1
|
Zafari R, Razi S, Rezaei N. The role of dendritic cells in neuroblastoma: Implications for immunotherapy. Immunobiology 2022; 227:152293. [DOI: 10.1016/j.imbio.2022.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
|
2
|
Ahrens S, Appl B, Trochimiuk M, Dücker C, Feixas Serra G, Oliver Grau A, Reinshagen K, Pagerols Raluy L. Kigelia africana inhibits proliferation and induces cell death in stage 4 Neuroblastoma cell lines. Biomed Pharmacother 2022; 154:113584. [PMID: 36029541 DOI: 10.1016/j.biopha.2022.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common solid pediatric tumors and especially high-risk NBs still account for about 12-15% of cancer related deaths in children. Kigelia africana (KA) is a plant used in traditional African medicine which has already shown its anti-cancer potential in several in vitro and in vivo studies. The aim of this study is to evaluate the effect of KA fruit extract on stage 4 high-risk NB cells. Therefore, NB cell lines with and without MYCN amplification and non-neoplastic cells were treated with KA fruit extract at different concentrations. The effect of KA on cell viability and apoptosis rate were assessed by bioluminescence-/fluorescence-based assays. Several proteins involved in survival, tumor growth, inflammation and metastasis were detected via western blot and immunofluorescence. Secreted cytokines were detected via ELISA. Phytochemical composition of the extract was analyzed by liquid chromatography with tandem mass spectrometry (LC/MS/MS). Our group demonstrates a dose- and time-dependent selective cytotoxic effect of KA fruit extract on NB, especially in MYCN non-amplified tumor cells, by inhibiting cell proliferation and inducing cell death. Western blot and immunofluorescence results demonstrate a regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), disialoganglioside GD2 and epidermal growth factor receptor (EGFR) in KA-treated tumor cells. Our results evidence striking anti-cancer properties of KA fruit and pave the way for further surveys on the therapeutic properties and mechanisms of action in NB.
Collapse
Affiliation(s)
- Sofia Ahrens
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Charlotte Dücker
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
3
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Galinski B, Luxemburg M, Landesman Y, Pawel B, Johnson KJ, Master SR, Freeman KW, Loeb DM, Hébert JM, Weiser DA. XPO1 inhibition with selinexor synergizes with proteasome inhibition in neuroblastoma by targeting nuclear export of IkB. Transl Oncol 2021; 14:101114. [PMID: 33975179 PMCID: PMC8131731 DOI: 10.1016/j.tranon.2021.101114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
XPO1 is overabundant in high-risk neuroblastoma and correlates with poor survival. Neuroblastoma cells are sensitive to XPO1 inhibition with selinexor. Use of selinexor results in nuclear retention of IkB, diminishing NF-kB activity. Selinexor and bortezomib act synergistically through promotion of apoptosis. Synergy is mediated in part, through IkB regulation of NF-kB activity.
Across many cancer types in adults, upregulation of the nuclear-to-cytoplasmic transport protein Exportin-1 (XPO1) correlates with poor outcome and responsiveness to selinexor, an FDA-approved XPO1 inhibitor. Similar data are emerging in childhood cancers, for which selinexor is being evaluated in early phase clinical studies. Using proteomic profiling of primary tumor material from patients with high-risk neuroblastoma, as well as gene expression profiling from independent cohorts, we have demonstrated that XPO1 overexpression correlates with poor patient prognosis. Neuroblastoma cell lines are also sensitive to selinexor in the low nanomolar range. Based on these findings and knowledge that bortezomib, a proteasome inhibitor, blocks degradation of XPO1 cargo proteins, we hypothesized that combination treatment with selinexor and bortezomib would synergistically inhibit neuroblastoma cellular proliferation. We observed that selinexor promoted nuclear retention of IkB and that bortezomib augmented the ability of selinexor to induce cell-cycle arrest and cell death by apoptosis. This synergy was abrogated through siRNA knockdown of IkB. The synergistic effect of combining selinexor and bortezomib in vitro provides rationale for further investigation of this combination treatment for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States.
| | - Marcus Luxemburg
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States
| | | | - Bruce Pawel
- Clinical Pathology, Children's Hospital Los Angeles, United States
| | - Katherine J Johnson
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Stephen R Master
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Kevin W Freeman
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, United States
| | - Jean M Hébert
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Neuroscience, Albert Einstein College of Medicine, United States
| | - Daniel A Weiser
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Pediatrics, Albert Einstein College of Medicine, United States
| |
Collapse
|
5
|
Zheng C, Liu S, Feng J, Zhao X. Prognostic Value of Inflammation Biomarkers for Survival of Patients with Neuroblastoma. Cancer Manag Res 2020; 12:2415-2425. [PMID: 32280277 PMCID: PMC7132027 DOI: 10.2147/cmar.s245622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The prognostic significance of inflammation-based biomarkers for neuroblastoma (NB) has not been investigated before. The aim of this study was to evaluate the prognostic value of pre-treatment inflammation biomarkers in children patients with NB. PATIENTS AND METHODS Patients diagnosed with NB from 2008 to 2016 in our institution were enrolled in this study. The clinical data and survival outcomes were retrospectively reviewed. Inflammation biomarkers or scores including C-reactive protein (CRP), albumin (ALB), Glasgow Prognostic Score (GPS), modified Glasgow Prognostic Score (mGPS), high-sensitivity modified Glasgow Prognostic Score (Hs-mGPS), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR) and system inflammation index (SII) were tested in this study. Univariate and multivariate survival analyses were performed to assess the prognostic value of these inflammation indicators for overall survival (OS) of children with NB. Kaplan-Meier survival curves were also conducted. RESULTS A total of 70 children diagnosed with neuroblastoma were enrolled in this study. NLR, PLR, LMR and SII were found to be not predictive of OS for NB patients. However, CRP, ALB, GPS and CAR were significantly associated with OS of NB patients. Multivariate analysis adjusting for age, sex, histology, tumor size, tumor stage and metastasis revealed that ALB, CAR, GPS and Hs-mGPS were significantly associated with OS of NB patients. Receiver operating characteristic (ROC) curves and Akaike Information Criterion (AIC) analyses revealed that Hs-mGPS is superior to other inflammation biomarkers in predicting OS of NB patients. Subgroup survival analysis for immature NB patients revealed similar results. CONCLUSION Hs-mGPS is an effective prognostic factor for OS of patients with NB and is promising to be used as a factor for risk stratification and an indicator for more aggressive therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Shuaibin Liu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xiang Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
6
|
9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. Anticancer Drugs 2019; 29:717-724. [PMID: 29846250 DOI: 10.1097/cad.0000000000000652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advanced stage neuroblastoma is a very aggressive pediatric cancer with limited treatment options and a high mortality rate. Glycogen synthase kinase-3β (GSK-3β) is a potential therapeutic target in neuroblastoma. Using immunohistochemical staining, we observed positive GSK-3β expression in 67% of human neuroblastomas (34 of 51 cases). Chemically distinct GSK-3 inhibitors (AR-A014418, TDZD-8, and 9-ING-41) suppressed the growth of neuroblastoma cells, whereas 9-ING-41, a clinically relevant small-molecule GSK-3β inhibitor with broad-spectrum preclinical antitumor activity, being the most potent. Inhibition of GSK-3 resulted in a decreased expression of the antiapoptotic molecule XIAP and an increase in neuroblastoma cell apoptosis. Mouse xenograft studies showed that the combination of clinically relevant doses of CPT-11 and 9-ING-41 led to greater antitumor effect than was observed with either agent alone. These data support the inclusion of patients with advanced neuroblastoma in clinical studies of 9-ING-41, especially in combination with CPT-11.
Collapse
|
7
|
Hiramatsu T, Yoshizawa J, Miyaguni K, Sugihara T, Harada A, Kaji S, Uchida G, Kanamori D, Baba Y, Ashizuka S, Ohki T. Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma through suppression of NF-κB activation. Pediatr Surg Int 2018; 34:443-450. [PMID: 29423589 DOI: 10.1007/s00383-018-4234-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Treatment for high-risk neuroblastoma is still challenging. The purpose of the present study was to determine whether thalidomide suppresses etoposide-induced NF-κB activation and thus potentiates apoptosis in murine neuroblastoma. METHODS A murine neuroblastoma cell line, C1300, and A/J mice were used in this study. We evaluated NF-κB activation after using etoposide with or without thalidomide by quantitative analysis of NF-κB by ELISA and by Western blot analysis of IκB phosphorylation in vitro and in vivo. Induction of apoptosis was evaluated by Western blot analysis of the apoptotic signals caspase-3, 8, and 9 in vitro and by TUNEL assays in vivo. We also evaluated the efficacy of the combination of etoposide and thalidomide by assessing tumor growth and mouse survival in vivo. RESULTS Etoposide activated NF-κB in C1300 cells. This activation was suppressed by thalidomide and IκB was re-upregulated. The apoptotic signals were enhanced by the combination of thalidomide and etoposide compared with etoposide alone in vitro, which was consistent with TUNEL assays. The combination of etoposide and thalidomide also slowed tumor growth and mouse survival. CONCLUSION Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma by suppressing NF-κB.
Collapse
Affiliation(s)
- Tomomasa Hiramatsu
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Jyoji Yoshizawa
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuaki Miyaguni
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tetsuro Sugihara
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Atsushi Harada
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Sayuri Kaji
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Goki Uchida
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daisuke Kanamori
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuji Baba
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shuichi Ashizuka
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takao Ohki
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
8
|
Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan. Oncotarget 2017; 7:15215-29. [PMID: 26934655 PMCID: PMC4924781 DOI: 10.18632/oncotarget.7714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic.
Collapse
|
9
|
PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Semin Cancer Biol 2017; 52:53-65. [PMID: 29196189 DOI: 10.1016/j.semcancer.2017.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.
Collapse
|
10
|
Xiong S, Wang Y, Li H, Zhang X. Low Dose of Bisphenol A Activates NF-κB/IL-6 Signals to Increase Malignancy of Neuroblastoma Cells. Cell Mol Neurobiol 2017; 37:1095-1103. [PMID: 27866306 PMCID: PMC11482237 DOI: 10.1007/s10571-016-0443-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can accumulate in the human body and promote the progression of various cancers. However, its role in the development of neuroblastoma (NB) is largely unknown. Our present study revealed that nanomolar concentrations of BPA can significantly increase the proliferation, migration and invasion of NB SH-SY5Y and SiMa cells, further evidenced by the upregulation of human proliferating cell nuclear antigen, Bcl-2, vimentin and fibronectin. Real-time PCR and ELISA results suggested that nanomolar BPA can increase the expression of interleukin-6 (IL-6), but had no effect on the expression of IL-2, IL-8, IL-10 or IL-12. The neutralization antibody of IL-6 can abolish BPA-induced proliferation and invasion of NB cells. The inhibitor of NF-κB (BAY 11-7082), but not PD98059 (PD, ERK1/2 inhibitor) or LY294002 (LY, PI3 K/Akt inhibitor), attenuated BPA-induced IL-6 expression and cell proliferation and invasion. In addition, BPA treatment also rapidly increased the phosphorylation of p65 since treatment for 5 min. Collectively, our data revealed that nanomolar BPA can trigger the malignancy of NB cells via activation of NF-κB/IL-6 signals, suggesting that more attention should be paid to the potential health risks of daily BPA intake.
Collapse
Affiliation(s)
- Shunjun Xiong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China.
| | - Yanjun Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Huijuan Li
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Xiaofang Zhang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| |
Collapse
|
11
|
Pękalski J, Zuk PJ, Kochańczyk M, Junkin M, Kellogg R, Tay S, Lipniacki T. Spontaneous NF-κB activation by autocrine TNFα signaling: a computational analysis. PLoS One 2013; 8:e78887. [PMID: 24324544 PMCID: PMC3855823 DOI: 10.1371/journal.pone.0078887] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
NF-κB is a key transcription factor that regulates innate immune response. Its activity is tightly controlled by numerous feedback loops, including two negative loops mediated by NF-κB inducible inhibitors, IκBα and A20, which assure oscillatory responses, and by positive feedback loops arising due to the paracrine and autocrine regulation via TNFα, IL-1 and other cytokines. We study the NF-κB system of interlinked negative and positive feedback loops, combining bifurcation analysis of the deterministic approximation with stochastic numerical modeling. Positive feedback assures the existence of limit cycle oscillations in unstimulated wild-type cells and introduces bistability in A20-deficient cells. We demonstrated that cells of significant autocrine potential, i.e., cells characterized by high secretion of TNFα and its receptor TNFR1, may exhibit sustained cytoplasmic-nuclear NF-κB oscillations which start spontaneously due to stochastic fluctuations. In A20-deficient cells even a small TNFα expression rate qualitatively influences system kinetics, leading to long-lasting NF-κB activation in response to a short-pulsed TNFα stimulation. As a consequence, cells with impaired A20 expression or increased TNFα secretion rate are expected to have elevated NF-κB activity even in the absence of stimulation. This may lead to chronic inflammation and promote cancer due to the persistent activation of antiapoptotic genes induced by NF-κB. There is growing evidence that A20 mutations correlate with several types of lymphomas and elevated TNFα secretion is characteristic of many cancers. Interestingly, A20 loss or dysfunction also leaves the organism vulnerable to septic shock and massive apoptosis triggered by the uncontrolled TNFα secretion, which at high levels overcomes the antiapoptotic action of NF-κB. It is thus tempting to speculate that some cancers of deregulated NF-κB signaling may be prone to the pathogen-induced apoptosis.
Collapse
Affiliation(s)
- Jakub Pękalski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel J. Zuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Junkin
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ryan Kellogg
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhou F, Xing Y, Xu X, Yang Y, Zhang J, Ma Z, Wang J. NBPF is a potential DNA-binding transcription factor that is directly regulated by NF-κB. Int J Biochem Cell Biol 2013; 45:2479-90. [PMID: 23939288 DOI: 10.1016/j.biocel.2013.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The neuroblastoma breakpoint family (NBPF) has been reported to play potential roles in the development of neuroblastoma and human evolution. However, the exact regulation and function of this family is still unknown. In this study, the genes of NBPF family were found to be densely covered by many high-confidence ChIP-Seq peaks of NF-κB. The expressions of NBPF genes were thus deduced to be regulated by this transcription factor. The activities of NF-κB in HeLa, HepG2 and ECa109 cells were then manipulated with NF-κB activator (TNFα) and inhibitors (BAY11-7082 or p65 siRNA), and the expressions of NBPF genes in these cells were checked. As result, it was found that the expressions of NBPF genes were regulated by NF-κB in HeLa and HepG2 cells. Therefore, the genes of NBPF family were identified as new bona fide direct target genes of NF-κB. In addition, NBPF was also identified as a nuclear protein by in silico prediction and immunolocalization. Finally, the bioinformatics analysis revealed that most of NBPF proteins contained classical nuclear localization signals (NLSs) and a conserved DNA-binding domain similar to the transcription factor stat3b/dna complex or stat-1/dna complex in their N-terminals. Therefore, this study concluded that NBPF was nuclear protein that contained classical NLSs and conserved known DNA-binding domain, and its expression was regulated by another important transcription factor, NF-κB. These findings suggest that NBPF may function as DNA-binding transcription factor in nucleus, which provides important new insight into the functions of NBPF genes in the human cells.
Collapse
Affiliation(s)
- Fei Zhou
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Aravindan S, Natarajan M, Herman TS, Aravindan N. Radiation-induced TNFα cross signaling-dependent nuclear import of NFκB favors metastasis in neuroblastoma. Clin Exp Metastasis 2013; 30:807-17. [PMID: 23584794 DOI: 10.1007/s10585-013-9580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/30/2013] [Indexed: 01/30/2023]
Abstract
Ascertaining function-specific orchestration of NFκB in response to radiation may reveal a molecular blue-print that dictates induced relapse and metastasis of the neuroblastoma. We recently demonstrated that sustained activation of NFκB caused by ionizing radiation (IR)-initiated TNFα-NFκB feedback signaling leads to radioresistance and recurrence of neuroblastoma. We investigated whether muting IR-triggered or TNFα-dependent second-signaling feedback-dependent NFκB nuclear import results in limiting IR-altered invasion and metastasis. Neuroblastoma cells were exposed to 2 Gy and incubated for 1 h or 24 h. The cells were then treated with an NFκB-targeting peptide blocker, SN50. Upon confirming the blockade in DNA-binding activity, transcription driven transactivation of NFκB and secretion of soluble TNFα, transcriptional alterations of 93 tumor invasion/metastasis genes were assessed by using QPCR profiling and then were selectively validated at the protein level. Exposure to 2 Gy induced 63, 42 and 71 genes in surviving SH-SY5Y, IMR-32 and SK-N-MC cells, respectively. Blocking post-translational nuclear import of NFκB comprehensively inhibited both initial activation of genes (62/63, 34/42 and 65/71) triggered by IR and also TNFα-mediated second signaling-dependent sustained (59/63, 32/42 and 71/71) activation of tumor invasion and metastasis signaling molecules. Furthermore, alterations in the proteins MMP9, MMP2, PYK-2, SPA-1, Dnmt3b, Ask-1, CTGF, MMP10, MTA-2, NF-2, E-Cadherin, TIMP-2 and ADAMTS1 and the results of our scratch-wound assay validate the role of post-translational NFκB in IR-regulated invasion/metastasis. These data demonstrate that IR-induced second-phase (post-translational) NFκB activation mediates TNFα-dependent second signaling and further implies that IR induced NFκB in cells that survive after treatment regulates tumor invasion/metastasis signaling.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Radiation Biology Research Laboratory, Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
14
|
You WC, Wang CX, Pan YX, Zhang X, Zhou XM, Zhang XS, Shi JX, Zhou ML. Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 2013; 8:e60290. [PMID: 23536907 PMCID: PMC3607578 DOI: 10.1371/journal.pone.0060290] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
It has been reported that inflammation is involved in brain injury after subarachnoid hemorrhage (SAH). Nuclear factor-κB (NF-κB) is a key transcriptional regulator of inflammatory genes. Here, we used pyrrolidine dithiocarbamate(PDTC), an inhibitor of NF-κB, through intracisternal injection to study the role of NF-κB in delayed brain injury after SAH. A total of 55 rabbits were randomly divided into five groups: the control group; the SAH groups including Day-3, 5, and 7 SAH groups (the rabbits in these groups were sacrificed at 3, 5, 7 days after SAH, respectively); and the PDTC group (n = 11 for each group). Electrophoretic mobility shift assay (EMSA) was performed to detect NF-κB DNA-binding activity. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intercellular adhesion molecule (ICAM)-1 were evaluated by RT-PCR analysis. Deoxyribonucleic acid fragmentation was detected by TUNEL and p65 immunoactivity was assessed by immunohistochemistry. Our results showed the activation of NF-κB after SAH, especially at day 3 and 5. The activated p65 was detected in neurons. NF-κB DNA-binding activity was suppressed by intracisternal administration of PDTC. Increased levels of the TNF-α, IL-1β, and ICAM-1 mRNA were found in the brain at day 5 after SAH, and which were suppressed in the PDTC group. The number of TUNEL-positive cells also decreased significantly in the PDTC group compared with that in the Day-5 SAH group. These results demonstrated that the activated NF-κB in neurons after SAH plays an important role in regulating the expressions of inflammatory genes in the brain, and ultimately contributes to delayed brain injury.
Collapse
Affiliation(s)
- Wan-Chun You
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun-xi Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
15
|
Chuang-Xin L, Wen-Yu W, Yao C, Xiao-Yan L, Yun Z. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB. Oncol Lett 2012; 4:775-778. [PMID: 23226792 DOI: 10.3892/ol.2012.829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/19/2012] [Indexed: 01/01/2023] Open
Abstract
Despite its limited success, 5-fluorouracil (5-FU) remains the primary chemotherapy agent for the treatment of esophageal cancer. Quercetin has been demonstrated to inhibit the growth of transformed cells. The present study was conducted to examine whether quercetin combined with conventional chemotherapeutic agents would improve the therapeutic strategy for esophageal cancer. In this study, an MTT assay was used to determine the effects of quercetin on the proliferation of EC9706 and Eca109 cells. Annexin V-FITC/propidium iodide (PI)-stained fluorescence-activated cell sorter (FACS) analysis was used to detect the apoptotic fraction of treated cells, and western blot analysis was used to examine the protein levels. The results of our study demonstrated that quercetin in combination with 5-FU significantly inhibited growth (P<0.05) and stimulated apoptosis (P<0.005) in EC9706 and Eca109 esophageal cancer cells compared with quercetin or 5-FU alone. These changes were associated with the decreased expression of a phosphorylated inhibitory molecule of NF-κB (pIκBα), which was activated by exposure to 5-FU alone. We suggest that inclusion of quercetin to the conventional chemotherapeutic agent 5-FU may be an effective therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Lu Chuang-Xin
- Department of Oncology, Henan People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | | | | | | | | |
Collapse
|
16
|
Therapeutic Efficacy of Silibinin on Human Neuroblastoma Cells: Akt and NF-κB Expressions May Play an Important Role in Silibinin-Induced Response. Neurochem Res 2012; 37:2053-63. [DOI: 10.1007/s11064-012-0827-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/09/2012] [Accepted: 06/08/2012] [Indexed: 01/22/2023]
|
17
|
Du BY, Song W, Bai L, Shen Y, Miao SY, Wang LF. Synergistic effects of combination treatment with bortezomib and doxorubicin in human neuroblastoma cell lines. Chemotherapy 2012; 58:44-51. [PMID: 22327308 DOI: 10.1159/000335603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 12/04/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in infants. Currently, the mainstay of NB chemotherapy is combination treatment with some traditional drugs, but these combination regimens are always inefficient. METHODS The aim of this study was to evaluate the inhibitory effect of a combination of doxorubicin and bortezomib, a novel anticancer drug and the first prote-asome inhibitor approved for the treatment of human malignant tumors, on the proliferation of two human NB cell lines, SK-N-SH and SH-SY5Y. The general mechanism underlying this combined effect was also investigated. Synergistic inhibitory effects on human NB cell proliferation were evaluated using the median-effect principle. The pro-apoptotic effects of these drugs were evaluated using double staining with annexin-V-FITC and propidium iodide. RESULTS Synergistic inhibitory effects on proliferation were observed when a combination of bortezomib and doxorubicin was applied to cultured NB cells. A similar synergistic effect on apoptosis was also observed when the two drugs were used concurrently, which suggested that the possible mechanism underlying the observed synergistic inhibitory effect might be related to apoptosis. CONCLUSION The combination of bortezomib and doxorubicin appears to be a promising strategy to treat NB.
Collapse
Affiliation(s)
- Bo-Yu Du
- National Laboratory of Medical Molecular Biology, School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Francisco R, Pérez-Perarnau A, Cortés C, Gil J, Tauler A, Ambrosio S. Histone deacetylase inhibition induces apoptosis and autophagy in human neuroblastoma cells. Cancer Lett 2011; 318:42-52. [PMID: 22186300 DOI: 10.1016/j.canlet.2011.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in children. Here we showed that trichostatin A, a histone deacetylase inhibitor (HDACi), decreases cell viability in three NB cell lines of different phenotypes. The treatment leads to G2/M-phase arrest, apoptosis and autophagy. Autophagy induction accompanies apoptosis in the most proliferative, N-Myc overexpressing cells. In contrast, autophagy precedes apoptosis and acts as a protective mechanism in the less proliferative, non-N-Myc overexpressing cells. Therefore, the autophagy induction is a relevant event in the NB response to HDACis, and it should be considered in the design of new treatments for this malignancy.
Collapse
Affiliation(s)
- Roser Francisco
- Unitat de Bioquímica, Dep. Ciències Fisiològiques II, Facultat de Medicina, Campus Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, c/Feixa Llarga s/n., Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Sukumari-Ramesh S, Bentley JN, Laird MD, Singh N, Vender JR, Dhandapani KM. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int J Dev Neurosci 2011; 29:701-10. [PMID: 21704149 DOI: 10.1016/j.ijdevneu.2011.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022] Open
Abstract
Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as assessed by both genetic (shRNA) and pharmacological approaches. Notably, cell death induced by both curcumin and andrographolide was associated with decreased NFκB activity and a reduction in Bcl-2 and Bcl-xL expression. Finally, curcumin and andrographolide increased cytotoxicity following co-treatment with either cisplatin or doxorubicin, two chemotherapeutic agents widely used in the clinical management of NB. Coupled with the documented safety in humans, dietary compounds may represent a potential adjunct therapy for NB.
Collapse
|
20
|
Veeraraghavan J, Natarajan M, Aravindan S, Herman TS, Aravindan N. Radiation-triggered tumor necrosis factor (TNF) alpha-NFkappaB cross-signaling favors survival advantage in human neuroblastoma cells. J Biol Chem 2011; 286:21588-600. [PMID: 21527635 DOI: 10.1074/jbc.m110.193755] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced radioresistance in the surviving cancer cells after radiotherapy could be associated with clonal selection leading to tumor regrowth at the treatment site. Previously we reported that post-translational modification of IκBα activates NFκB in response to ionizing radiation (IR) and plays a key role in regulating apoptotic signaling. Herein, we investigated the orchestration of NFκB after IR in human neuroblastoma. Both in vitro (SH-SY5Y, SK-N-MC, and IMR-32) and in vivo (xenograft) studies showed that IR persistently induced NFκB DNA binding activity and NFκB-dependent TNFα transactivation and secretion. Approaches including silencing NFκB transcription, blocking post-translational NFκB nuclear import, muting TNF receptor, overexpression, and physiological induction of either NFκB or TNFα precisely demonstrated the initiation and occurrence of NFκB → TNFα → NFκB positive feedback cycle after IR that leads to and sustains NFκB activation. Selective TNF-dependent NFκB regulation was confirmed with futile inhibition of AP-1 and SP-1 in TNF receptor muted cells. Moreover, IR increased both transactivation and translation of Birc1, Birc2, and Birc5 and induced metabolic activity and clonal expansion. This pathway was further defined to show that IR-induced functional p65 transcription (not NFκB1, NFκB2, or c-Rel) is necessary for activation of these survival molecules and associated survival advantage. Together, these results demonstrate for the first time the functional orchestration of NFκB in response to IR and further imply that p65-dependent survival advantage and initiation of clonal expansion may correlate with an unfavorable prognosis of human neuroblastoma.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
21
|
Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 2011; 14:150-63. [PMID: 21330184 DOI: 10.1016/j.drup.2011.01.003] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/11/2022]
Abstract
Anticancer drug resistance almost invariably emerges and poses major obstacles towards curative therapy of various human malignancies. In the current review we will distinguish between mechanisms of chemoresistance that are predominantly mediated by ATP-driven multidrug resistance (MDR) efflux transporters, typically of the ATP-binding cassette (ABC) superfamily, and those that are independent of such drug efflux pumps. In recent years, multiple nanoparticle (NP)-based therapeutic systems have been developed that were rationally designed to overcome drug resistance by neutralizing, evading or exploiting various drug efflux pumps and other resistance mechanisms. NPs are being exploited for selective drug delivery to tumor cells, to cancer stem/tumor initiating cells and/or to the supportive cancer cell microenvironment, i.e. stroma or tumor vasculature. Some of these NPs are currently undergoing preclinical in vivo studies as well as advanced stages of clinical evaluation with promising results. Nanovehicles harboring a payload of therapeutic drug combinations for the selective targeting and elimination of tumor cells as well as the simultaneous overcoming of mechanisms of drug resistance are a subject of intense research efforts, some of which are expected to enter clinical trials in the near future. In the present review we highlight novel approaches to selectively target cancer cells and overcome drug resistance phenomena, through the use of various nanometric drug delivery systems. In the near future, it is anticipated that innovative theragnostic nanovehicles will be developed which will harbor four major components: (1) a selective targeting moiety, (2) a diagnostic imaging aid for the localization of the malignant tumor and its micro- or macrometastases, (3) a cytotoxic, small molecule drug(s) or novel therapeutic biological(s), and (4) a chemosensitizing agent aimed at neutralizing a resistance mechanism, or exploiting a molecular "Achilles hill" of drug resistant cells. We propose to name these envisioned four element-containing nanovehicle platform, "quadrugnostic" nanomedicine. This targeted strategy holds promise in paving the way for the introduction of highly effective nanoscopic vehicles for cancer therapeutics while overcoming drug resistance.
Collapse
Affiliation(s)
- Alina Shapira
- Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
22
|
Gatsinzi T, Iverfeldt K. Sensitization to TRAIL-induced apoptosis in human neuroblastoma SK-N-AS cells by NF-κB inhibitors is dependent on reactive oxygen species (ROS). J Neurooncol 2011; 104:459-72. [DOI: 10.1007/s11060-010-0516-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/20/2010] [Indexed: 01/24/2023]
|
23
|
Liang X, Gao CF, Rutherford MS, Ji Y. Activation of NF-κB pathway and TNF-α are involved in the cytotoxicity of anthrax lethal toxin in bovine BoMac macrophages. Vet Microbiol 2010; 146:111-7. [PMID: 20537817 DOI: 10.1016/j.vetmic.2010.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/16/2010] [Accepted: 04/28/2010] [Indexed: 12/23/2022]
Abstract
Anthrax lethal toxin (LeTx) is an important virulence factor of Bacillus anthracis and causes illness and lethality for both animals and humans. Because species demonstrate varied sensitivity to anthrax intoxication, we investigated signaling pathways involved in anthrax LeTx cytotoxicity using a bovine macrophage cell line (BoMac). We found that bovine macrophages are sensitive to LeTx as displayed by a concentration-dependent increase in cell death. LeTx induced the degradation of I-κB and increased the nuclear translocation of NF-κB in BoMac cells. Blocking NF-κB activation with either chemical inhibitors or a dominant negative super-repressor I-κBαm eliminated LeTx-induced cell death. LeTx-induced production of TNF-α that contributed dramatically to cellular cytotoxicity. Inhibiting NF-κB activation eliminated TNF-α release and decreased cytotoxicity. The caspase pathway was also important for cytotoxicity as specific inhibitors abrogated LeTx-induced cell death. Taken together, our results show that activation of the NF-κB pathway and TNF-α production contribute to the cytotoxicity of anthrax LeTx in bovine macrophages.
Collapse
Affiliation(s)
- Xudong Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
24
|
Hughey JJ, Lee TK, Covert MW. Computational modeling of mammalian signaling networks. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:194-209. [PMID: 20836022 PMCID: PMC3105527 DOI: 10.1002/wsbm.52] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most exciting developments in signal transduction research has been the proliferation of studies in which a biological discovery was initiated by computational modeling. In this study, we review the major efforts that enable such studies. First, we describe the experimental technologies that are generally used to identify the molecular components and interactions in, and dynamic behavior exhibited by, a network of interest. Next, we review the mathematical approaches that are used to model signaling network behavior. Finally, we focus on three specific instances of 'model-driven discovery': cases in which computational modeling of a signaling network has led to new insights that have been verified experimentally.
Collapse
|
25
|
Forloni M, Albini S, Limongi MZ, Cifaldi L, Boldrini R, Nicotra MR, Giannini G, Natali PG, Giacomini P, Fruci D. NF-kappaB, and not MYCN, regulates MHC class I and endoplasmic reticulum aminopeptidases in human neuroblastoma cells. Cancer Res 2010; 70:916-24. [PMID: 20103633 DOI: 10.1158/0008-5472.can-09-2582] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma (NB) is the most common solid extracranial cancer of childhood. Amplification and overexpression of the MYCN oncogene characterize the most aggressive forms and are believed to severely downregulate MHC class I molecules by transcriptional inhibition of the p50 NF-kappaB subunit. In this study, we found that in human NB cell lines, high MYCN expression is not responsible for low MHC class I expression because neither transfection-mediated overexpression nor small interfering RNA suppression of MYCN affects MHC class I and p50 levels. Furthermore, we identified NF-kappaB as the immediate upstream regulator of MHC class I because the p65 NF-kappaB subunit binds MHC class I promoter in chromatin immunoprecipitation experiments, and MHC class I expression is enhanced by p65 transfection and reduced by (a) the chemical NF-kappaB inhibitor sulfasalazine, (b) a dominant-negative IKBalpha gene, and (c) p65 silencing. Moreover, we showed that the endoplasmic reticulum aminopeptidases ERAP1 and ERAP2, which generate MHC class I binding peptides, are regulated by NF-kappaB, contain functional NF-kappaB-binding elements in their promoters, and mimic MHC class I molecules in the expression pattern. Consistent with these findings, nuclear p65 was detected in NB cells that express MHC class I molecules in human NB specimens. Thus, the coordinated downregulation of MHC class I, ERAP1, and ERAP2 in aggressive NB cells is attributable to a low transcriptional availability of NF-kappaB, possibly due to an unknown suppressor other than MYCN.
Collapse
|
26
|
NF-κB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1. Neurochem Int 2010; 56:128-34. [DOI: 10.1016/j.neuint.2009.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 11/21/2022]
|
27
|
Choi JJ, Choi J, Kang CD, Chen X, Wu CF, Ko KH, Kim WK. Hydrogen peroxide induces the death of astrocytes through the down-regulation of the constitutive nuclear factor-kappaB activity. Free Radic Res 2009; 41:555-62. [PMID: 17454138 DOI: 10.1080/10715760601173010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) has a dual role in the promotion or attenuation of cell death. Here, we demonstrated the role of NF-kappaB in the H(2)O(2)-induced death of astrocytes. H(2)O(2) evoked the release of lactate dehydrogenase (LDH), a marker of cell death, and concomitantly decreased the DNA binding and transcriptional activity of NF-kappaB in cultured astrocytes. H(2)O(2)-induced astrocyte death was markedly increased by the co-treatment with pyrrolidinedithiocarbamate, an NF-kappaB inhibitor. Moreover, the elevation of constitutive NF-kappaB activity by overexpressing p65 NF-kappaB subunit attenuated H(2)O(2) toxicity, whereas NF-kappaB inhibition by overexpressing IkappaB potentiated the toxicity. NF-kappaB activity and H(2)O(2) cytotoxicity was further found to be dependent on cell density. Compared with astrocytes in low cell density, those in high cell density exhibited a higher constitutive NF-kappaB activity and a stronger resistance to H(2)O(2) cytotoxicity. These results indicate that the constitutive activity of NF-kappaB in astrocytes is required for their survival under oxidative stress such as H(2)O(2).
Collapse
Affiliation(s)
- Jung-Jin Choi
- Division of NanoSciences, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang M, Guo RX, Mo LQ, Liao XX, Li W, Zhi JL, Sun SN, Wang YL, Cui Y, Liu W, Feng JQ, Chen PX. NUCLEAR FACTOR-κB MEDIATES CYTOPROTECTION OF HYDROGEN PEROXIDE PRECONDITIONING AGAINST APOPTOSIS INDUCED BY OXIDATIVE STRESS IN PC12 CELLS. Clin Exp Pharmacol Physiol 2009; 36:304-11. [DOI: 10.1111/j.1440-1681.2008.05066.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wang XW, Tan BZ, Sun M, Ho B, Ding JL. Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-kappaB activity. Free Radic Biol Med 2008; 45:336-44. [PMID: 18474255 DOI: 10.1016/j.freeradbiomed.2008.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 12/22/2022]
Abstract
Apoptosis is the common pathway to photoreceptor cell death in many eye diseases including age-related macular degeneration which affects more than 8 million individuals in the United States alone. RdCVF, a truncated mouse thioredoxin is specifically expressed by rod photoreceptor cells and prevents the apoptosis of cone cells. However the protective mechanism of RdCVF and the implications of its human homologue, thioredoxin-like 6 (TXNL6), on the apoptosis of retinal cells remain unknown. In this study, we examined the function of TXNL6 and investigated its mechanism of protection using a cone photoreceptor cell line, 661W. We found that the photooxidative stress-induced degradation of NF-kappaB proteins is rescued by overexpression of TXNL6, which enabled the NF-kappaB transactivation activity. Furthermore, the overexpression of TXNL6 rescued the photooxidative stress-induced apoptosis of 661W cells. Interestingly, this protective effect was significantly blocked by NF-kappaB specific inhibitors demonstrating that TXNL6 exerts its protective effect against apoptosis via NF-kappaB. Taken together, our study shows that the TXNL6 probably protects retinal cells from photooxidative damage-induced apoptosis via upregulation of NF-kappaB activity. The identification of TXNL6 and the demonstration of its protective mechanism offer new insights into treatment possibilities for photoreceptor cell degradation.
Collapse
Affiliation(s)
- Xiao Wei Wang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | | | | | | | | |
Collapse
|
30
|
Madsen L, Petersen RK, Steffensen KR, Pedersen LM, Hallenborg P, Ma T, Frøyland L, Døskeland SO, Gustafsson JÅ, Kristiansen K. Activation of Liver X Receptors Prevents Statin-induced Death of 3T3-L1 Preadipocytes. J Biol Chem 2008; 283:22723-36. [DOI: 10.1074/jbc.m800720200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Hernández A, López-Lluch G, Bernal JA, Navas P, Pintor-Toro JA. Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. Mol Cancer Ther 2008; 7:474-82. [PMID: 18347135 DOI: 10.1158/1535-7163.mct-07-0457] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Securin, the natural inhibitor of sister chromatid untimely separation, is a protooncogene overexpressed in tumors. Its protein levels correlate with malignancy and metastatic proneness. Dicoumarol, a long-established oral anticoagulant, is a new Hsp90 inhibitor that represses PTTG1/Securin gene expression and provokes apoptosis through a complex trait involving both intrinsic and extrinsic pathways. Dicoumarol activity as an Hsp90 inhibitor is confirmed by smaller levels of Hsp90 clients in treated cells and inhibition of in vivo heat shock luciferase activity recovery assays. Likewise, established Hsp90 inhibitors (17-allylamino-geldanamycin and novobiocin) repress PTTG1/Securin gene expression. Also, overexpression of human Hsp90 in yeast makes them hypersensitive to dicoumarol. Both apoptosis and PTTG1/Securin gene repression exerted by dicoumarol in cancer cells are independent of three of the most important signaling pathways affected by Hsp90 inhibition: nuclear factor-kappaB, p53, or Akt/protein kinase B signaling pathways. However, effects on PTTG1/Securin could be partially ascribed to inhibition of the Ras/Raf/extracellular signal-regulated kinase pathway. Overall, we show that expression of PTTG1/Securin gene is Hsp90 dependent and that dicoumarol is a bona fide Hsp90 inhibitor. These findings are important to understand the mode of action of Hsp90 inhibitors, mechanisms of action of dicoumarol, and Securin overexpression in tumors.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Seville, Spain.
| | | | | | | | | |
Collapse
|
32
|
Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer Drugs 2008; 19:125-32. [PMID: 18176108 DOI: 10.1097/cad.0b013e3282f2bdff] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Effective drugs are urgently needed for the treatment of advanced neuroblastoma refractory to conventional chemotherapy. Pyrrolidine dithiocarbamate (PDTC) is a copper-binding ligand, which showed cytotoxicity on many human tumor cells after binding with copper ions. In this study, we synthesized a copper-PDTC complex, which was characterized as a Cu(PDTC)2 complex, with elemental analyses (Fourier transform infrared, electrospray ionization mass spectra, and ultraviolet-visible spectroscopy). The Cu(PDTC)2 complex suppressed the proliferation of BE(2)C cells, a human neuroblastoma cell line, with an IC50 of 8.0 micromol/l, which was more potent than cisplatin (IC50 of 80 micromol/l). Treatment of BE(2)C cells with the Cu(PDTC)2 complex caused the S-phase arrest of cell cycle progression, cellular apoptosis, and necrosis, and increased the expression of p53 protein. The Cu(PDTC)2 complex holds potential as a new drug for the treatment of refractory neuroblastoma in children.
Collapse
|
33
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
34
|
Smith D, Shimamura T, Barbera S, Bejcek BE. NF-kappaB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 2007; 307:141-7. [PMID: 17828582 DOI: 10.1007/s11010-007-9593-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/06/2023]
Abstract
NF-kappaB is a family of transcription factors that have been shown to be elevated in a variety of tumor types and in some cases central to their survival and growth. Here we present evidence that U-87 MG and U-118 MG growth is regulated by NF-kappaB and controlled by PDGF. NF-kappaB activity was suppressed by a dominant negative mutant of the human PDGF type beta receptor and PDGF-B chain neutralizing antibodies. Creation of cell lines that had inducible expression of shRNAs directed against either c-Rel or RelA inhibited growth almost 90% indicating that NF-kappaB plays a central role in glioblastoma growth.
Collapse
Affiliation(s)
- Denise Smith
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
35
|
Hamner JB, Dickson PV, Sims TL, Zhou J, Spence Y, Ng CY, Davidoff AM. Bortezomib inhibits angiogenesis and reduces tumor burden in a murine model of neuroblastoma. Surgery 2007; 142:185-91. [PMID: 17689684 DOI: 10.1016/j.surg.2007.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/05/2007] [Accepted: 04/07/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bortezomib is a proteasome inhibitor with pleiotropic antitumor activity. Here we investigate the antiangiogenic and antitumor efficacy of bortezomib against neuroblastoma both in vitro and in a murine model of localized and disseminated disease. METHODS In vitro activity of bortezomib was assessed by evaluating its effect on cell proliferation and cell cycle status. Localized tumor burden was followed with caliper measurements and total-body bioluminescence in mice with disseminated disease. The antiangiogenic activity was evaluated with immunohistochemistry and human vascular endothelial growth factor (VEGF) enzyme-linked immunosorbent assay on tumor protein extracts. RESULTS Bortezomib treatment resulted in dose and time-dependent decreases in cell proliferation and resulted in cell cycle arrest. In vivo, bortezomib restricted tumor growth in a model of localized disease and decreased bioluminescence in mice with disseminated disease. That decreased bioluminescence reflected decreased tumor burden was confirmed at necropsy by assessing disease in specific organs. In addition, treatment resulted in a decrease in intratumoral vessel counts and reduced tumor VEGF expression. CONCLUSION Bortezomib shows significant activity against neuroblastoma in vitro, and it inhibits tumor growth and angiogenesis in vivo. These results suggest that clinical studies of bortezomib are warranted for the treatment of this difficult disease.
Collapse
Affiliation(s)
- John B Hamner
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tenn, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Raychaudhuri B, Han Y, Lu T, Vogelbaum MA. Aberrant constitutive activation of nuclear factor kappaB in glioblastoma multiforme drives invasive phenotype. J Neurooncol 2007; 85:39-47. [PMID: 17479228 DOI: 10.1007/s11060-007-9390-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 04/06/2007] [Indexed: 01/17/2023]
Abstract
Several recent studies have shown that aberrant constitutive activation of nuclear factor kappaB (NF-kappaB) is present in a variety of cancers including gliomas. NF-kappaB is known to play important roles in the physiological regulation of diverse cellular processes such as inflammation, growth and immunity. In contrast, aberrant activation of this latent transcription factor promotes cancer cell migration, invasion and resistance to chemotherapy. Here we show by electro-mobility shift assay (EMSA) and immuno-staining that constitutive NF-kappaB activation is present in various malignant glioma cell lines as well as in primary cultures derived from tumor tissue. This activation was not serum dependent and it led to high IL-8 gene transcription and protein production. Over-expression of an I-kappaB super-repressor (I-kappaB SR) transgene completely blocked constitutive NF-kappaB activation, nuclear localization and transcription of some but not all NF-kappaB regulated genes indicating that NF-kappaB signaling in glioma cells is I-kappaB dependent. Surprisingly, over-expression of IkappaBSR did not have any effect on the transcription levels of anti-apoptotic genes in these glioma cultures and cell lines. Down-regulation of NF-kappaB activation reduced invasion of glioma cells through matrigel. Collectively these data suggest that aberrant constitutive activation of NF-kappaB in glioblastoma cells promotes their invasive phenotype. Interruption of this aberrant NF-kappaB activity may help reduce the spread of this infiltrative tumor.
Collapse
Affiliation(s)
- Baisakhi Raychaudhuri
- Brain Tumor Institute and Taussig Cancer Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
37
|
Armstrong MB, Bian X, Liu Y, Subramanian C, Ratanaproeksa AB, Shao F, Yu VC, Kwok RPS, Opipari AW, Castle VP. Signaling from p53 to NF-kappaB determines the chemotherapy responsiveness of neuroblastoma. Neoplasia 2007; 8:967-77. [PMID: 17132229 DOI: 10.1593/neo.06574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroblastic (N) type neuroblastoma (NB) is the predominant cell type in NB tumors. Previously, we determined that activated nuclear factor kappaB (NF-kappaB) is required for doxorubicin and etoposide to kill N-type NB cells. This study was undertaken to determine how NF-kappaB is activated by these agents. The results show that p53 protein levels increase within 15 to 30 minutes of treatment. This increase occurs before the degradation of inhibitor of NF-kappaB (I-kappaB) alpha and the NF-kappaB-dependent activation of gene transcription. Moreover, p53 is necessary for NF-kappaB activation because cells with inactive p53 were resistant to NF-kappaB-mediated cell death. This pathway was further defined to show that p53 leads to the activation of MAPK/ERK activity kinase (MEK) 1 through a process that depends on protein synthesis and H-Ras. MEK1, in turn, mediates I-kappaB kinase activation. Together, these results demonstrate for the first time how NF-kappaB is activated in NB cells in response to conventional drugs. Furthermore, these findings provide an explanation as to why H-Ras expression correlates with a favorable prognosis in NB and identify intermediary signaling molecules that are targets for discovering treatments for NB that is resistant to conventional agents.
Collapse
Affiliation(s)
- Michael B Armstrong
- Department of Pediatrics, University of Michigan Medical School and the University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-0983, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Woo SY, Lee MY, Jung YJ, Yoo ES, Seoh JY, Shin HY, Ahn HS, Ryu KH. Arsenic trioxide inhibits cell growth in SH-SY5Y and SK-N-AS neuroblastoma cell lines by a different mechanism. Pediatr Hematol Oncol 2006; 23:231-43. [PMID: 16517539 DOI: 10.1080/08880010500506818] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Neuroblastoma, characterized by heterogeneous cell population, is a common solid tumor in childhood and some malignant neuroblastomas are refractory to conventional chemotherapy. Recently, treatment with arsenic trioxide (As2O3) was found effective in the treatment of acute promyelocytic leukemia as well as neuroblastoma cells by inducing apoptosis. To define the mechanism contributing to cell death in those heterogenous cell populations, the authors used two different types of neuroblastoma cells, SH-SY5Y and SK-N-AS, to compare the pathways that mediate death response to arsenic trioxide. With arsenic trioxide exposure, both cell lines were arrested at the S-G2/M phase with the increase of cyclin B expression and CDK1 activity. Although caspase 3 was activated in both cell lines, the NF-kappaB activity and the expression of cyclin D1, cyclin E, and p27 were different. Therefore, arsenic trioxide could be an effective cytotoxic drug for the treatment of heterogeneous cellular population of neuroblastoma.
Collapse
Affiliation(s)
- So-Youn Woo
- Department of Microbiology, Ewha Medical Research Institute, Ewha Woman's University, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Eppstein AC, Sandoval JA, Klein PJ, Woodruff HA, Grosfeld JL, Hickey RJ, Malkas LH, Schmidt CM. Differential sensitivity of chemoresistant neuroblastoma subtypes to MAPK-targeted treatment correlates with ERK, p53 expression, and signaling response to U0126. J Pediatr Surg 2006; 41:252-9. [PMID: 16410143 DOI: 10.1016/j.jpedsurg.2005.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Neuroblastoma tumors are comprised of neuroblastic (N), substrate-adherent (S), and intermediate (I) cells. Because cell growth and differentiation often involve p44/p42 mitogen-activated protein kinase (MAPK) pathway signaling, we explored MAPK signaling and growth response in three NB cell types after MAPK kinase (MEK) inhibition to evaluate the feasibility of MAPK-targeted treatment strategies. METHODS Three human NB cell cultures, SH-SY5Y (N-type), BE(2)-C (I-type), and SK-N-AS (S-type), were treated in monolayer cultures with increasing concentrations of the MEK inhibitor U0126. MAPK pathway intermediates MEK and ERK, their activated (phosphorylated) forms p-MEK and p-ERK, and p53 expression were assessed by Western blot at 1 and 24 hours. At 72 hours, cell counts determined growth inhibition and DNA fragmentation ELISA assessed apoptosis. RESULTS Among all three lines, total ERK and MEK expression were unaffected by U0126. However, constitutive total ERK and p53 expression were significantly greater in BE(2)-C (I-type) cells than in SH-SY5Y (N-type) and SK-N-AS (S-type). Active ERK (p-ERK) levels decreased in dose response to U0126 at 1 and 24 hours in all lines. Conversely, p-MEK levels increased with increasing U0126 concentrations at 1 hour in SH-SY5Y (N-type) and at 24 hours in all lines. BE(2)-C (I-type) cell counts decreased in concentration-dependent fashion with U0126, whereas SH-SY5Y (N-type) and SK-N-AS (S-type) showed a biphasic response with increased cell counts at 1 micromol/L U0126 and slightly decreased cell counts at 10 mumol/L U0126. CONCLUSION This study demonstrates that BE(2)-C (I-type) cells exhibit greater constitutive total ERK and p53 expression than SH-SY5Y (N-type) and SK-N-AS (S-type). Although all three lines exhibit p-ERK decreases with MEK inhibition, only BE(2)-C (I-type) cells significantly decrease their proliferation with U0126 treatment. Although MEK inhibition holds promise in targeting I-type NB cells, successfully treating this heterogeneous tumor may require combining agents against N- and S-type cells.
Collapse
Affiliation(s)
- Andrew C Eppstein
- Department of Surgery, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiao Q, Hsu C, Chen H, Ma X, Xu J, Lee JM. Characterization of cis-regulatory elements of the vascular endothelial growth inhibitor gene promoter. Biochem J 2005; 388:913-20. [PMID: 15702971 PMCID: PMC1183472 DOI: 10.1042/bj20041739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
VEGI (vascular endothelial growth inhibitor), a member of the tumour necrosis factor superfamily, has been reported to inhibit endothelial cell proliferation, angiogenesis and tumour growth. We identified and cloned approx. 2.2 kb of the VEGI promoter from mouse cerebral endothelial cells. The promoter contained an atypical TATA-box-binding protein sequence TAAAAAA residing at -32/-26 relative to the transcription initiation site (+1), 83 bp upstream from the ATG start codon. To investigate critical sequences in the VEGI promoter, a series of deleted and truncated segments were constructed from a 2300 bp promoter construct (-2201/+96) linked to a luciferase reporter gene. Transient transfection of cerebral microvascular cells (bEND.3) and rat C6 glioma cells demonstrated that a 1700 bp deletion from the -2201 to -501 did not significantly affect promoter activity; however, a truncated construct (-501/+96) lacking the region between -312 and -57 resulted in nearly 90% loss of promoter activity. A consensus NF-kappaB (nuclear factor kappaB) and several SP1 (specificity protein-1)-binding sequences were identified within the deleted segment. Supershift analysis revealed that NF-kappaB subunits, p50 and p65, interacted with the VEGI promoter. Exposure of cerebral endothermic cells to the pro-inflammatory cytokine, tumour necrosis factor-alpha, increased VEGI mRNA levels and DNA-binding activities, whereas an NF-kappaB inhibitor attenuated this increase. In addition, p65 overexpression enhanced, whereas p50 overexpression decreased, the luciferase activity. Furthermore, mutation of the NF-kappaB DNA binding site blocked this p65- and tumour necrosis factor-alpha-induced luciferase activity. These findings suggest that the transcription factor NF-kappaB plays an important role in the regulation of VEGI expression.
Collapse
Affiliation(s)
- Qingli Xiao
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
| | - Chung Y. Hsu
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
- †Taipei Medical University, Taipei, Taiwan
| | - Hong Chen
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
| | - Xiucui Ma
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
| | - Jan Xu
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
| | - Jin-Moo Lee
- *The Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Hewson QDC, Lovat PE, Corazzari M, Catterall JB, Redfern CPF. The NF-kappaB pathway mediates fenretinide-induced apoptosis in SH-SY5Y neuroblastoma cells. Apoptosis 2005; 10:493-8. [PMID: 15909111 DOI: 10.1007/s10495-005-1878-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fenretinide induces apoptosis in SH-SY5Y neuroblastoma cells via a signaling pathway involving the production of reactive oxygen species (ROS), 12-lipoxygenase activity and the induction of the GADD153 transcription factor. NF-kappa B is a key element of many cell signaling pathways and adopts a pro- or anti-apoptotic role in different cell types. Studies have suggested that NF-kappa B may play a pro-apoptotic role in SH-SY5Y cells, and in other cell types NF-kappa B activation may be linked to lipoxygenase activity. The aim of this study was to test the hypothesis that NF-kappa B activity mediates fenretinide-induced apoptosis in SH-SY5Y neuroblastoma cells. Using a dominant-negative construct for Ikappa Balpha stably transfected into SH-SY5Y cells, we show that apoptosis, but not the induction of ROS, in response to fenretinide was blocked by abrogation of NF-kappa B activity. In parental SH-SY5Y cells, fenretinide induced NF-kappa B activity and Ikappa Balpha phosphorylation. These results suggest that NF-kappa B activity links fenretinide-induced ROS to the induction of apoptosis in SH-SH5Y cells, and may be a target for the future development of drugs for neuroblastoma therapy.
Collapse
Affiliation(s)
- Q D Campbell Hewson
- Northern Institute for Cancer Research and School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
42
|
Wang HE, Wu HC, Kao SJ, Tseng FW, Wang YS, Yu HM, Chou SL, Yen SH, Chi KH. Modulation of 5-fluorouracil cytotoxicity through thymidylate synthase and NF-κB down-regulation and its application on the radiolabelled iododeoxyuridine therapy on human hepatoma cell. Biochem Pharmacol 2005; 69:617-26. [PMID: 15670580 DOI: 10.1016/j.bcp.2004.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
The inhibition of thymidylate synthase (TS) by 5-fluorouracil (5-FU) was known to increase the incorporation of radiolabelled iododeoxyuridine (IdUrd) into DNA. The relatively non-toxic compounds such as thiol-containing antioxidant pyrrolidinodithiocarbamte (PDTC) or aromatic fatty acid phenylbutyrate (PB) had been reported to enhance the cytotoxic efficacy of 5-FU. We designed a novel strategy through triplet combination of PB, PDTC and 5-FU to increase the radiolabelled IdUrd uptake and investigated the underlying mechanisms. The growth inhibition and [(125)I]IdUrd-DNA incorporation by PB, PDTC, 5-FU in different combinations were tested on parent or p21(Waf1) transfected Hep3B cells. The combination of PB and PDTC was more effective in enhancing 5-FU cytotoxicity than either drug alone. The combination of PB/PDTC and 5-FU blocked cells in S-phase and resulted in 8.5-fold increase of radiolabelled IdUrd-DNA incorporation. The transfection of p21(Waf1) did not change the general pattern of enhancement. Intriguingly, the combination of PB and PDTC effectively down-regulated NF-kappaB and TS and prevented their up-regulation from 5-FU treatment than either drug alone through a p21(Waf1)-independent mechanism. Based on this strategy, the 3-drug combination offered potential for improved radiolabelled IdUrd molecular radiotherapy for hepatoma treatment.
Collapse
Affiliation(s)
- Hsin-Ell Wang
- Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, Kubota T, Ichiki T, Amano M, Kaibuchi K, Takeshita A. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol 2005; 37:537-46. [PMID: 15276023 DOI: 10.1016/j.yjmcc.2004.05.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 04/21/2004] [Accepted: 05/12/2004] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated that upregulated Rho-kinase plays an important role in the pathogenesis of arteriosclerosis and vasospasm in both animals and humans. However, little is known about the molecular mechanism(s) involved in the Rho-kinase upregulation. Since inflammatory mechanisms have been implicated in the pathogenesis of arteriosclerosis and vasospasm, we examined whether inflammatory stimuli upregulate Rho-kinase in vitro and in vivo. In cultured human coronary vascular smooth muscle cells (hcVSMC), inflammatory stimuli, such as angiotensin II and interleukin-1beta, increased Rho-kinase expression (at both mRNA and protein levels) and function (as evaluated by the extent of the phosphorylation of the ERM (the ezrin/radixin/moesin) family, substrates of Rho-kinase) in a time- and concentration-dependent manner. The expression of Rho-kinase was inhibited by blockades of protein kinase C (PKC) (by either GF109253 or prolonged treatment with phorbol myristate acetate for 24 h) and an adenovirus-mediated gene transfer of dominant-active Ikappa-B, suggesting an involvement of PKC and NF-kappaB in the intracellular signal transduction pathway for the Rho-kinase expression. Furthermore, coronary vascular lesion formation (characterized by medial thickening and perivascular fibrosis) induced by a long-term administration of angiotensin II was markedly suppressed in NF-kappaB(-/-) mice with reduced expression and activity of Rho-kinase in vivo. These results indicate that the expression and function of Rho-kinase are upregulated by inflammatory stimuli (e.g. angiotensin II and IL-1beta) in hcVSMC with an involvement of PKC and NF-kappaB both in vitro and in vivo.
Collapse
Affiliation(s)
- Junko Hiroki
- Department of Cardiovascular Medicine, and the 21st Century COE Program on Lifestyle-Related Diseases, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maldashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Méndez JA, López-Bayghen E, Ortega A. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NFκB. J Neurosci Res 2005; 81:21-30. [PMID: 15929072 DOI: 10.1002/jnr.20519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
45
|
Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306:704-8. [PMID: 15499023 DOI: 10.1126/science.1099962] [Citation(s) in RCA: 911] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.
Collapse
Affiliation(s)
- D E Nelson
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Haddad JJ. On the antioxidant mechanisms of Bcl-2: a retrospective of NF-kappaB signaling and oxidative stress. Biochem Biophys Res Commun 2004; 322:355-63. [PMID: 15325238 DOI: 10.1016/j.bbrc.2004.07.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Indexed: 11/22/2022]
Abstract
Antioxidant and prooxidant signaling pathways are emanating as major players in, and regulators of, cell death and apoptosis. Redox conception of the critical role of oxidative stress in determining cell fate is being established-a foundation that craves deeper than the basic understanding of physiochemical interactions to extend beyond that into the realms of deciphering the molecular codes implicated with apoptosis. The proto-oncogene Bcl-2 is no stranger being a major player and decoder in controlling apoptosis, ostensibly via the regulation of redox equilibrium and disequilibrium. One of those potential mechanisms exhibited by Bcl-2 is its ability to counteract the detrimental effects of cell damage caused by free radicals, thereby gaining its well-known property of being an antioxidant. But the question is: what are the molecular mechanisms involved with the antioxidant role of Bcl-2 in the face of cell damage and apoptosis? Currently, a stance is being upheld in that the Bcl-2 antioxidant efficacy should be weighed against its ability to manipulate transcriptional control, through the regulation of specific transcription factors. NF-kappaB is no doubt one of the best candidates when it comes to the arena of oxidative stress, inflammation, and apoptosis. Therein, current themes in the burgeoning antioxidant role of Bcl-2 are exposed within the context of transcriptional control of NF-kappaB, thereby holding potential avenues for alleviating therapeutic approaches in the regulation of apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Abstract
Neuroblastic tumors are the most common extracranial tumors of childhood. They arise from embryonal cells committed to the development of the sympathetic nervous system. In vivo and in vitro observations have shown that neuroblastic tumors appear to recapitulate the development of differentiating sympathetic neurons and chromaffin (neuroendocrine) cells of the sympathetic nervous system. This suggests that the origin of neuroblastic tumors resides as a block in the process of differentiation. This article summarizes the experimental data accumulated over the last three decades, which has provided some clues to the cellular origin of such tumors. In order to identify the cellular origin of these tumors, the embryology of the sympathetic nervous system is first reviewed and any archeological rests of normal development in the tumors are then discussed.
Collapse
Affiliation(s)
- Jaume Mora
- Department of Oncology, Hospital Sant Joan de Deu de Barcelona, Passeig de Sant Joan de Deu num 2, 08950 Barcelona, Spain.
| | | |
Collapse
|
48
|
Karacay B, Sanlioglu S, Griffith TS, Sandler A, Bonthius DJ. Inhibition of the NF-κB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells. Cancer Gene Ther 2004; 11:681-90. [PMID: 15332116 DOI: 10.1038/sj.cgt.7700749] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroblastoma is the most common solid extracranial neoplasm in children and causes many deaths. Despite treatment advances, prognosis for neuroblastoma remains poor, and a critical need exists for the development of new treatment regimens. TNF-related apoptosis-inducing-ligand (TRAIL) induces cell death in a variety of tumors, but not in normal tissues. Moreover, TRAIL is nontoxic, making it a strong antitumor therapeutic candidate. We demonstrate that introduction of the TRAIL gene into neuroblastoma cell lines using an adenoviral vector leads to apoptotic cell death. RT-PCR and flow-cytometric analyses demonstrated that TRAIL's effect is mediated primarily via the TRAIL R2 receptor. As TRAIL can activate the nuclear factor-kappaB (NF-kappaB) signaling pathway, which can exert an antiapoptotic effect, we hypothesized that inhibition of NF-kappaB signaling may augment TRAIL's killing effects. TRAIL-mediated cell death was enhanced when neuroblastoma cells were simultaneously infected with a dominant-negative mutant of IkappaB kinase, a kinase essential for NF-kappaB activation. The combination of blockade of NF-kappaB signaling and expression of TRAIL induced apoptotic death in a greater proportion of SKNSH cells than did either treatment alone. Thus, concurrent inhibition of the NF-kappaB pathway and the induction of TRAIL-mediated apoptosis may become a useful approach for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Bahri Karacay
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
49
|
Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H, Khac MTN, Jolois O, Erkmen K, Merville MP, Black PM, Bours V. In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 2004; 10:5595-603. [PMID: 15328202 DOI: 10.1158/1078-0432.ccr-03-0392] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastomas, the most common primary brain cancers, respond poorly to current treatment modalities and carry a dismal prognosis. In this study, we demonstrated that the transcription factor nuclear factor (NF)-kappaB is constitutively activated in glioblastoma surgical samples, primary cultures, and cell lines and promotes their growth and survival. Sulfasalazine, an anti-inflammatory drug that specifically inhibits the activation of NF-kappaB, blocked the cell cycle and induced apoptosis in several glioblastoma cell lines and primary cultures, as did gene therapy with a vector encoding a super-repressor of NF-kappaB. In vivo, sulfasalazine also significantly inhibited the growth of experimental human glioblastomas in nude mice brains. Given the documented safety of sulfasalazine in humans, these results may lead the way to a new class of glioma treatment.
Collapse
Affiliation(s)
- Pierre A Robe
- Center for Cellular and Molecular Therapeutics, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jang JH, Surh YJ. Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activation. J Biol Chem 2004; 279:38779-86. [PMID: 15208316 DOI: 10.1074/jbc.m406371200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress induced by reactive oxygen intermediates often causes cell death via apoptosis, which is regulated by many functional genes and their protein products. The evolutionarily conserved protein Bcl-2 blocks apoptosis induced by a wide array of death signals. Despite extensive research, the molecular milieu that characterizes the anti-apoptotic function of Bcl-2 has not been fully clarified. In this work, we have investigated the role of bcl-2 in protecting against oxidative death induced by H(2)O(2) in cultured rat pheochromocytoma PC12 cells. Transfection with the bcl-2 gene rescued PC12 cells from apoptotic death caused by H(2)O(2). Addition of NF-kappaB inhibitors such as pyrrolidine dithiocarbamate and N-tosyl-l-phenylalanine chloromethyl ketone to the medium aggravated oxidative cell death. PC12 cells overexpressing bcl-2 exhibited relatively high constitutive DNA binding and transcriptional activities of NF-kappaB compared with vector-transfected control cells. Western blot analysis and immunocytochemistry revealed that bcl-2-transfected PC12 cells retained a higher level of p65 (the functionally active subunit of NF-kappaB) in the nucleus compared with vector-transfected controls. In addition, sustained activation of ERK1/2 (upstream of NF-kappaB) was observed in bcl-2-overexpressing cells. In contrast, the cytoplasmic inhibitor IkappaBalpha was present in lower amounts in cells overexpressing bcl-2. The ectopic expression of bcl-2 increased the cellular glutathione level and gamma-glutamylcysteine ligase expression, which were attenuated by NF-kappaB inhibitors. These results suggest that NF-kappaB plays a role in bcl-2-mediated protection against H(2)O(2)-induced apoptosis in PC12 cells through augmentation of antioxidant capacity.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|