1
|
Li V, Mishra H, Ngai M, Crowley VM, Tran V, Painaga MSS, Gaite JY, Hamilton P, Conroy AL, Kain KC, Hawkes MT. Soluble tumour necrosis factor receptor 1 predicts hospitalization in children and young adults with dengue virus infection in the Philippines. Cytokine 2025; 190:156911. [PMID: 40080919 DOI: 10.1016/j.cyto.2025.156911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Dengue fever is a common cause of acute febrile illness in the tropics and requires hospitalization for intravenous (IV) fluid therapy in a minority of patients. Predicting which patients will progress to severe disease is challenging. Soluble tumour necrosis factor receptor 1 (sTNFR1) is associated with severe dengue and may have prognostic value. METHODS Prospective cohort study of outpatients in the Philippines with dengue fever, confirmed by NS1 antigenemia or IgM seropositivity. sTNFR1 was measured at presentation and patients were followed for 14-21 days for hospitalization (primary outcome), duration of stay, IV fluid resuscitation, hemoconcentration, and thrombocytopenia (secondary outcomes). RESULTS 244 patients (median age 9 years, 40 % female, 26 % uncomplicated dengue, 73 % dengue with warning signs, 0.82 % severe dengue) were included. The median sTNFR1 plasma concentration was 3000pg/mL (IQR 2400-3700) at clinic presentation, decreasing to 1800 (IQR 1600-2100) after recovery. 181 patients (74 %) required hospitalization. Plasma sTNFR1 concentration > 2800 pg/mL, measured at clinic presentation, was associated with subsequent hospitalization (relative risk 1.5, 95 %CI 1.2-1.7, p < 0.0001). Elevated sTNFR1 was also associated with longer duration of stay, IV fluid requirement, hemoconcentration, and thrombocytopenia. sTNFR1 was also associated with a marker of systemic inflammation (procalcitonin), and circulating markers of endothelial activation (Ang2, sTie-2, sVCAM-1, and endoglin). CONCLUSION Elevated sTNFR1 is predictive of subsequent hospitalization among outpatients with DENV infection. It shows promise as a marker that could guide triage to reduce the large healthcare burden of dengue in resource-constrained settings.
Collapse
Affiliation(s)
- Vanesse Li
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Hridesh Mishra
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Valerie M Crowley
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Vanessa Tran
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Public Health Ontario, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Patrick Hamilton
- Department of Medicine, Faculty of Medicine, University of Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Kevin C Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, Canada
| | - Michael T Hawkes
- Department of Pediatrics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Budzyń M, Gryszczyńska B, Begier-Krasińska B, Kaja E, Mikołajczak P, Kujawski R, Grupińska J, Iskra M, Tykarski A, Kaczmarek M. Decreased toll-like receptor 4 and CD11b/CD18 expression on peripheral monocytes of hypertensive patients correlates with a lesser extent of endothelial damage: a preliminary study. J Hypertens 2024; 42:471-483. [PMID: 37937521 DOI: 10.1097/hjh.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND Low-grade chronic inflammation is recognized to contribute to the physiopathology of arterial hypertension. Therefore, this study aimed to assess the pro-inflammatory phenotype of peripheral monocytes of hypertensive patients by analyzing Toll-like receptor 4 (TLR4) and CD11b/CD18 surface expression. In the second part, the influence of phenotypic alterations of monocytes on the endothelial status reflected by circulating endothelial cells (CECs) was evaluated. PATIENTS The study included 60 patients with arterial hypertension, who were divided into two subgroups based on the disease severity according to the applicable criteria. The mild hypertension and resistant hypertension groups included 30 patients each. The control group consisted of 33 normotensive volunteers matched for age and sex. RESULTS Both in the entire group of patients and individual subgroups, reduced surface expression of TLR4 and CD11b/CD18 was found compared to normotensive volunteers. A reduced percentage of monocytes with the CD14 + TLR4 + immunophenotype was correlated with a lower MFI level of CD18 and CD11b in the entire group of patients and after division only in the mild hypertension group. Reduced surface expression of TLR4 in hypertensive patients correlated with a lower number of CECs. This relationship was not observed in the resistant hypertension group; instead, an independent effect of reduced CD11b/CD18 expression on the reduction of CEC number was demonstrated. CONCLUSION Our preliminary study showed for the first time that hypertension of varying severity is accompanied by phenotypic changes in monocytes, manifested by reduced surface expression of both TLR4 and CD11b/CD18. These phenotypic changes were associated with a reduced degree of endothelial injury. Our study opens a new, unexplored area of research on the protective features of peripheral monocytes in hypertension.
Collapse
Affiliation(s)
- Magdalena Budzyń
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | | | - Elżbieta Kaja
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | | | - Joanna Grupińska
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | - Maria Iskra
- Chair and Department of Medical Chemistry and Laboratory Medicine
| | | | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences
- Gene Therapy Unit, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
3
|
Bae EH, Kim IJ, Choi HS, Kim HY, Kim CS, Ma SK, Kim IS, Kim SW. Tumor necrosis factor α-converting enzyme inhibitor attenuates lipopolysaccharide-induced reactive oxygen species and mitogen-activated protein kinase expression in human renal proximal tubule epithelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520166 PMCID: PMC5840072 DOI: 10.4196/kjpp.2018.22.2.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α (TNFα) and the angiotensin system are involved in inflammatory diseases and may contribute to acute kidney injury. We investigated the mechanisms by which TNFα-converting enzyme (TACE) contributes to lipopolysaccharide (LPS)-induced renal inflammation and the effect of TACE inhibitor treatment on LPS-induced cellular injury in human renal proximal tubule epithelial (HK-2) cells. Mice were treated with LPS (10 mg/kg, i.p.) and HK-2 cells were cultured with or without LPS (10 µg/ml) in the presence or absence of a type 1 TACE inhibitor (1 µM) or type 2 TACE inhibitor (10 µM). LPS treatment induced increased serum creatinine, TNFα, and urinary neutrophil gelatinase-associated lipocalin. Angiotensin II type 1 receptor, mitogen activated protein kinase (MAPK), and TACE increased, while angiotensin-converting enzyme-2 (ACE2) expression decreased in LPS-induced acute kidney injury and LPS-treated HK-2 cells. LPS induced reactive oxygen species and the down-regulation of ACE2, and these responses were prevented by TACE inhibitors in HK-2 cells. TACE inhibitors increased cell viability in LPS-treated HK-2 cells and attenuated oxidative stress and inflammatory cytokines. Our findings indicate that LPS activates renin angiotensin system components via the activation of TACE. Furthermore, inhibitors of TACE are potential therapeutic agents for kidney injury.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - Ha Yeon Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| | - In S Kim
- Global Desalination Research Center (GDRC), School of Environmental Science and Engineering (SESE), Gwangju Institute of Science and Technology (GIST), Gwnagju 61005, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61707, Korea
| |
Collapse
|
4
|
Monocyte Tumor Necrosis Factor-α-Converting Enzyme Catalytic Activity and Substrate Shedding in Sepsis and Noninfectious Systemic Inflammation. Crit Care Med 2015; 43:1375-85. [PMID: 25867908 PMCID: PMC4467590 DOI: 10.1097/ccm.0000000000000992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could be induced in healthy volunteer monocytes using an in vitro two-hit inflammation model. Patients with sepsis also displayed reduced shedding of monocyte tumor necrosis factor receptors upon stimulation with lipopolysaccharide. Conclusions: Monocyte tumor necrosis factor-α–converting enzyme catalytic activity appeared altered by sepsis and may result in reduced shedding of tumor necrosis factor receptors. Changes seemed specific to sepsis and correlated with illness severity. A better understanding of how tumor necrosis factor-α–converting enzyme function is altered during sepsis will enhance our understanding of sepsis pathophysiology, which will help in the assessment of patient inflammatory status and ultimately may provide new strategies to treat sepsis.
Collapse
|
5
|
Halford MM, Macheda ML, Parish CL, Takano EA, Fox S, Layton D, Nice E, Stacker SA. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK. PLoS One 2013; 8:e75447. [PMID: 24058687 PMCID: PMC3776778 DOI: 10.1371/journal.pone.0075447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain–specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies.
Collapse
Affiliation(s)
- Michael M. Halford
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Maria L. Macheda
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Clare L. Parish
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena A. Takano
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Stephen Fox
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Layton
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Edouard Nice
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
da Silveira Cruz-Machado S, Pinato L, Tamura EK, Carvalho-Sousa CE, Markus RP. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF). PLoS One 2012; 7:e40142. [PMID: 22768337 PMCID: PMC3388049 DOI: 10.1371/journal.pone.0040142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/01/2012] [Indexed: 02/06/2023] Open
Abstract
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.
Collapse
Affiliation(s)
| | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, Universidade Estadual Paulista (UNESP), Marília, São Paulo, Brazil
| | - Eduardo Koji Tamura
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Regina P. Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Smolinska MJ, Page TH, Urbaniak AM, Mutch BE, Horwood NJ. Hck Tyrosine Kinase Regulates TLR4-Induced TNF and IL-6 Production via AP-1. THE JOURNAL OF IMMUNOLOGY 2011; 187:6043-51. [DOI: 10.4049/jimmunol.1100967] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Scott AJ, O'Dea KP, O'Callaghan D, Williams L, Dokpesi JO, Tatton L, Handy JM, Hogg PJ, Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286:35466-35476. [PMID: 21865167 DOI: 10.1074/jbc.m111.277434] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Alasdair J Scott
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - David O'Callaghan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Justina O Dokpesi
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Louise Tatton
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Jonathan M Handy
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Philip J Hogg
- Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| |
Collapse
|
9
|
Tumor necrosis factor-alpha (TNF-alpha) regulates shedding of TNF-alpha receptor 1 by the metalloprotease-disintegrin ADAM8: evidence for a protease-regulated feedback loop in neuroprotection. J Neurosci 2010; 30:12210-8. [PMID: 20826683 DOI: 10.1523/jneurosci.1520-10.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a potent cytokine in neurodegenerative disorders, but its precise role in particular brain disorders is ambiguous. In motor neuron (MN) disease of the mouse, exemplified by the model wobbler (WR), TNF-alpha causes upregulation of the metalloprotease-disintegrin ADAM8 (A8) in affected brain regions, spinal cord, and brainstem. The functional role of A8 during MN degeneration in the wobbler CNS was investigated by crossing WR with A8-deficient mice: a severely aggravated neuropathology was observed for A8-deficient WR compared with WR A8(+/-) mice, judged by drastically reduced survival [7 vs 81% survival at postnatal day 50 (P50)], accelerated force loss in the forelimbs, and terminal akinesis. In vitro protease assays using soluble A8 indicated specific cleavage of a TNF-alpha receptor 1 (p55 TNF-R1) but not a TNF-R2 peptide. Cleavage of TNF-R1 was confirmed in situ, because levels of soluble TNF-R1 were increased in spinal cords of standard WR compared with wild-type mice but not in A8-deficient WR mice. In isolated primary neurons and microglia, TNF-alpha-induced TNF-R1 shedding was dependent on the A8 gene dosage. Furthermore, exogenous TNF-alpha showed higher toxicity for cultured neurons from A8-deficient than for those from wild-type mice, demonstrating that TNF-R1 shedding by A8 is neuroprotective. Our results indicate an essential role for ADAM8 in modulating TNF-alpha signaling in CNS diseases: a feedback loop integrating TNF-alpha, ADAM8, and TNF-R1 shedding as a plausible mechanism for TNF-alpha mediated neuroprotection in situ and a rationale for therapeutic intervention.
Collapse
|
10
|
Jia HP, Look DC, Tan P, Shi L, Hickey M, Gakhar L, Chappell MC, Wohlford-Lenane C, McCray PB. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2009; 297:L84-96. [PMID: 19411314 DOI: 10.1152/ajplung.00071.2009] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.
Collapse
Affiliation(s)
- Hong Peng Jia
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Paland N, Böhme L, Gurumurthy RK, Mäurer A, Szczepek AJ, Rudel T. Reduced display of tumor necrosis factor receptor I at the host cell surface supports infection with Chlamydia trachomatis. J Biol Chem 2007; 283:6438-48. [PMID: 18167350 DOI: 10.1074/jbc.m708422200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular human pathogenic bacterium Chlamydia trachomatis has evolved multiple mechanisms to circumvent the host immune system. Infected cells exhibit a profound resistance to the induction of apoptosis and down-regulate the expression of major histocompatibility complex class I and class II molecules to evade the cytotoxic effect of effector immune cells. Here we demonstrate the down-regulation of tumor necrosis factor receptor 1 (TNFR1) on the surface of infected cells. Interestingly, other members of the TNFR family such as TNFR2 and CD95 (Fas/Apo-1) were not modulated during infection, suggesting a selective mechanism underlying surface reduction of TNFR1. The observed effect was not due to reduced expression since the overall amount of TNFR1 protein was increased in infected cells. TNFR1 accumulated at the chlamydial inclusion and was shed by the infected cell into the culture supernatant. Receptor shedding depended on the infection-induced activation of the MEK-ERK pathway and the metalloproteinase TACE (TNFalpha converting enzyme). Our results point to a new function of TNFR1 modulation by C. trachomatis in controlling inflammatory signals during infection.
Collapse
Affiliation(s)
- Nicole Paland
- Research Group for Molecular Infection and Tumor Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Gabler NK, Spurlock ME. Integrating the immune system with the regulation of growth and efficiency. J Anim Sci 2007; 86:E64-74. [PMID: 17911231 DOI: 10.2527/jas.2007-0466] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Muscle growth in meat animals is a complex process governed by integrated signals emanating from multiple endocrine and immune cells. A generalized phenomenon among meat animal industries is that animals commonly fail to meet their genetic potential for growth in commercial production settings. Recent evidence indicates that adipocytes and myofibers are equipped with functional pattern recognition receptors and are capable of responding directly to the corresponding pathogens and other receptor ligands. Thus, these cells are active participants in the innate immune response and, as such, produce a number of immune and metabolic regulators, including proinflammatory cytokines and adiponectin. Specifically, the transcription factor, nuclear factor kappa B, is activated in adipocytes and muscle cells by bacterial lipopolysaccharide and certain saturated fatty acids, which are potent agonists for the Toll-like receptor-4 pattern recognition receptor. Receptor activation results in the local production of interleukin-6 and tumor necrosis factor-alpha, and creates a local environment by which these cytokines regulate both metabolic and immunological pathways. However, adipocytes are also the predominant source of the antiinflammatory hormone, adiponectin, which suppresses the activation of nuclear factor kappa B and the production of proinflammatory cytokines. The molecular ability to recognize antigens and produce regulatory molecules strategically positions adipocytes and myofibers to regulate growth locally and to reciprocally regulate metabolism in peripheral tissues.
Collapse
Affiliation(s)
- N K Gabler
- Departments of Food Science & Human Nutrition and Animal Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
13
|
Smolinska MJ, Horwood NJ, Page TH, Smallie T, Foxwell BMJ. Chemical inhibition of Src family kinases affects major LPS-activated pathways in primary human macrophages. Mol Immunol 2007; 45:990-1000. [PMID: 17875324 DOI: 10.1016/j.molimm.2007.07.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/23/2022]
Abstract
Understanding the signalling mechanisms controlling inflammatory cytokine production is pivotal to the research of both acute and chronic immune disorders. Tyrosine phosphorylation is one of the earliest events to occur in response to an immune challenge yet the role of specific tyrosine kinases in inflammatory cytokine production has been difficult to ascribe due to conflicting literature. Here we show that the pyrazolo pyrimidine compound PP2, a selective inhibitor of Src family kinases (SFK), can inhibit LPS-induced TNF production as well as a number of other inflammatory cytokines. In addition, we show similar effects of PP2 on cytokine production when induced by other TLRs, (1, 2 and 5-8), indicating that SFK are important common regulators of TLR signalling. PP2 suppressed the activity of both TNF and IL-10 driven reporter genes, suggesting that this activity is mediated at the level of transcription. Interestingly, however, PP2 had no significant effect on the activation of NF-kappaB, or on p42/44 ERK, p46/54 JNK or p38 MAPK phosphorylation. In contrast, PP2 did inhibit AP-1 nuclear accumulation in response to LPS. Taken together, these findings show that the Src kinases are able to control inflammatory cytokine production at the transcriptional level independently of NF-kappaB, and highlight the role of the AP-1 family of transcription factors as downstream mediators of Src kinase action.
Collapse
Affiliation(s)
- Maria J Smolinska
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Campus, ARC Building, 1 Aspenlea Road, London W6 8LH, UK
| | | | | | | | | |
Collapse
|
14
|
Abu-Zant A, Jones S, Asare R, Suttles J, Price C, Graham J, Kwaik YA. Anti-apoptotic signalling by the Dot/Icm secretion system of L. pneumophila. Cell Microbiol 2006; 9:246-64. [PMID: 16911566 DOI: 10.1111/j.1462-5822.2006.00785.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila triggers robust activation of caspase-3 during early and exponential stages of proliferation within human macrophages, but apoptosis is delayed till late stages of infection, which is novel. As caspase-3 is the executioner of the cell, we tested the hypothesis that L. pneumophila triggers anti-apoptotic signalling within the infected human macrophages to halt caspase-3 from dismantling the cells. Here we show that during early and exponential replication, L. pneumophila-infected human monocyte-derived macrophages (hMDMs) exhibit a remarkable resistance to induction of apoptosis, in a Dot/Icm-dependent manner. Microarray analyses and real-time PCR reveal that during exponential intracellular replication, L. pneumophila triggers upregulation of 12 anti-apoptotic genes that are linked to activation of the nuclear transcription factor kappa-B (NF-kappaB). Our data show that L. pneumophila induces a Dot/Icm-dependent sustained nuclear translocation of the p50 and p65 subunits of NF-kappaB during exponential intracellular replication. Bacterial entry is essential both for the anti-apoptotic phenotype of infected hMDMs and for nuclear translocation of the p65. Using p65-/- and IKKalpha-/- beta-/- double knockout mouse embryonic fibroblast cell lines, we show that nuclear translocation of NF-kappaB is required for the resistance of L. pneumophila-infected cells to apoptosis-inducing agents. In addition, the L. pneumophila-induced nuclear translocation of NF-kappaB requires the activity of IKKalpha and/or IKKbeta. We conclude that although the Dot/Icm secretion system of L. pneumophila elicits an early robust activation of caspase-3 in human macrophages, it triggers a strong anti-apoptotic signalling cascade mediated, at least in part by NF-kappaB, which renders the cells refractory to external potent apoptotic stimuli.
Collapse
Affiliation(s)
- Alaeddin Abu-Zant
- Department of Microbiology, University of Louisville Collage of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Scherübl C, Schneider-Brachert W, Schütze S, Hehlgans T, Männel DN. Colocalization of endogenous TNF with a functional intracellular splice form of human TNF receptor type 2. JOURNAL OF INFLAMMATION-LONDON 2005; 2:7. [PMID: 15996269 PMCID: PMC1183239 DOI: 10.1186/1476-9255-2-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/04/2005] [Indexed: 11/10/2022]
Abstract
Background Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in a broad spectrum of inflammatory and immune responses including proliferation, differentiation, and cell death. The biological effects of TNF are mediated via two cell surface TNF receptors: p55TNFR (TNFR1; CD120a) and p75TNFR (TNFR2; CD120b). Soluble forms of these two receptors consisting of the extracellular domains are proteolytically cleaved from the membrane and act as inhibitors. A novel p75TNFR isoform generated by the use of an additional transcriptional start site has been described and was termed hicp75TNFR. We focused on the characterization of this new isoform as this protein may be involved in chronic inflammatory processes. Methods Cell lines were retroviraly transduced with hp75TNFR isoforms. Subcellular localization and colocalization studies with TNF were performed using fluorescence microscopy including exhaustive photon reassignment software, flow cytometry, and receptosome isolation by magnetic means. Biochemical properties of the hicp75TNFR were determined by affinity chromatography, ELISA, and western blot techniques. Results We describe the localization and activation of a differentially spliced and mainly intracellularly expressed isoform of human p75TNFR, termed hicp75TNFR. Expression studies with hicp75TNFR cDNA in different cell types showed the resulting protein mostly retained in the trans-Golgi network and in endosomes and colocalizes with endogenous TNF. Surface expressed hicp75TNFR behaves like hp75TNFR demonstrating susceptibility for TACE-induced shedding and NFκB activation after TNF binding. Conclusion Our data demonstrate that intracellular hicp75TNFR is not accessible for exogenously provided TNF but colocalizes with endogenously produced TNF. These findings suggest a possible intracellular activation mechanism of hicp75TNFR by endogenous TNF. Subsequent NFκB activation might induce anti-apoptotic mechanisms to protect TNF-producing cells from cytotoxic effects of TNF. In addition, the intracellular and not TACE-accessible splice form of the hp75TNFR could serve as a pool of preformed, functional hp75TNFR.
Collapse
Affiliation(s)
| | | | - Stephan Schütze
- University Hospital of Schleswig-Holstein Campus Kiel, Institute of Immunology, D-24105 Kiel, Germany
| | | | | |
Collapse
|