulation of SRC-2 in this study is specific for the heart and thereby eliminating potential indirect effects of SRC-2 deletion in other organs. We have shown that SRC-2 is critical to transcriptional control modulated by MEF2, GATA-4, and Tbx5, thereby enhancing gene expression associated with cardiac growth. Additionally, we describe SRC-2 as a novel regulator of PPARα expression, thus controlling critical steps in metabolic gene expression. We conclude that through regulation of cardiac transcription factor expression and activity, SRC-2 is a critical transcriptional regulator of genes important for cardiac growth, structure, and metabolism, three of the main pathways altered during the cardiac stress response.
Collapse
Affiliation(s)
- Erin L Reineke
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ashley Benham
- the Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas 77030
| | - Benjamin Soibam
- the Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas 77030
| | - Erin Stashi
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Heinrich Taegtmeyer
- the Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Mark L Entman
- the Department of Medicine, Division of Cardiovascular Sciences, Baylor College of Medicine, Houston, Texas 77030, and
| | - Robert J Schwartz
- the Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas 77030, the Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004
| | - Bert W O'Malley
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030,
| |
Collapse
|
30
|
Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. eLife 2013; 2:e01323. [PMID: 24252873 PMCID: PMC3833424 DOI: 10.7554/elife.01323] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNA-1 (miR-1) is an evolutionarily conserved, striated muscle-enriched miRNA. Most mammalian genomes contain two copies of miR-1, and in mice, deletion of a single locus, miR-1-2, causes incompletely penetrant lethality and subtle cardiac defects. Here, we report that deletion of miR-1-1 resulted in a phenotype similar to that of the miR-1-2 mutant. Compound miR-1 knockout mice died uniformly before weaning due to severe cardiac dysfunction. miR-1-null cardiomyocytes had abnormal sarcomere organization and decreased phosphorylation of the regulatory myosin light chain-2 (MLC2), a critical cytoskeletal regulator. The smooth muscle-restricted inhibitor of MLC2 phosphorylation, Telokin, was ectopically expressed in the myocardium, along with other smooth muscle genes. miR-1 repressed Telokin expression through direct targeting and by repressing its transcriptional regulator, Myocardin. Our results reveal that miR-1 is required for postnatal cardiac function and reinforces the striated muscle phenotype by regulating both transcriptional and effector nodes of the smooth muscle gene expression network. DOI:http://dx.doi.org/10.7554/eLife.01323.001 MicroRNAs are tiny RNAs that do not encode proteins. Instead, they regulate the expression of genes by preventing protein-encoding messenger RNAs from being translated into protein. MicroRNAs are expressed throughout the body, including the heart, where the most abundant microRNA is called miR-1. This is encoded by two nearly identical genes: miR-1-1 and miR-1-2. Mice that lack the miR-1-2 gene have various heart abnormalities, but generally survive because they still produce some miR-1 from their remaining miR-1-1 gene. Now, Heidersbach et al. have generated the first mice that specifically lack both miR-1 genes, and shown that these animals die before weaning. When viewed under the electron microscope, heart muscle from miR-1 double knockout mice lacks the characteristic ‘striped’, or striated, appearance of normal heart muscle. Additionally, miR-1 double knockout hearts have some gene expression characteristics more similar to the smooth muscle found in the gut and in the walls of blood vessels. Smooth muscle differs from striated muscle in that it lacks sarcomeres: these are bands of fibrous proteins, such as myosin, that are essential for muscle contraction. In normal mice, an enzyme called MLCK contributes to the formation and function of sarcomeres by adding phosphate groups to myosin molecules. By contrast, in smooth muscle an enzyme called Telokin promotes phosphate group removal, and thus affects the function of sarcomeres. Heidersbach et al. showed that miR-1 interacts directly with Telokin mRNA to prevent its expression in the heart, and simultaneously represses a protein called Myocardin, which directly activates transcription of Telokin. However, when miR-1 is absent, as in the miR-1 double knockout mice, Telokin is expressed in heart muscle, along with many other genes characteristic of smooth muscle. As well as improving our understanding of the development and functioning of the heart, these findings should shed new light on the role of microRNAs in maintaining the patterns of gene expression that characterize unique cell fates. DOI:http://dx.doi.org/10.7554/eLife.01323.002
Collapse
Affiliation(s)
- Amy Heidersbach
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang C, Madonna R, Li Y, Zhang Q, Shen WF, McNamara K, Yang YJ, Geng YJ. Simvastatin-enhanced expression of promyogenic nuclear factors and cardiomyogenesis of murine embryonic stem cells. Vascul Pharmacol 2013; 60:8-16. [PMID: 24200505 DOI: 10.1016/j.vph.2013.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
A combination of statin and stem cell therapies has been shown to benefit in experimental models of myocardial infarction. This study tests whether treatment with simvastatin has a direct impact on the cardiomyogenic development of murine embryonic stem cells (ESCs) in embryoid bodies. In a concentration-dependent manner, simvastatin treatment enhanced expression of several promyogenic nuclear transcription factors, including GATA4, Nkx2.5, DTEF-1 and myocardin A. The statin-treated cells also displayed higher levels of cardiac proteins, including myosin, α-actinin, Ryanodine receptor-2, and atrial natriuretic peptide, and they developed synchronized contraction. The statin's promyogenic effect was partially diminished by the addition of the two isoprenoids FPP and GGPP, which are intermediates of cholesterol synthesis. Thus, simvastatin treatment enhances ESC myogenesis during early development perhaps via a mechanism inhibiting the mevalonate-FPP/GGPP pathway.
Collapse
Affiliation(s)
- ChenMin Yang
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; The Department of Obstetrics and Gynecology, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China; Texas Heart Institute, Houston, TX, USA
| | - Rosalinda Madonna
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yangxin Li
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Qi Zhang
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Wei-Feng Shen
- The Department of Cardiovascular Medicine, Ruijin Hospital, Jiao-Tong University Medical School, Shanghai, China
| | - Katharine McNamara
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA
| | - Yue-Jin Yang
- FuWai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Medical School at Houston, Houston, TX USA; Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
32
|
Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2414-24. [PMID: 24036209 DOI: 10.1016/j.bbadis.2013.07.023] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 01/24/2023]
Abstract
During the processes leading to adverse cardiac remodeling and heart failure, cardiomyocytes react to neurohumoral stimuli and biomechanical stress by activating pathways that induce pathological hypertrophy. The gene expression patterns and molecular changes observed during cardiac hypertrophic remodeling bare resemblance to those observed during fetal cardiac development. The re-activation of fetal genes in the adult failing heart is a complex biological process that involves transcriptional, posttranscriptional and epigenetic regulation of the cardiac genome. In this review, the mechanistic actions of transcription factors, microRNAs and chromatin remodeling processes in regulating fetal gene expression in heart failure are discussed.
Collapse
Affiliation(s)
- Ellen Dirkx
- Dept of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; ICIN-Netherlands Heart Institute, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
| | | | | |
Collapse
|
33
|
Brody MJ, Cho E, Mysliwiec MR, Kim TG, Carlson CD, Lee KH, Lee Y. Lrrc10 is a novel cardiac-specific target gene of Nkx2-5 and GATA4. J Mol Cell Cardiol 2013; 62:237-46. [PMID: 23751912 PMCID: PMC3940241 DOI: 10.1016/j.yjmcc.2013.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/11/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Cardiac gene expression is precisely regulated and its perturbation causes developmental defects and heart disease. Leucine-rich repeat containing 10 (Lrrc10) is a cardiac-specific factor that is crucial for proper cardiac development and deletion of Lrrc10 in mice results in dilated cardiomyopathy. However, the mechanisms regulating Lrrc10 expression in cardiomyocytes remain unknown. Therefore, we set out to determine trans-acting factors and cis-elements critical for mediating Lrrc10 expression. We identify Lrrc10 as a transcriptional target of Nkx2-5 and GATA4. The Lrrc10 promoter region contains two highly conserved cardiac regulatory elements, which are functional in cardiomyocytes but not in fibroblasts. In vivo, Nkx2-5 and GATA4 endogenously occupy the proximal and distal cardiac regulatory elements of Lrrc10 in the heart. Moreover, embryonic hearts of Nkx2-5 knockout mice have dramatically reduced expression of Lrrc10. These data demonstrate the importance of Nkx2-5 and GATA4 in regulation of Lrrc10 expression in vivo. The proximal cardiac regulatory element located at around -200bp is synergistically activated by Nkx2-5 and GATA4 while the distal cardiac regulatory element present around -3kb requires SRF in addition to Nkx2-5 and GATA4 for synergistic activation. Mutational analyses identify a pair of adjacent Nkx2-5 and GATA binding sites within the proximal cardiac regulatory element that are necessary to induce expression of Lrrc10. In contrast, only the GATA site is functional in the distal regulatory element. Taken together, our data demonstrate that the transcription factors Nkx2-5 and GATA4 cooperatively regulate cardiac-specific expression of Lrrc10.
Collapse
Affiliation(s)
- Matthew J. Brody
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| | - Matthew R. Mysliwiec
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Tae-gyun Kim
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center of Wisconsin, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kyu-Ho Lee
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
34
|
Vissing K, Rahbek SK, Lamon S, Farup J, Stefanetti RJ, Wallace MA, Vendelbo MH, Russell A. Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. J Physiol 2013; 591:3749-63. [PMID: 23753523 DOI: 10.1113/jphysiol.2012.249755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.
Collapse
Affiliation(s)
- Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Dalgas Avenue 4, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Two novel and functional DNA sequence variants within an upstream enhancer of the human NKX2-5 gene in ventricular septal defects. Gene 2013; 524:152-5. [PMID: 23644027 DOI: 10.1016/j.gene.2013.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/27/2013] [Accepted: 04/04/2013] [Indexed: 01/08/2023]
Abstract
Mortality in patients with congenital heart disease (CHD) is significantly increased even with successful surgeries. The main causes are late cardiac complications, such as heart failure and arrhythmia, probably due to genetic defects. To date, genetic causes for CHD remain largely unknown. NKX2-5 gene encodes a highly conserved homeobox transcription factor, which is essential to the heart development in embryos and cardiac function in adults. Mutations in NKX2-5 gene have been implicated in diverse types of CHD, including ventricular septal defect (VSD). As NKX2-5 is a dosage-sensitive regulator, we have speculated that changed NKX2-5 levels may mediate CHD development by influencing cardiac gene regulatory network. In previous studies, we have analyzed the NKX2-5 gene promoter and a proximal enhancer in VSD patients. In the present study, we further genetically and functionally analyzed an upstream enhancer of the NKX2-5 gene in large cohorts of VSD patients (n=340) and controls (n=347). Two novel heterozygous DNA sequence variants (DSVs), g.17483576C>G and g.17483564C>T, were identified in three VSD patients, but none in controls. Functionally, these two DSVs significantly decreased the activity of the enhancer (P<0.01). Another novel heterozygous DSV, g.17483557Ins, was found in both VSD patients and controls with similar frequencies (P>0.05). Taken together, our data suggested that the DSVs within the upstream enhancer of the NKX2-5 gene may contribute to a small number of VSD. Therefore, genetic studies of CHD may provide insight into designing novel therapies for adult CHD patients.
Collapse
|
36
|
Small EM. The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 2012; 5:794-804. [PMID: 22898751 DOI: 10.1007/s12265-012-9397-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
Abstract
Cardiac fibroblasts are responsible for necrotic tissue replacement and scar formation after myocardial infarction (MI) and contribute to remodeling in response to pathological stimuli. This response to insult or injury is largely due to the phenotypic plasticity of fibroblasts. When fibroblasts encounter environmental disturbances, whether biomechanical or humoral, they often transform into smooth muscle-like, contractile cells called "myofibroblasts." The signals that control myofibroblast differentiation include the transforming growth factor (TGF)-β1-Smad pathway and Rho GTPase-dependent actin polymerization. Recent evidence implicates serum response factor (SRF) and the myocardin-related transcription factors (MRTFs) as key mediators of the contractile gene program in response to TGF-β1 or RhoA signaling. This review highlights the function of myofibroblasts in cardiac remodeling and the role of the actin-MRTF-SRF signaling axis in regulating this process.
Collapse
Affiliation(s)
- Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14642, USA.
| |
Collapse
|
37
|
Azibani F, Devaux Y, Coutance G, Schlossarek S, Polidano E, Fazal L, Merval R, Carrier L, Solal AC, Chatziantoniou C, Launay JM, Samuel JL, Delcayre C. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice. PLoS One 2012; 7:e38197. [PMID: 22666483 PMCID: PMC3364229 DOI: 10.1371/journal.pone.0038197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/01/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of its transcriptional repressor Sox6. Thus, aldosterone inhibits the fetal program and increases cardiac hypertrophy in hypertensive mice.
Collapse
Affiliation(s)
- Feriel Azibani
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Yvan Devaux
- Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | - Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Loubina Fazal
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Regine Merval
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- UPMC, INSERM UMR-S974, CNRS UMR7215, Institut de Myologie, Paris, France
| | - Alain Cohen Solal
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | | | - Jean-Marie Launay
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | - Jane-Lise Samuel
- Unit 942 INSERM and Université Paris-Diderot, Paris, France
- Lariboisière Hospital AP-HP, Paris, France
| | | |
Collapse
|
38
|
Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C. GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 2012; 15:1865-77. [PMID: 20874724 PMCID: PMC3918043 DOI: 10.1111/j.1582-4934.2010.01182.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cardiac hypertrophy in response to multiple stimuli has important physiological and pathological significances. GATA4 serves as a nuclear integrator of several signalling pathways during cardiac hypertrophy. Sp1 and Sp3 are also reported to be involved in this process. However, the mechanism by which GATA4 acts as a mediator, integrating these ubiquitously expressed transcriptional factors, is poorly understood. We found that the expression of GATA4 and Sp1 was up-regulated in the myocardium of a pressure overload hypertrophy rat model, as well in phenylephrine-induced (PE-induced) hypertrophic growth of neonatal cardiomyocytes. GST pull-down assays demonstrated that GATA4 could interact with Sp1 in vitro. Therefore, we proposed that GATA4 cooperates with Sp1 in regulating ANF expression, as its reactivation is closely linked with hypertrophy. Further studies demonstrated that GATA4 could activate the ANF promoter synergistically with Sp1 through direct interaction. In contrast, Sp3 exhibited antagonistic function, and overexpression of Sp3 repressed the transcriptional synergy between Sp1 and GATA4. We also found that Sp1 alone could activate the ANF promoter in cardiomyocytes, whereas Sp3 exerted negative effects on ANF expression. Bioinformatics analysis revealed novel Sp-binding sites on the ANF promoter. The recruitment of GATA4 and Sp1 on the ANF promoter was enhanced during phenylephrine-mediated hypertrophy, whereas the recruitment of Sp3 was reduced. The phosphorylation of GATA4 by ERK1/2 kinase could enhance the affinity between GATA4 and Sp1. Thus, our findings revealed the critical interaction of GATA4 and Sp1 in modulating ANF expression, indicating their involvement in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses transcription factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result.
Collapse
Affiliation(s)
- David J McCulley
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | | |
Collapse
|
40
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
42
|
Early embryonic sensitivity to cyclophosphamide in cardiac differentiation from human embryonic stem cells. Cell Biol Int 2011; 35:927-38. [DOI: 10.1042/cbi20110031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J. Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS One 2011; 6:e20803. [PMID: 21677783 PMCID: PMC3108998 DOI: 10.1371/journal.pone.0020803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/12/2011] [Indexed: 12/16/2022] Open
Abstract
Nkx2.5 is a cardiac specific homeobox gene critical for normal heart development. We previously identified Nkx2.5 as a target of sumoylation, a posttranslational modification implicated in a variety of cellular activities. Sumoylation enhanced Nkx2.5 activity via covalent attachment to the lysine residue 51, the primary SUMO acceptor site. However, how sumoylation regulates the activity of Nkx2.5 in vivo remains unknown. We generated transgenic mice overexpressing sumoylation deficient mutant K51R (conversion of lysine 51 to arginine) specifically in mouse hearts under the control of cardiac α-myosin heavy chain (α-MHC) promoter (K51R-Tg). Expression of the Nkx2.5 mutant transgene in the wild type murine hearts did not result in any overt cardiac phenotype. However, in the presence of Nkx2.5 haploinsufficiency, cardiomyocyte-specific expression of the Nkx2.5 K51R mutant led to congenital heart diseases (CHDs), accompanied with decreased cardiomyocyte proliferation. Also, a number of human CHDs-associated Nkx2.5 mutants exhibited aberrant sumoylation. Our work demonstrates that altered sumoylation status may underlie the development of human CHDs associated with Nkx2.5 mutants.
Collapse
Affiliation(s)
- Eun Young Kim
- Program in Genes and Development, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Li Chen
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Wei Yu
- Department of Biochemistry and Molecular Biology, University of Houston, Houston, Texas, United States of America
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Ivan P. Moskowitz
- Departments of Pediatrics and Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jun Wang
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
| |
Collapse
|
44
|
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011; 91:185-95. [DOI: 10.1093/cvr/cvr127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci U S A 2011; 108:4006-11. [PMID: 21330551 DOI: 10.1073/pnas.1019025108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report that the dominant human missense mutations G303E and G296S in GATA4, a cardiac-specific transcription factor gene, cause atrioventricular septal defects and valve abnormalities by disrupting a signaling cascade involved in endocardial cushion development. These GATA4 missense mutations, but not a mutation causing secundum atrial septal defects (S52F), demonstrated impaired protein interactions with SMAD4, a transcription factor required for canonical bone morphogenetic protein/transforming growth factor-β (BMP/TGF-β) signaling. Gata4 and Smad4 genetically interact in vivo: atrioventricular septal defects result from endothelial-specific Gata4 and Smad4 compound haploinsufficiency. Endothelial-specific knockout of Smad4 caused an absence of valve-forming activity: Smad4-deficient endocardium was associated with acellular endocardial cushions, absent epithelial-to-mesenchymal transformation, reduced endocardial proliferation, and loss of Id2 expression in valve-forming regions. We show that Gata4 and Smad4 cooperatively activated the Id2 promoter, that human GATA4 mutations abrogated this activity, and that Id2 deficiency in mice could cause atrioventricular septal defects. We suggest that one determinant of the phenotypic spectrum caused by human GATA4 mutations is differential effects on GATA4/SMAD4 interactions required for endocardial cushion development.
Collapse
|
46
|
Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 2010; 138:1231-40. [PMID: 21110066 DOI: 10.1007/s10709-010-9522-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/04/2010] [Indexed: 12/19/2022]
Abstract
A number of mutations in GATA4 and NKX2.5 have been identified to be causative for a subset of familial congenital heart defects (CHDs) and a small number of sporadic CHDs. In this study, we evaluated common GATA4 and NKX2.5 mutations in 135 Chinese pediatric patients with non-familial congenital heart defects. Two novel mutations in the coding region of GATA4 were identified, namely, 487C >T (Pro163Ser) in exon 1 in a child with tetralogy of Fallot and 1220C >A (Pro407Gln) in exon 6 in a pediatric patient with outlet membranous ventricular septal defect. We also found 848C >A (Pro283Gln) in exon 2 of the NKX2.5 gene in a pediatric patient with ventricular septal defect, patent ductus arteriosus and aortic isthmus stenosis. None of the mutations was detected in healthy control subjects (n = 114). This study suggests that GATA4 and NKX2.5 missense mutations may be associated with congenital heart defects in pediatric Chinese patients. Further clinical studies with large samples are warranted.
Collapse
|
47
|
Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol 2010; 30:4134-48. [PMID: 20606005 DOI: 10.1128/mcb.00154-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Subjecting cardiomyocytes to mechanical stress or neurohumoral stimulation causes cardiac hypertrophy characterized in part by reactivation of the fetal cardiac gene program. Here we demonstrate a new common mechanism by which these stimuli are transduced to a signal activating the hypertrophic gene program. Mechanically stretching cardiomyocytes induced nuclear accumulation of myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), in a Rho- and actin dynamics-dependent manner. Expression of brain natriuretic peptide (BNP) and other SRF-dependent fetal cardiac genes in response to acute mechanical stress was blunted in mice lacking MRTF-A. Hypertrophic responses to chronic pressure overload were also significantly attenuated in mice lacking MRTF-A. Mutation of a newly identified, conserved and functional SRF-binding site within the BNP promoter, or knockdown of MRTF-A, reduced the responsiveness of the BNP promoter to mechanical stretch. Nuclear translocation of MRTF-A was also involved in endothelin-1- and angiotensin-II-induced activation of the BNP promoter. Moreover, mice lacking MRTF-A showed significantly weaker hypertrophic responses to chronic angiotensin II infusion than wild-type mice. Collectively, these findings point to nuclear translocation of MRTF-A as a novel signaling mechanism mediating both mechanical stretch- and neurohumoral stimulation-induced BNP gene expression and hypertrophic responses in cardiac myocytes.
Collapse
|
48
|
Himeda CL, Ranish JA, Pearson RCM, Crossley M, Hauschka SD. KLF3 regulates muscle-specific gene expression and synergizes with serum response factor on KLF binding sites. Mol Cell Biol 2010; 30:3430-43. [PMID: 20404088 PMCID: PMC2897560 DOI: 10.1128/mcb.00302-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/10/2010] [Indexed: 12/29/2022] Open
Abstract
This study identifies KLF3 as a transcriptional regulator of muscle genes and reveals a novel synergistic interaction between KLF3 and serum response factor (SRF). Using quantitative proteomics, KLF3 was identified as one of several candidate factors that recognize the MPEX control element in the Muscle creatine kinase (MCK) promoter. Chromatin immunoprecipitation analysis indicated that KLF3 is enriched at many muscle gene promoters (MCK, Myosin heavy chain IIa, Six4, Calcium channel receptor alpha-1, and Skeletal alpha-actin), and two KLF3 isoforms are upregulated during muscle differentiation. KLF3 and SRF physically associate and synergize in transactivating the MCK promoter independently of SRF binding to CArG motifs. The zinc finger and repression domains of KLF3 plus the MADS box and transcription activation domain of SRF are implicated in this synergy. Our results provide the first evidence of a role for KLF3 in muscle gene regulation and reveal an alternate mechanism for transcriptional regulation by SRF via its recruitment to KLF binding sites. Since both factors are expressed in all muscle lineages, SRF may regulate many striated- and smooth-muscle genes that lack known SRF control elements, thus further expanding the breadth of the emerging CArGome.
Collapse
Affiliation(s)
- Charis L. Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jeffrey A. Ranish
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard C. M. Pearson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Merlin Crossley
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, Institute for Systems Biology, Seattle, Washington 98103-8904, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010; 11:353-65. [PMID: 20414257 PMCID: PMC3073350 DOI: 10.1038/nrm2890] [Citation(s) in RCA: 784] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous physiological and pathological stimuli promote the rearrangement of the actin cytoskeleton, thereby modulating cellular motile functions. Although it seems intuitively obvious that cell motility requires coordinated protein biosynthesis, until recently the linkage between cytoskeletal actin dynamics and correlated gene activities remained unknown. This knowledge gap was filled in part by the discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors, thereby inducing the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics. This insight stimulated research to better understand the actin-MRTF-SRF circuit and to identify alternative mechanisms that link cytoskeletal dynamics and genome activity.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
50
|
Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 2010; 61:269-80. [DOI: 10.1016/j.phrs.2009.11.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/29/2009] [Accepted: 11/30/2009] [Indexed: 02/08/2023]
|