1
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Zhang Q, Zhang Y, Zhang J, Zhang D, Li M, Yan H, Zhang H, Song L, Wang J, Hou Z, Yang Y, Zou X. p66α Suppresses Breast Cancer Cell Growth and Migration by Acting as Co-Activator of p53. Cells 2021; 10:3593. [PMID: 34944103 PMCID: PMC8700327 DOI: 10.3390/cells10123593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023] Open
Abstract
p66α is a GATA zinc finger domain-containing transcription factor that has been shown to be essential for gene silencing by participating in the NuRD complex. Several studies have suggested that p66α is a risk gene for a wide spectrum of diseases such as diabetes, schizophrenia, and breast cancer; however, its biological role has not been defined. Here, we report that p66α functions as a tumor suppressor to inhibit breast cancer cell growth and migration, evidenced by the fact that the depletion of p66α results in accelerated tumor growth and migration of breast cancer cells. Mechanistically, immunoprecipitation assays identify p66α as a p53-interacting protein that binds the DNA-binding domain of p53 molecule predominantly via its CR2 domain. Depletion of p66α in multiple breast cells results in decreased expression of p53 target genes, while over-expression of p66α results in increased expression of these target genes. Moreover, p66α promotes the transactivity of p53 by enhancing p53 binding at target promoters. Together, these findings demonstrate that p66α is a tumor suppressor by functioning as a co-activator of p53.
Collapse
Affiliation(s)
- Qun Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yihong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jie Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Mengying Li
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Han Yan
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hui Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
- Naruiboen Biomedical Technology Corporation Limited, Linyi 277700, China
| | - Jiamin Wang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhaoyuan Hou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
| | - Xiuqun Zou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Susemihl A, Nagel F, Grabarczyk P, Schmidt CA, Delcea M. Easy Expression and Purification of Fluorescent N-Terminal BCL11B CCHC Zinc Finger Domain. Molecules 2021; 26:molecules26247576. [PMID: 34946663 PMCID: PMC8708588 DOI: 10.3390/molecules26247576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/05/2022] Open
Abstract
Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.
Collapse
Affiliation(s)
- Anne Susemihl
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Felix Nagel
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
| | - Piotr Grabarczyk
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Christian A. Schmidt
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany; (P.G.); (C.A.S.)
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (A.S.); (F.N.)
- Correspondence:
| |
Collapse
|
4
|
Yu R, Zhang Y, Lu Q, Cui L, Wang Y, Wang X, Cheng G, Liu Z, Dai M, Yuan Z. Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Res Vet Sci 2018; 118:72-78. [DOI: 10.1016/j.rvsc.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
|
5
|
Wai DCC, Szyszka TN, Campbell AE, Kwong C, Wilkinson-White LE, Silva APG, Low JKK, Kwan AH, Gamsjaeger R, Chalmers JD, Patrick WM, Lu B, Vakoc CR, Blobel GA, Mackay JP. The BRD3 ET domain recognizes a short peptide motif through a mechanism that is conserved across chromatin remodelers and transcriptional regulators. J Biol Chem 2018; 293:7160-7175. [PMID: 29567837 PMCID: PMC5949996 DOI: 10.1074/jbc.ra117.000678] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4, and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease, and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET family proteins regulate gene expression are not well defined. In particular, the functions of the other domains such as the ET domain have been less extensively studied. Here, we examine the properties of the ET domain of BRD3 as a protein/protein interaction module. Using a combination of pulldown and biophysical assays, we demonstrate that BRD3 binds to a range of chromatin-remodeling complexes, including the NuRD, BAF, and INO80 complexes, via a short linear "KIKL" motif in one of the complex subunits. NMR-based structural analysis revealed that, surprisingly, this mode of interaction is shared by the AF9 and ENL transcriptional coregulators that contain an acetyl-lysine-binding YEATS domain and regulate transcriptional elongation. This observation establishes a functional commonality between these two families of cancer-related transcriptional regulators. In summary, our data provide insight into the mechanisms by which BET family proteins might link chromatin acetylation to transcriptional outcomes and uncover an unexpected functional similarity between BET and YEATS family proteins.
Collapse
Affiliation(s)
- Dorothy C C Wai
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Amy E Campbell
- Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Cherry Kwong
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Lorna E Wilkinson-White
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Roland Gamsjaeger
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - James D Chalmers
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia.
| |
Collapse
|
6
|
The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B. Mol Cell Biol 2018; 38:MCB.00368-17. [PMID: 29203643 DOI: 10.1128/mcb.00368-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022] Open
Abstract
The BCL11B gene encodes a Krüppel-like, sequence-specific zinc finger (ZF) transcription factor that acts as either a repressor or an activator, depending on its posttranslational modifications. The importance of BCL11B in numerous biological processes in multiple organs has been well established in mouse knockout models. The phenotype of the first de novo monoallelic germ line missense mutation in the BCL11B gene (encoding N441K) strongly implies that the mutant protein acts in a dominant-negative manner by neutralizing the unaffected protein through the formation of a nonfunctional dimer. Using a Förster resonance energy transfer-assisted fluorescence-activated cell sorting (FACS-FRET) assay and affinity purification followed by mass spectrometry (AP-MS), we show that the N-terminal CCHC zinc finger motif is necessary and sufficient for the formation of the BCL11B dimer. Mutation of the CCHC ZF in BCL11B abolishes its transcription-regulatory activity. In addition, unlike wild-type BCL11B, this mutant is incapable of inducing cell cycle arrest and protecting against DNA damage-driven apoptosis. Our results confirm the BCL11B dimerization hypothesis and prove its importance for BCL11B function. By mapping the relevant regions to the CCHC domain, we describe a previously unidentified mechanism of transcription factor homodimerization.
Collapse
|
7
|
Todd MAM, Picketts DJ. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res 2012; 11:4326-37. [PMID: 22720776 DOI: 10.1021/pr3004369] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutations in PHF6 are the cause of Börjeson-Forssman-Lehman syndrome (BFLS), an X-linked intellectual disability (XLID) disorder, and both T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). The PHF6 gene encodes a protein with two plant homeodomain (PHD)-like zinc finger domains. As many PHD-like domains function to target chromatin remodelers to post-translationally modified histones, this suggests a role for PHF6 in chromatin regulation. However, PHD domains are usually found in association with a catalytic domain, a feature that is lacking in PHF6. This distinct domain structure and the minimal information on its cellular function prompted us to perform a proteomic screen to identify PHF6 binding partners. We expressed recombinant Flag-tagged PHF6 in HEK 293T cells for coimmunoprecipitation, and analyzed the purified products by mass spectrometry. We identified proteins involved in ribosome biogenesis, RNA splicing, and chromatin regulation, consistent with PHF6 localization to both the nucleoplasm and nucleolus. Notably, PHF6 copurified with multiple constituents of the nucleosome remodeling and deacetylation (NuRD) complex, including CHD4, HDAC1, and RBBP4. We demonstrate that this PHF6-NuRD complex is not present in the nucleolus but is restricted to the nucleoplasm. The association with NuRD represents the first known interaction for PHF6 and implicates it in chromatin regulation.
Collapse
Affiliation(s)
- Matthew A M Todd
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6
| | | |
Collapse
|
8
|
Structural basis of simultaneous recruitment of the transcriptional regulators LMO2 and FOG1/ZFPM1 by the transcription factor GATA1. Proc Natl Acad Sci U S A 2011; 108:14443-8. [PMID: 21844373 DOI: 10.1073/pnas.1105898108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.
Collapse
|
9
|
Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem 2011; 286:11779-91. [PMID: 21278251 DOI: 10.1074/jbc.m110.208207] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.
Collapse
Affiliation(s)
- Robyn E Mansfield
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tanabe Y, Hirano A, Iwasato T, Itohara S, Araki K, Yamaguchi T, Ichikawa T, Kumanishi T, Aizawa Y, Takahashi H, Kakita A, Nawa H. Molecular characterization and gene disruption of a novel zinc-finger protein, HIT-4, expressed in rodent brain. J Neurochem 2009; 112:1035-44. [PMID: 19968752 DOI: 10.1111/j.1471-4159.2009.06525.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To identify a novel regulatory factor involved in brain development or synaptic plasticity, we applied the differential display PCR method to mRNA samples from NMDA-stimulated and un-stimulated neocortical cultures. Among 64 cDNA clones isolated, eight clones were novel genes and one of them encodes a novel zinc-finger protein, HIT-4, which is 317 amino acid residues (36-38 kDa) in length and contains seven C2H2 zinc-finger motifs. Rat HIT-4 cDNA exhibits strong homology to human ZNF597 (57% amino acid identity and 72% homology) and identity to rat ZNF597 at the carboxyl region. Furthermore, genomic alignment of HIT-4 cDNA indicates that the alternative use of distinct promoters and exons produces HIT-4 and ZNF597 mRNAs. Northern blotting revealed that HIT-4 mRNA (approximately 6 kb) is expressed in various tissues such as the lung, heart, and liver, but enriched in the brain, while ZNF597 mRNA (approximately 1.5 kb) is found only in the testis. To evaluate biological roles of HIT-4/ZNF597, targeted mutagenesis of this gene was performed in mice. Homozygous (-/-) mutation was embryonic lethal, ceasing embryonic organization before cardiogenesis at embryonic day 7.5. Heterozygous (+/-) mice were able to survive but showing cell degeneration and vacuolization of the striatum, cingulate cortex, and their surrounding white matter. These results reveal novel biological and pathological roles of HIT-4 in brain development and/or maintenance.
Collapse
Affiliation(s)
- Yasutaka Tanabe
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gamsjaeger R, Swanton MK, Kobus FJ, Lehtomaki E, Lowry JA, Kwan AH, Matthews JM, Mackay JP. Structural and biophysical analysis of the DNA binding properties of myelin transcription factor 1. J Biol Chem 2007; 283:5158-67. [PMID: 18073212 DOI: 10.1074/jbc.m703772200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc binding domains, or zinc fingers (ZnFs), form one of the most numerous and most diverse superclasses of protein structural motifs in eukaryotes. Although our understanding of the functions of several classes of these domains is relatively well developed, we know much less about the molecular mechanisms of action of many others. Myelin transcription factor 1 (MyT1) type ZnFs are found in organisms as diverse as nematodes and mammals and are found in a range of sequence contexts. MyT1, one of the early transcription factors expressed in the developing central nervous system, contains seven MyT1 ZnFs that are very highly conserved both within the protein and between species. We have used a range of biophysical techniques, including NMR spectroscopy and data-driven macromolecular docking, to investigate the structural basis for the interaction between MyT1 ZnFs and DNA. Our data indicate that MyT1 ZnFs recognize the major groove of DNA in a way that appears to differ from other known zinc binding domains.
Collapse
Affiliation(s)
- Roland Gamsjaeger
- School of Molecular and Microbial Biosciences, University of Sydney, Building G08, New South Wales, Sydney 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tokusumi T, Russell M, Gajewski K, Fossett N, Schulz RA. U-shaped protein domains required for repression of cardiac gene expression in Drosophila. Differentiation 2007; 75:166-74. [PMID: 17316386 DOI: 10.1111/j.1432-0436.2006.00120.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U-shaped is a zinc finger protein that functions predominantly as a negative transcriptional regulator of cell fate determination during Drosophila development. In the early stages of dorsal vessel formation, the protein acts to control cardioblast specification, working as a negative attenuator of the cardiogenic GATA factor Pannier. Pannier and the homeodomain protein Tinman normally work together to specify heart cells and activate cardioblast gene expression. One target of this positive regulation is a heart enhancer of the D-mef2 gene and U-shaped has been shown to antagonize enhancer activation by Pannier and Tinman. We have mapped protein domains of U-shaped required for its repression of cardioblast gene expression. Such studies showed GATA factor interacting zinc fingers of U-shaped are required for enhancer repression, as well as three small motifs that are likely needed for co-factor binding and/or protein modification. These analyses have also allowed for the definition of a 253 amino acid interval of U-shaped that is essential for its nuclear localization. Together, these findings provide molecular insights into the function of U-shaped as a negative regulator of heart development in Drosophila.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biochemistry and Molecular Biology, Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Liew CW, Rand KD, Simpson RJY, Yung WW, Mansfield RE, Crossley M, Proetorius-Ibba M, Nerlov C, Poulsen FM, Mackay JP. Molecular Analysis of the Interaction between the Hematopoietic Master Transcription Factors GATA-1 and PU.1. J Biol Chem 2006; 281:28296-306. [PMID: 16861236 DOI: 10.1074/jbc.m602830200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and PU.1 are transcription factors that control erythroid and myeloid development, respectively. The two proteins have been shown to function in an antagonistic fashion, with GATA-1 repressing PU.1 activity during erythropoiesis and PU.1 repressing GATA-1 function during myelopoiesis. It has also become clear that this functional antagonism involves direct interactions between the two proteins. However, the molecular basis for these interactions is not known, and a number of inconsistencies exist in the literature. We have used a range of biophysical methods to define the molecular details of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted by single alanine substitution mutations, suggesting that binding is distributed over an extended interface. The C-terminal basic tail region of CF appears to be sufficient to mediate an interaction with PU.1-Ets, and neither acetylation nor phosphorylation of a peptide corresponding to this region disrupts binding, indicating that the interaction is not dominated by electrostatic interactions. The CF basic tail shares significant sequence homology with the PU.1 interacting motif from c-Jun, suggesting that GATA-1 and c-Jun might compete to bind PU.1. Taken together, our data provide a molecular perspective on the GATA-1-PU.1 interaction, resolving several issues in the existing data and providing insight into the mechanisms through which these two proteins combine to regulate blood development.
Collapse
Affiliation(s)
- Chu Wai Liew
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cismasiu VB, Adamo K, Gecewicz J, Duque J, Lin Q, Avram D. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 2005; 24:6753-64. [PMID: 16091750 DOI: 10.1038/sj.onc.1208904] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BCL11 genes play crucial roles in lymphopoiesis and have been associated with hematopoietic malignancies. Specifically, disruption of the BCL11B (B-cell chronic lymphocytic leukemia/lymphoma 11B) locus is linked to T-cell acute lymphoblastic leukemia, and the loss of heterozygosity in mice results in T-cell lymphoma. BCL11 proteins are related C2H2 zinc-finger transcription factors that act as transcriptional repressors. Here, we demonstrate the association of the endogenous BCL11B with the nucleosome remodeling and histone deacetylase (NuRD) complex, one of the major transcriptional corepressor complexes in mammalian cells. BCL11B complexes from T lymphocytes possess trichostatin A-sensitive histone deacetylase activity, confirming the functionality of the complexes. Analysis of the BCL11B-NuRD association demonstrated that BCL11B directly interacted with the metastasis-associated proteins MTA1 and MTA2 through the amino-terminal region. We provide evidence for the functional requirement of MTA1 in transcriptional repression mediated by BCL11B through the following: (1) overexpression of MTA1 enhanced the transcriptional repression mediated by BCL11B, (2) knockdown of MTA1 expression by small interfering RNA inhibited BCL11B transcriptional repression activity and (3) MTA1 was specifically recruited to a BCL11B targeted promoter. Taken together, these data support the hypothesis that the NuRD complex mediates transcriptional repression function of BCL11B.
Collapse
Affiliation(s)
- Valeriu B Cismasiu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sorrentino RP, Gajewski KM, Schulz RA. GATA factors in Drosophila heart and blood cell development. Semin Cell Dev Biol 2005; 16:107-16. [PMID: 15659345 DOI: 10.1016/j.semcdb.2004.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GATA transcription factors comprise an evolutionarily conserved family of proteins that function in the specification and differentiation of various cell types during animal development. In this review, we examine current knowledge of the structure, expression, and function of the Pannier and Serpent GATA factors as they relate to cardiogenesis and hematopoiesis in the Drosophila system. We also assess the molecular and genetic characteristics of the Friend of GATA protein U-shaped, which serves as a regulator of Pannier and Serpent function in these two developmental processes.
Collapse
Affiliation(s)
- Richard Paul Sorrentino
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
16
|
Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 2005; 24:2367-78. [PMID: 15920470 PMCID: PMC1173144 DOI: 10.1038/sj.emboj.7600703] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/10/2005] [Indexed: 12/28/2022] Open
Abstract
Transcription factor GATA-1 and its cofactor FOG-1 coordinate erythroid cell maturation by activating erythroid-specific genes and repressing genes associated with the undifferentiated state. Here we show that FOG-1 binds to the NuRD corepressor complex in vitro and in vivo. The interaction is mediated by a small conserved domain at the extreme N-terminus of FOG-1 that is necessary and sufficient for NuRD binding. This domain defines a novel repression module found in diverse transcriptional repressors. NuRD is present at GATA-1/FOG-1-repressed genes in erythroid cells in vivo. Point mutations near the N-terminus of FOG-1 that abrogate NuRD binding block gene repression by FOG-1. Finally, the ability of GATA-1 to repress transcription was impaired in erythroid cells expressing mutant forms of FOG-1 that are defective for NuRD binding. Together, these studies show that FOG-1 and likely other FOG-like proteins are corepressors that link GATA factors to histone deacetylation and nucleosome remodeling.
Collapse
Affiliation(s)
- Wei Hong
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
| | - Minako Nakazawa
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
| | - Ying-Yu Chen
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rajashree Kori
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
| | - Christopher R Vakoc
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Carrie Rakowski
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, PA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, 316H Abramson Research Center, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA. Tel.: +1 215 590 3988; Fax: +1 215 590 4834; E-mail:
| |
Collapse
|
17
|
Liew CK, Simpson RJY, Kwan AHY, Crofts LA, Loughlin FE, Matthews JM, Crossley M, Mackay JP. Zinc fingers as protein recognition motifs: structural basis for the GATA-1/friend of GATA interaction. Proc Natl Acad Sci U S A 2005; 102:583-8. [PMID: 15644435 PMCID: PMC545545 DOI: 10.1073/pnas.0407511102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GATA-1 and friend of GATA (FOG) are zinc-finger transcription factors that physically interact to play essential roles in erythroid and megakaryocytic development. Several naturally occurring mutations in the GATA-1 gene that alter the FOG-binding domain have been reported. The mutations are associated with familial anemias and thrombocytopenias of differing severity. To elucidate the molecular basis for the GATA-1/FOG interaction, we have determined the three-dimensional structure of a complex comprising the interaction domains of these proteins. The structure reveals how zinc fingers can act as protein recognition motifs. Details of the architecture of the contact domains and their physical properties provide a molecular explanation for how the GATA-1 mutations contribute to distinct but related genetic diseases.
Collapse
Affiliation(s)
- Chu Kong Liew
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Simpson RJY, Yi Lee SH, Bartle N, Sum EY, Visvader JE, Matthews JM, Mackay JP, Crossley M. A Classic Zinc Finger from Friend of GATA Mediates an Interaction with the Coiled-coil of Transforming Acidic Coiled-coil 3. J Biol Chem 2004; 279:39789-97. [PMID: 15234987 DOI: 10.1074/jbc.m404130200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.
Collapse
Affiliation(s)
- Raina J Y Simpson
- School of Molecular and Microbial Biosciences, G08, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci U S A 2004; 101:8870-5. [PMID: 15173587 PMCID: PMC428439 DOI: 10.1073/pnas.0308605101] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The activity of transcription factors is tightly modulated by posttranslational modifications affecting stability, localization, and protein-protein interactions. Conjugation to SUMO is a reversible posttranslational modification that has been shown to regulate important transcription factors involved in cell proliferation, differentiation, and tumor suppression. Here, we demonstrate that the erythroid transcription factor GATA-1 is sumoylated in vitro and in vivo and map the single lysine residue involved in SUMO-1 attachment. We show that the nuclear RING finger protein PIASy promotes sumoylation of GATA-1 and dramatically represses its transcriptional activity. We present evidence that a nonsumoylatable GATA-1 mutant is indistinguishable from the WT protein in its ability to transactivate a reporter gene in mammalian cells and in its ability to trigger endogenous globin expression in Xenopus explants. These observations open interesting questions about the biological role of this posttranslational modification of GATA-1.
Collapse
Affiliation(s)
- Licio Collavin
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Znaidi S, Pelletier B, Mukai Y, Labbé S. The Schizosaccharomyces pombe corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J Biol Chem 2004; 279:9462-9474. [PMID: 14668334 DOI: 10.1074/jbc.m312787200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Schizosaccharomyces pombe fep1(+) gene encodes a GATA transcription factor that represses the expression of iron transport genes in response to elevated iron concentrations. This transcriptional response is altered only in strains harboring a combined deletion of both tup11(+) and tup12(+) genes. This suggests that Tup11 is capable of negatively regulating iron transport gene expression in the absence of Tup12 and vice versa. The tup11(+)- and tup12(+)-encoded proteins resemble the Saccharomyces cerevisiae Tup1 corepressor. Using yeast two-hybrid analysis we show that Tup11 and Fep1 physically interact with each other. The C-terminal region from amino acids 242 to 564 of Fep1 is required for interaction with Tup11. Within this region, a minimal domain encompassing amino acids 405-541 was sufficient for Tup11-Fep1 association. Deletion mapping analysis revealed that the WD40-repeat sequence motifs of Tup11 are necessary for its interaction with Fep1. Analysis of Tup11 mutants with single amino acid substitutions in the WD40 repeats suggested that the Fep1 transcription factor interacts with a putative flat upper surface on the predicted beta-propeller structure of this motif. Further analysis by in vivo coimmunoprecipitation showed that Tup11 and Fep1 are physically associated. In vitro pull-down experiments further verified a direct interaction between the Fep1 C terminus and the Tup11 C-terminal WD40 repeat domain. Taken together, these results describe the first example of a physical interaction between a corepressor and an iron-sensing factor controlling the expression of iron uptake genes.
Collapse
Affiliation(s)
- Sadri Znaidi
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|