1
|
Ayoub M, Chmouni YA, Damaa N, Eter A, Medawar H, Ghadieh HE, Bazzi S, Khattar ZA, Azar S, Harb F. Genetic and immunological regulation of gut Microbiota: The Roles of TLRs, CLRs, and key proteins in microbial homeostasis and disease. Gene 2025; 955:149469. [PMID: 40189163 DOI: 10.1016/j.gene.2025.149469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiota plays a crucial role in human health, influencing metabolism, immune regulation, and neurological function. This review examines the genetic and immunological mechanisms governing microbiota composition, with a focus on key pattern recognition receptors, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and signaling proteins such as CARD9 and NOD2. We discuss how genetic polymorphisms in these receptors contribute to gut dysbiosis and disease susceptibility, particularly in inflammatory bowel disease (IBD) and neurodegenerative disorders like Parkinson's disease. Additionally, we explore emerging microbiota-targeted therapeutic strategies, including probiotics and precision medicine approaches. By synthesizing recent advancements, this review examines how genetic and immunological mechanisms regulate gut microbiota and influence disease susceptibility, emphasizing key therapeutic implications.
Collapse
Affiliation(s)
- Marylyn Ayoub
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Yara Abi Chmouni
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Norman Damaa
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Alaa Eter
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Hilmi Medawar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ziad Abi Khattar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon.
| |
Collapse
|
2
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 Isoforms Augments the S-acylation and Function of NOD2 and a Subset of Crohn's Disease-associated NOD2 Variants. Cell Mol Gastroenterol Hepatol 2025; 19:101491. [PMID: 40054525 PMCID: PMC12005342 DOI: 10.1016/j.jcmgh.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND & AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and proinflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L Dixon
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Noah R Martin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
3
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 isoforms augments the S-acylation and function of NOD2 and a subset of Crohn's disease-associated NOD2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.20.572362. [PMID: 38187608 PMCID: PMC10769251 DOI: 10.1101/2023.12.20.572362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and pro-inflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L. Dixon
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Noah R. Martin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Sun X, Jin X, Lin Z, Liu X, Yang J, Li L, Feng H, Zhang W, Gu C, Hu X, Liu X, Cheng G. Nucleotide-binding oligomerization domain 1 (NOD1) regulates microglial activation in pseudorabies virus infection. Vet Res 2024; 55:161. [PMID: 39696641 DOI: 10.1186/s13567-024-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 12/20/2024] Open
Abstract
The primary cause of viral encephalitis (VE) is invasion of the central nervous system (CNS) by the virus, which leads to neuroinflammation and poses a significant threat to global public health. Microglia, as CNS-resident macrophages, play a crucial role in neuroinflammation and are often identified as the preferred target for the prevention or treatment of VE. In this study, we used pseudorabies virus (PRV)-induced VE in mice and pigs as a model to investigate the regulation of microglial responses during viral encephalitis and explored the mechanism of microglial activation. Cellular experiments revealed that microglial activation was accompanied by cell migration, characteristic morphological changes, phagocytosis, inflammatory cytokine production, and antigen presentation. Transcriptome analysis revealed that genes related to inflammation in PRV-infected BV2 cells were significantly enriched. The expression of the NOD1 gene in BV2 cells was significantly increased during PRV infection, after which NOD1 in BV2 cells was silenced by siRNA and overexpressed via a plasmid. NOD1 was found to be involved in the secretion of cytokines in BV2 cells by regulating the MAPK/NF-κB signalling pathway. Mouse and pig experiments have shown that NOD1 is involved in the secretion of cytokines by microglia by regulating the MAPK/NF-κB signalling pathway during PRV infection.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengdan Lin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Institute of Animal Health and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanpo Zhang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Li D, Liu Z, Fan X, Zhao T, Wen D, Huang X, Li B. Lactic Acid Bacteria-Gut-Microbiota-Mediated Intervention towards Inflammatory Bowel Disease. Microorganisms 2024; 12:1864. [PMID: 39338538 PMCID: PMC11433943 DOI: 10.3390/microorganisms12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), arises from intricate interactions involving genetics, environment, and pharmaceuticals with an ambiguous pathogenic mechanism. Recently, there has been an increasing utilization of lactic acid bacteria (LAB) in managing IBD, attributed to their ability to enhance intestinal barrier function, mitigate inflammatory responses, and modulate gut microbiota. This review initiates by elucidating the pathogenesis of IBD and its determinants, followed by an exploration of the mechanisms underlying LAB therapy in UC and CD. Special attention is directed towards their influence on intestinal barrier function and homeostasis regulated by gut microbiota. Furthermore, the review investigates the complex interplay among pivotal gut microbiota, metabolites, and pathways associated with inflammation. Moreover, it underscores the limitations of LAB in treating IBD, particularly in light of their varying roles in UC and CD. This comprehensive analysis endeavors to offer insights for the optimized application of LAB in IBD therapy.
Collapse
Affiliation(s)
- Diantong Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| |
Collapse
|
7
|
Jia K, Shen J. Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives. Cell Biosci 2024; 14:29. [PMID: 38403629 PMCID: PMC10895848 DOI: 10.1186/s13578-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Crohn's disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and multiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of overlapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and discussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
Collapse
Affiliation(s)
- Keyu Jia
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China
| | - Jun Shen
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Research Center, Ren Ji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China.
- NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
9
|
Zou YF, Li CY, Fu YP, JiZe XP, Zhao YZ, Peng X, Wang JY, Yin ZQ, Li YP, Song X, Li LX, Zhao XH, Feng B, Huang C, Ye G, Tang HQ, Chen J, Li R, Chen XF, Tian ML. Angelica sinensis aboveground part polysaccharide and its metabolite 5-MT ameliorate colitis via modulating gut microbiota and TLR4/MyD88/NF-κB pathway. Int J Biol Macromol 2023; 242:124689. [PMID: 37148926 DOI: 10.1016/j.ijbiomac.2023.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
The roots of Angelica sinensis have been used in Traditional Chinese Medicine for thousands of years. However, tons of aerial parts of this herb (aboveground part) are commonly discarded during the process of root preparations. A polysaccharide (ASP-Ag-AP) in the aboveground parts of A. sinensis was isolated and preliminarily characterized as typical plant pectin. ASP-Ag-AP exhibited noticeable protective effects against dextran sodium sulfate (DSS)-induced colitis, including reduction of colonic inflammation, modulation of barrier function, and alteration of gut microbiota and serum metabolite profile. Anti-inflammatory effects of ASP-Ag-AP were observed by inhibiting TLR4/MyD88/NF-κB signaling pathway in vitro and in vivo. Additionally, the level of serum metabolite 5-methyl-dl-tryptophan (5-MT) was reduced by DSS and restored by ASP-Ag-AP, which also negatively correlated with Bacteroides, Alistipes, Staphylococcus and pro-inflammatory factors. The protection from inflammatory stress on intestinal porcine enterocytes cells (IPEC-J2) of 5-MT was observed through the inhibition of TLR4/MyD88/NF-κB pathway. Besides, 5-MT also exhibited robust anti-inflammatory effect in colitis mice with improving colitis symptoms, barrier function and gut microbiota, which was the same as presented by ASP-Ag-AP. Therefore, ASP-Ag-AP could be a promising agent for colitis prevention and 5-MT could be the signal metabolite of ASP-Ag-AP on defending against intestinal inflammatory stress.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu-Zhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jing-Yi Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, China College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rui Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
10
|
Chauvin C, Alvarez-Simon D, Radulovic K, Boulard O, Laine W, Delacre M, Waldschmitt N, Segura E, Kluza J, Chamaillard M, Poulin LF. NOD2 in monocytes negatively regulates macrophage development through TNFalpha. Front Immunol 2023; 14:1181823. [PMID: 37415975 PMCID: PMC10320732 DOI: 10.3389/fimmu.2023.1181823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objective It is believed that intestinal recruitment of monocytes from Crohn's Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes. Design The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). Results We observed a decrease in the frequency of mo-DCs in the colon of Nod2-deficient mice, despite a similar abundance of monocytes. This decrease was independent of the changes in the gut microbiota and dysbiosis caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted in a Nod2-deficient mixed bone marrow (BM) chimera. The use of pharmacological inhibitors revealed that activation of NOD2 during monocyte-derived cell development, dominantly inhibits mTOR-mediated macrophage differentiation in a TNFα-dependent manner. These observations were supported by the identification of a TNFα-dependent response to muramyl dipeptide (MDP) that is specifically lost when CD14-expressing blood cells bear a frameshift mutation in NOD2. Conclusion NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD.
Collapse
Affiliation(s)
- Camille Chauvin
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Daniel Alvarez-Simon
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes CEDEX, France
| | | | - William Laine
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | - Myriam Delacre
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Elodie Segura
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Jérome Kluza
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | | | | |
Collapse
|
11
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
12
|
Dowdell AS, Cartwright IM, Kitzenberg DA, Kostelecky RE, Mahjoob O, Saeedi BJ, Welch N, Glover LE, Colgan SP. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination. Cell Rep 2022; 40:111409. [PMID: 36170839 PMCID: PMC9553003 DOI: 10.1016/j.celrep.2022.111409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
The intestinal mucosa exists in a state of “physiologic hypoxia,” where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed “xenophagy.” Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens. Dowdell et al. show that hypoxia, through stabilization of HIF-1α, activates autophagy in intestinal epithelial cells (IECs). Further, the model invasive bacterium Salmonella Typhimurium stabilizes HIF in IECs to trigger anti-bacterial autophagy (xenophagy). This mechanism demonstrates an essential mucosal innate immune response for control of invasive pathogens.
Collapse
Affiliation(s)
- Alexander S Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - Ian M Cartwright
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - David A Kitzenberg
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachael E Kostelecky
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Omemh Mahjoob
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bejan J Saeedi
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Louise E Glover
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Veterans Hospital, Aurora, CO, USA.
| |
Collapse
|
13
|
Alvarez-Simon D, Ait Yahia S, de Nadai P, Audousset C, Chamaillard M, Boneca IG, Tsicopoulos A. NOD-like receptors in asthma. Front Immunol 2022; 13:928886. [PMID: 36189256 PMCID: PMC9515552 DOI: 10.3389/fimmu.2022.928886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma. In this review article, we discuss the current knowledge and recent developments about NLR expression, activation and function in relation to asthma and examine the potential interventions in NLR signaling as asthma immunomodulatory therapies.
Collapse
Affiliation(s)
- Daniel Alvarez-Simon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Saliha Ait Yahia
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Audousset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, INSERM U1306, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
- *Correspondence: Anne Tsicopoulos,
| |
Collapse
|
14
|
Bacillus-Based Direct-Fed Microbial Reduces the Pathogenic Synergy of a Coinfection with Salmonella enterica Serovar Choleraesuis and Porcine Reproductive and Respiratory Syndrome Virus. Infect Immun 2022; 90:e0057421. [PMID: 35254092 PMCID: PMC9022502 DOI: 10.1128/iai.00574-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a Bacillus-based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV. Nine days after the bacterial challenge, Salmonella was isolated from ileocecal lymph nodes of all challenged pigs regardless of DFM treatment. Compared to the single bacterial challenge, the dual challenge with Salmonella and PRRSV resulted in a pathogenic synergy exhibited by a higher rate of Salmonella colonization in the lung and a more extensive and severe interstitial pneumonia. Provision of DFM to dually challenged pigs reduced the rate of lung colonization by Salmonella, eliminated or reduced the presence of PRRSV in the lung, and reduced the extent and severity of gross lung pathology. Dually challenged pigs that received DFM had increased concentrations of interleukin 1 (IL-1) and IL-8 in lung lavage fluids, accompanied by increased expression in their blood cells of nucleotide-binding oligomerization domain receptor 2 (NOD2) and triggering receptor expressed in myeloid cells 1 (TREM-1) molecules. These changes in pulmonary inflammatory cytokine production and increased expression of NOD2 and TREM-1 suggest that the DFM exerted a systemic modulating effect on innate immunity. These observations are consistent with the notion that tonic stimulation by gut-derived microbial products can poise innate immunity to fight infections in the respiratory tract.
Collapse
|
15
|
Steinle H, Ellwanger K, Kufer TA. Assaying RIPK2 Activation by Complex Formation. Methods Mol Biol 2022; 2523:133-150. [PMID: 35759195 DOI: 10.1007/978-1-0716-2449-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The receptor-interacting serine/threonine-protein kinase-2 (RIPK2, RIP2) is a key player in downstream signaling of nuclear oligomerization domain (NOD)-like receptor (NLR)-mediated innate immune response against bacterial infections. RIPK2 is recruited following activation of the pattern recognition receptors (PRRs) NOD1 and NOD2 by sensing bacterial peptidoglycans leading to activation of NF-κB and MAPK pathways and the production of pro-inflammatory cytokines. Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells, also called RIPosomes. These can be induced by Shigella flexneri or by the inhibition of RIPK2 by small compounds, such as GSK583 and gefitinib.In this chapter, we describe fluorescent light microscopic and Western blot approaches to analyze the cytoplasmic aggregation of RIPK2 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri, or by the treatment with RIPK2 inhibitors. This method is based on HeLa cells stably expressing eGFP-tagged RIPK2 and describes a protocol to induce and visualize RIPosome formation. The described method is useful to study the deposition of RIPK2 in speck-like structures, also in living cells, using live cell imaging and can be adopted for the study of other inhibitory proteins or to further analyze the process of RIPosome structure assembly.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany.
| |
Collapse
|
16
|
Li Y, Chen Y, Jiang L, Zhang J, Tong X, Chen D, Le W. Intestinal Inflammation and Parkinson's Disease. Aging Dis 2021; 12:2052-2068. [PMID: 34881085 PMCID: PMC8612622 DOI: 10.14336/ad.2021.0418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease which significantly influences the life quality of patients. The protein α-synuclein plays an important driving role in PD occurrence and development. Braak's hypothesis suggests that α-synuclein is produced in intestine, and then spreads into the central nervous system through the vagus nerve. The abnormal expression of α-synuclein has been found in inflammatory bowel disease (IBD). Intestinal inflammation and intestinal dysbiosis have been involved in the occurrence and development of PD. The present review aimed to summarize recent advancements in studies focusing on intestinal inflammation and PD, especially the mechanisms through which link intestinal inflammation and PD. The intestinal dysfunctions such as constipation have been introduced as non-motor manifestations of PD. The possible linkages between IBD and PD, including genetic overlaps, inflammatory responses, intestinal permeability, and intestinal dysbiosis, are mainly discussed. Although it is not confirmed whether PD starts from intestine, intestinal dysfunction may affect intestinal microenvironment to influence central nervous system, including the α-synuclein pathologies and systematic inflammation. It is expected to develop some new strategies in the diagnosis and treatment of PD from the aspect of intestine. It may also become an exciting direction to find better ways to regulate the composition of gut microorganism to treat PD.
Collapse
Affiliation(s)
- Yu Li
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Yuanyuan Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Lili Jiang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Jingyu Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Xuhui Tong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China.
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
18
|
Dowdell AS, Colgan SP. Metabolic Host-Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals (Basel) 2021; 14:708. [PMID: 34451805 PMCID: PMC8399382 DOI: 10.3390/ph14080708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a family of conditions characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD afflicts over 3 million adults in the United States and shows increasing prevalence in the Westernized world. Current IBD treatments center on modulation of the damaging inflammatory response and carry risks such as immunosuppression, while the development of more effective treatments is hampered by our poor understanding of the molecular mechanisms of IBD pathogenesis. Previous genome-wide association studies (GWAS) have demonstrated that gene variants linked to the cellular response to microorganisms are most strongly associated with an increased risk of IBD. These studies are supported by mechanistic work demonstrating that IBD-associated polymorphisms compromise the intestine's anti-microbial defense. In this review, we summarize the current knowledge regarding IBD as a disease of defects in host-microbe interactions and discuss potential avenues for targeting this mechanism for future therapeutic development.
Collapse
Affiliation(s)
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
19
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Guo H, Gibson SA, Ting JPY. Gut microbiota, NLR proteins, and intestinal homeostasis. J Exp Med 2021; 217:152098. [PMID: 32941596 PMCID: PMC7537383 DOI: 10.1084/jem.20181832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal tract harbors a highly complex microbial community, which is referred to as gut microbiota. With increasing evidence suggesting that the imbalance of gut microbiota plays a significant role in the pathogenesis of multiple diseases, interactions between the host immune system and the gut microbiota are now attracting emerging interest. Nucleotide-binding and leucine-rich repeat–containing receptors (NLRs) encompass a large number of innate immune sensors and receptors, which mediate the activation of Caspase-1 and the subsequent release of mature interleukin-1β and interleukin-18. Several family members have been found to restrain rather than activate inflammatory cytokines and immune signaling. NLR family members are central regulators of pathogen recognition, host immunity, and inflammation with utmost importance in human diseases. In this review, we focus on the potential roles played by NLRs in controlling and shaping the microbiota community and discuss how the functional axes interconnecting gut microbiota with NLRs impact the modulation of colitis, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Hao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
21
|
Zhou Y, Hu L, Tang W, Li D, Ma L, Liu H, Zhang S, Zhang X, Dong L, Shen X, Chen S, Xue R, Zhang S. Hepatic NOD2 promotes hepatocarcinogenesis via a RIP2-mediated proinflammatory response and a novel nuclear autophagy-mediated DNA damage mechanism. J Hematol Oncol 2021; 14:9. [PMID: 33413510 PMCID: PMC7791875 DOI: 10.1186/s13045-020-01028-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Key hepatic molecules linking gut dysbiosis and hepatocarcinogenesis remain largely unknown. Gut-derived gut microbiota contains pathogen-associated molecular patterns (PAMPs) that may circulate into the liver and, consequently, be recognized by hepatic pattern recognition receptors (PRRs). NOD2, a general intracellular PRR, recognizes muramyl dipeptide (MDP), present in both gram (+) and gram (-) bacteria. Here, we investigated the role of NOD2 as a molecular sensor translating gut dysbiosis signaling into hepatocarcinogenesis. METHODS NOD2 expression was measured in clinical hepatocellular carcinoma (HCC) samples using qPCR (80 pairs), western blotting (30 pairs) and immunostaining (141 pairs). The role of NOD2 in hepatocarcinogenesis was examined in the hepatocyte-specific Nod2-knockout (Nod2△hep), Rip2-knockout (Rip2△hep), Lamin A/C-knockout (Lamn△hep) and Rip2/Lamin A/C double-knockout (Rip2/Lamn△hep) mice models of diethylnitrosamine (DEN)/CCl4-induced HCC. RESULTS NOD2 was upregulated and activated in HCC samples, and high NOD2 expression correlated with poor prognosis in HCC patients. Hepatic NOD2 deletion in vivo decreased DEN/CCl4-induced HCC by reducing the inflammatory response, DNA damage and genomic instability. NOD2 activation increased liver inflammation via RIP2-dependent activation of the MAPK, NF-κB and STAT3 pathways. Notably, a novel RIP2-independent mechanism was discovered, whereby NOD2 activation induces the nuclear autophagy pathway. We showed that NOD2 undergoes nuclear transport and directly binds to a component of nuclear laminae, lamin A/C, to promote its protein degradation, leading to impaired DNA damage repair and increased genomic instability. CONCLUSIONS We reveal a novel bridge, bacterial sensor NOD2, linking gut-derived microbial metabolites to hepatocarcinogenesis via induction of the inflammatory response and nuclear autophagy. Thus, we propose hepatic NOD2 as a promising therapeutic target against HCC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, China
| | - Wenqing Tang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dongping Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijie Ma
- Department of General Surgery, Zhongshan Hospital (South), Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongchun Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaojie Zhang
- Department of Rheumatology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - She Chen
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Yang E, Shen J. The roles and functions of Paneth cells in Crohn's disease: A critical review. Cell Prolif 2020; 54:e12958. [PMID: 33174662 PMCID: PMC7791172 DOI: 10.1111/cpr.12958] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Paneth cells (PCs) are located at the base of small intestinal crypts and secrete the α‐defensins, human α‐defensin 5 (HD‐5) and human α‐defensin 6 (HD‐6) in response to bacterial, cholinergic and other stimuli. The α‐defensins are broad‐spectrum microbicides that play critical roles in controlling gut microbiota and maintaining intestinal homeostasis. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease (CD), is a complicated autoimmune disorder. The pathogenesis of CD involves genetic factors, environmental factors and microflora. Surprisingly, with regard to genetic factors, many susceptible genes and pathogenic pathways of CD, including nucleotide‐binding oligomerization domain 2 (NOD2), autophagy‐related 16‐like 1 (ATG16L1), immunity‐related guanosine triphosphatase family M (IRGM), wingless‐related integration site (Wnt), leucine‐rich repeat kinase 2 (LRRK2), histone deacetylases (HDACs), caspase‐8 (Casp8) and X‐box‐binding protein‐1 (XBP1), are relevant to PCs. As the underlying mechanisms are being unravelled, PCs are identified as the central element of CD pathogenesis, integrating factors among microbiota, intestinal epithelial barrier dysfunction and the immune system. In the present review, we demonstrate how these genes and pathways regulate CD pathogenesis via their action on PCs and what treatment modalities can be applied to deal with these PC‐mediated pathogenic processes.
Collapse
Affiliation(s)
- Erpeng Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Khan FA, Nasim N, Wang Y, Alhazmi A, Sanam M, Ul-Haq Z, Yalamati D, Ulanova M, Jiang ZH. Amphiphilic desmuramyl peptides for the rational design of new vaccine adjuvants: Synthesis, in vitro modulation of inflammatory response and molecular docking studies. Eur J Med Chem 2020; 209:112863. [PMID: 33032082 DOI: 10.1016/j.ejmech.2020.112863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is cytosolic surveillance receptor of the innate immune system capable of recognizing the bacterial and viral infections. Muramyl dipeptide (MDP) is the minimal immunoreactive unit of murein. NOD2 perceives MDP as pathogen-associated molecular pattern, thereby triggering an immune response with undesirable side-effects. Beneficial properties of MDP, such as pro-inflammatory characteristics for the rational design of new vaccine adjuvants, can be harnessed by strategically re-designing the molecule. In this work, a new class of amphiphilic desmuramylpeptides (DMPs) were synthesized by replacing the carbohydrate moiety (muramic acid) of the parent molecule with hydrophilic arenes. A lipophilic chain was also introduced at the C-terminus of dipeptide moiety (alanine-isoglutamine), while conserving its L-D configuration. These novel DMPs were found to set off the release of higher levels of tumour necrosis factor alpha (TNF-α) than Murabutide, which is a well-known NOD2 agonist. Molecular docking studies indicate that all these DMPs bind well to NOD2 receptor with similar dock scores (binding energy) through a number of hydrogen bonding and hydrophobic/π interactions with several crucial residues of the receptor. More studies are needed to further assess their immunomodulatory therapeutic potential, as well as the possible involvement of NOD2 activation.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, 75270, Pakistan.
| | - Nourina Nasim
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, 75270, Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, 75270, Pakistan
| | - Alaa Alhazmi
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada; Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
| | - Mehar Sanam
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Damayanthi Yalamati
- Alberta Research Chemicals Inc., 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.
| |
Collapse
|
24
|
The Impact of the NOD2/CARD15 Variant (3020insC) and PSMA6 Polymorphism (-8C>G) on the Development and Outcome of Multiple Myeloma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7629456. [PMID: 32596371 PMCID: PMC7298267 DOI: 10.1155/2020/7629456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Introduction Multiple myeloma (MM) is a hematological malignancy characterized by genetic variety. The 3020insC variant of the NOD2/CARD15 gene results in the upregulation of proinflammatory cytokines. Chronic inflammation and abnormal function of the proteasome system may lead to MM development. The polymorphism (-8C>G) in the PSMA6 gene affects proteasome activity. The aim of our study was to analyze the possible relationship of NOD/CARD15 and PSMA6 genes with the risk of development and outcome of MM, as well as the sensitivity to bortezomib (proteasome inhibitor) in cell cultures derived from MM patients. Objects and Methods. Genomic DNA from 100 newly diagnosed MM patients and 100 healthy blood donors was analyzed by methods such as PCR-RFLP (for PSMA6 genotyping) and automated DNA sequencing (for NOD2/CARD15 genotyping). In a subgroup of 50 MM patients, nucleated bone marrow cells were treated with bortezomib in vitro. Results Patients with PSMA6 CG+GG genotypes had higher chances for progressive disease (OR = 5.0, 95% CI 1.07-23.16, p = 0.05), shorter overall survival taking into account the type of treatment (p = 0.039), and increased risk of death due to MM at the level of tendency (OR = 4.74, 95% CI 1.02-21.97, p = 0.06). The presence of NOD2/CARD15 3020insC decreased the risk of renal dysfunction in MM (OR = 0.23, 95% CI 0.07-0.74, p = 0.009). The analyzed changes in NOD2/CARD15 and PSMA6 genes did not impact the MM risk. In an in vitro study, bortezomib increased the number of apoptotic cells at 8 nM and 12 nM between wild-type and 3030insC variants of NOD2/CARD15 (p = 0.018 and p = 0.03, respectively). Conclusion The presented results suggest a possible impact of PSMA6 CG+GG genotypes on the MM outcome and the association of the NOD2/CARD15 variant with bortezomib in vitro sensitivity.
Collapse
|
25
|
Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12:nu12040944. [PMID: 32235316 PMCID: PMC7230231 DOI: 10.3390/nu12040944] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process that requires lifelong treatment. The underlying causes of IBD are still unclear, as this heterogeneous disorder results from a complex interplay between genetic variability, the host immune system and environmental factors. The current knowledge recognizes diet as a risk factor for the development of IBD and attributes a substantial pathogenic role to the intestinal dysbiosis inducing an aberrant mucosal immune response in genetically predisposed individuals. This review focused on the clinical evidence available that considers the impact of some nutrients on IBD onset and the role of different diets in the management of IBD and their effects on the gut microbiota composition. The effects of the Specific Carbohydrate Diet, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, gluten free diet, anti-inflammatory diet and Mediterranean diet are investigated with regard to their impact on microbiota and on the evolution of the disease. At present, no clear indications toward a specific diet are available but the assessment of dysbiosis prior to the recommendation of a specific diet should become a standard clinical approach in order to achieve a personalized therapy.
Collapse
|
26
|
Szymanski AM, Ombrello MJ. Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1. Int Immunol 2019. [PMID: 29538758 DOI: 10.1093/intimm/dxy021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intersection of granulomatosis and autoinflammatory disease is a rare occurrence that can be generally subdivided into purely granulomatous phenotypes and disease spectra that are inclusive of granulomatous features. NOD2 (nucleotide-binding oligomerization domain-containing protein 2)-related disease, which includes Blau syndrome and early-onset sarcoidosis, is the prototypic example of granulomatous inflammation in the context of monogenic autoinflammation. Granulomatous inflammation has also been observed in two related autoinflammatory diseases caused by mutations in PLCG2 (phospholipase Cγ2). More recently, mutations in LACC1 (laccase domain-containing protein 1) have been identified as the cause of a monogenic form of systemic juvenile idiopathic arthritis, which does not itself manifest granulomatous inflammation, but the same LACC1 mutations have also been shown to cause an early-onset, familial form of a well-known granulomatous condition, Crohn's disease (CD). Rare genetic variants of PLCG2 have also been shown to cause a monogenic form of CD, and moreover common variants of all three of these genes have been implicated in polygenic forms of CD. Additionally, common variants of NOD2 and LACC1 have been implicated in susceptibility to leprosy, a granulomatous infection. Although no specific mechanistic link exists between these three genes, they form an intriguing web of susceptibility to both monogenic and polygenic autoinflammatory and granulomatous phenotypes.
Collapse
Affiliation(s)
- Ann Marie Szymanski
- Translational Genetics and Genomics Unit, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Unit, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| |
Collapse
|
27
|
Watanabe T, Minaga K, Kamata K, Sakurai T, Komeda Y, Nagai T, Kitani A, Tajima M, Fuss IJ, Kudo M, Strober W. RICK/RIP2 is a NOD2-independent nodal point of gut inflammation. Int Immunol 2019; 31:669-683. [PMID: 31132297 DOI: 10.1093/intimm/dxz045] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that inhibition of receptor-interacting serine/threonine kinase (RICK) (also known as RIP2) results in amelioration of experimental colitis. This role has largely been attributed to nucleotide-binding oligomerization domain 2 (NOD2) signaling since the latter is considered a major inducer of RICK activation. In this study, we explored the molecular mechanisms accounting for RICK-mediated inhibition of inflammatory bowel disease (IBD). In an initial series of studies focused on trinitrobenzene sulfonic acid (TNBS)-colitis and dextran sodium sulfate (DSS)-colitis we showed that down-regulation of intestinal RICK expression in NOD2-intact mice by intra-rectal administration of a plasmid expressing RICK-specific siRNA was accompanied by down-regulation of pro-inflammatory cytokine responses in the colon and protection of the mice from experimental colitis. Somewhat surprisingly, intra-rectal administration of RICK-siRNA also inhibited TNBS-colitis and DSS-colitis in NOD2-deficient and in NOD1/NOD2-double deficient mice. In complementary studies of humans with IBD we found that expression of RICK, cellular inhibitor of apoptosis protein 2 (cIAP2) and downstream signaling partners were markedly increased in inflamed tissue of IBD compared to controls without marked elevations of NOD1 or NOD2 expression. In addition, the increase in RICK expression correlated with disease activity and pro-inflammatory cytokine responses. These studies thus suggest that NOD1- or NOD2-independenent activation of RICK plays a major role in both murine experimental colitis and human IBD.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan.,Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Yoriaki Komeda
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Tomoyuki Nagai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Atsushi Kitani
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaki Tajima
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Pashenkov MV, Murugina NE, Budikhina AS, Pinegin BV. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications. J Leukoc Biol 2018; 105:669-680. [PMID: 30517768 DOI: 10.1002/jlb.2ru0718-290r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between pattern recognition receptors (PRRs) shape innate immune responses to particular classes of pathogens. Here, we review interactions between TLRs and nucleotide-binding oligomerization domain 1 and 2 (NOD1 and NOD2) receptors, two major groups of PRRs involved in innate recognition of bacteria. Most of experimental data both in vitro and in vivo suggest that NODs and TLRs synergize with each other at inducing the production of cytokines and antimicrobial peptides. Molecular mechanisms of this synergy remain poorly understood, although several scenarios can be proposed: (i) direct interactions of signaling pathways downstream of NODs and TLRs; (ii) mutual transcriptional regulation of unique components of NOD-dependent and TLR-dependent signaling pathways; and (iii) interactions at the post-transcriptional level. Potential practical implications of NOD-TLR synergy are dual. In sepsis, where synergistic effects probably contribute to excessive proinflammatory cytokine production, blockade of NOD1, and/or NOD2 in addition to TLR4 blockade may be required to achieve therapeutic benefit. On the other hand, synergistic combinations of relatively small doses of NOD and TLR agonists administered before infection could be used to boost innate resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Mikhail V Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Nina E Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna S Budikhina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Boris V Pinegin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
30
|
NOD2 Expression in Intestinal Epithelial Cells Protects Toward the Development of Inflammation and Associated Carcinogenesis. Cell Mol Gastroenterol Hepatol 2018; 7:357-369. [PMID: 30704984 PMCID: PMC6357788 DOI: 10.1016/j.jcmgh.2018.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan-conserved motifs in cytosol and stimulates host immune response including epithelial and immune cells. The association of NOD2 mutations with a number of inflammatory pathologies including Crohn's disease (CD), graft-versus-host diseases, or Blau syndrome, highlights its pivotal role in inflammatory response and the associated-carcinogenesis development. Since its identification in 2001 and its association with CD, the role of NOD2 in epithelial cells and immune cells has been investigated extensively but the precise mechanism by which NOD2 mutations lead to CD and the associated carcinogenesis development is largely unknown. In this review, we present and discuss recent developments about the role of NOD2 inside epithelial cells on the control of the inflammatory process and its linked carcinogenesis development.
Collapse
|
31
|
de Souza PR, Guimarães FR, Sales-Campos H, Bonfá G, Nardini V, Chica JEL, Turato WM, Silva JS, Zamboni DS, Cardoso CRDB. Absence of NOD2 receptor predisposes to intestinal inflammation by a deregulation in the immune response in hosts that are unable to control gut dysbiosis. Immunobiology 2018; 223:577-585. [DOI: 10.1016/j.imbio.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022]
|
32
|
Santa-Cecília FV, Ferreira DW, Guimaraes RM, Cecilio NT, Fonseca MM, Lopes AH, Davoli-Ferreira M, Kusuda R, Souza GR, Nachbur U, Alves-Filho JC, Teixeira MM, Zamboni DS, Cunha FQ, Cunha TM. The NOD2 signaling in peripheral macrophages contributes to neuropathic pain development. Pain 2018; 160:102-116. [DOI: 10.1097/j.pain.0000000000001383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kim J, Yang YL, Jang SH, Jang YS. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol J 2018; 15:124. [PMID: 30089512 PMCID: PMC6083524 DOI: 10.1186/s12985-018-1035-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background Antimicrobial peptides (AMPs) are primarily known for their innate immune defense against invading microorganisms, including viruses. In addition, recent research has suggested their modulatory activity in immune induction. Given that most subunit vaccines require an adjuvant to achieve effective immune induction through the activation of innate immunity, AMPs are plausible candidate molecules for stimulating not only innate immune but also adaptive immune responses. Results In this study, we investigated the ability of human β-defensin (HBD) 2 to promote antiviral immunity in vitro and in vivo using a receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) spike protein (S RBD) as a model antigen (Ag). When HBD 2-conjugated S RBD was used to treat THP-1 human monocytic cells, the expression levels of antiviral (IFN-β, IFN-γ, MxA, PKR, and RNaseL) and primary immune-inducing (NOD2, TNF-α, IL-1β, and IL-6) molecules were enhanced compared to those expressed after treatment with S RBD only. The expression of chemokines capable of recruiting leukocytes, including monocytes/macrophages, natural killer cells, granulocytes, T cells, and dendritic cells, was also increased following HBD 2-conjugated S RBD treatment. More important, immunization of mice with HBD 2-conjugated S RBD enhanced the immunogenicity of the S RBD and elicited a higher S RBD-specific neutralizing antibody response than S RBD alone. Conclusions We conclude that HBD 2 activates the primary antiviral innate immune response and may also mediate the induction of an effective adaptive immune response against a conjugated Ag.
Collapse
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54896, Korea
| | - Sun-Hee Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Korea. .,Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54896, Korea.
| |
Collapse
|
34
|
Guo M, Li R, Xiao Q, Fan X, Li N, Shang Y, Wei L, Chai T. Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection. Front Cell Infect Microbiol 2018; 8:220. [PMID: 29998088 PMCID: PMC6031198 DOI: 10.3389/fcimb.2018.00220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/08/2018] [Indexed: 01/01/2023] Open
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2), a member of the NOD-like receptors (NLRs) family that is well-known to play a key role in innate immune responses and is involved in innate antibacterial responses. In this study, rabbit NOD2 (rNOD2) was cloned from rabbit kidney (RK) cells. It was distributed in various tissues, and the highest level of rNod2 was detected in spleen. Moreover, the expression of rNod2 was significantly upregulated in the heart, liver, and spleen induced by enterohemorrhagic Escherichia coli (EHEC). Overexpression of rNOD2 induced the expression of pro-inflammatory cytokine, including Il1β, Il6, Ifn-γ, and Tnf, as well as defensins, including Defb124, Defb125, and Defb128 through the nuclear factor (NF)-κB signaling pathway. Furthermore, overexpression of rNOD2 inhibited the growth of EHEC, and knockdown of rNOD2 or inhibition of the NF-κB pathway promoted its replication. In addition, our results suggest that rNOD2 can significantly activate NF-κB signaling and trigger antibacterial defenses to increase the expression of pro-inflammatory cytokine and defensins after stimulation by EHEC. These findings are useful to further understanding the innate immune system of rabbits and providing a new perspective for the prevention of bacterial diseases in rabbits.
Collapse
Affiliation(s)
- Mengjiao Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Rong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Qianqian Xiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiuxiu Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Tai'an, China
| | - Tongjie Chai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
35
|
Abstract
Defining the etiology of inflammatory bowel disease (IBD) continues to elude researchers, in part due to the possibility that there may be different triggers for a spectrum of disease phenotypes that are currently classified as either Crohn's disease (CD) or ulcerative colitis (UC). What is clear is that genetic susceptibility plays an important role in the development of IBD, and large genome-wide association studies using case-control approaches have identified more than 230 risk alleles. Many of these identified risk alleles are located in a variety of genes important in host-microbiome interactions. In spite of these major advances, the mechanisms behind the genetic influence on disease development remain unknown. In addition, the identified genetic risks have thus far failed to fully define the hereditability of IBD. Host genetics influence host interactions with the gut microbiota in maintaining health through a balance of regulated immune responses and coordinated microbial composition and function. What remains to be defined is how alterations in these interactions can lead to disease. The nature and cause of changes in the microbiota in patients with IBD are poorly understood. In spite of the large catalog of alterations in the microbiota of IBD patients, inflammation itself can alter the microbiota, leaving open the question of which is cause or effect. The composition and function of the gut microbiota are influenced by many factors, including environmental factors, dietary factors, and, as recent studies have shown, host genetic makeup. More than 200 loci have shown potential to influence the microbiota, but replication and larger studies are still required to validate these findings. It would seem reasonable to consider the combination of both host genetic makeup and the inheritance of the microbiota as interdependent heritable forces that could explain the nature of an individual's susceptibility to IBD or indeed the actual cause of IBD. In this review, we will consider the contribution of the host genetics, the microbiome, and the influence of host genetics on the microbiota to the heritability of IBD.
Collapse
Affiliation(s)
- Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh Goethel
- Department of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Larbi Bedrani
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru, MDCM
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Kenneth Croitoru, Zane Cohen Centre for Digestive Diseases, Division of Gastroenterology, Department of Medicine and Immunology, University of Toronto, Mount Sinai Hospital, 600 University Avenue Room 437, Toronto, Ontario, M5G 1X5, Canada ()
| |
Collapse
|
36
|
NFκB activation in differentiating glioblastoma stem-like cells is promoted by hyaluronic acid signaling through TLR4. Sci Rep 2018; 8:6341. [PMID: 29679017 PMCID: PMC5910430 DOI: 10.1038/s41598-018-24444-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously described that the NFκB pathway is upregulated during differentiation of glioblastoma stem-like cells (GSCs) which keeps differentiating GSCs in a proliferative astrocytic precursor state. However, extracellular signals and cellular mediators of this pathway are not clear yet. Here, we show that TLR4 is a key factor to promote NFκB activation in differentiating GSCs. TLR4 is upregulated during differentiation of GSCs and promotes transcriptional activation of NFκB as determined by luciferase-reporter assays and expression of NFκB target genes. Downregulation of TLR4 by shRNAs or blockade with anti-TLR4 specific antibodies drastically inhibited NFκB activity which promoted further differentiation and reduced proliferation of GSCs. We found that hyaluronic acid (HA), a main component of brain extracellular matrix, triggers the TLR4-NFκB pathway in differentiating GSCs. Moreover, HA is synthesized and released by GSCs undergoing differentiation and leads to transcriptional activation of NFκB, which is inhibited following downregulation of TLR4 or blockade of HA synthesis. Thus, we have demonstrated that during the process of differentiation, GSCs upregulate TLR4 and release the TLR4 ligand HA, which activates the TLR4-NFκB signaling pathway. This strategy may efficiently be used by differentiating GSCs to maintain their proliferative potential and consequently their tumorigenic capacity.
Collapse
|
37
|
Shohan M, Elahi S, Shirzad H, Rafieian-Kopaei M, Bagheri N, Soltani E. Th9 Cells: Probable players in ulcerative colitis pathogenesis. Int Rev Immunol 2018; 37:192-205. [PMID: 29672174 DOI: 10.1080/08830185.2018.1457659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Collapse
Affiliation(s)
- Mojtaba Shohan
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Shokrollah Elahi
- b Department of Dentistry , Department of Medical Microbiology and Immunology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Hedayatollah Shirzad
- c Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahmoud Rafieian-Kopaei
- d Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Nader Bagheri
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Emad Soltani
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
38
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Schaefer AK, Melnyk JE, He Z, Del Rosario F, Grimes CL. Pathogen- and Microbial- Associated Molecular Patterns (PAMPs/MAMPs) and the Innate Immune Response in Crohn’s Disease. IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE 2018:175-187. [DOI: 10.1016/b978-0-12-805417-8.00014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int Immunopharmacol 2017; 54:385-400. [PMID: 29207344 DOI: 10.1016/j.intimp.2017.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.
Collapse
|
41
|
de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opin Ther Targets 2017; 21:1123-1139. [DOI: 10.1080/14728222.2017.1397627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Magali de Bruyn
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research in GastroIntestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
42
|
Khan FA, Ulanova M, Bai B, Yalamati D, Jiang ZH. Design, synthesis and immunological evaluation of novel amphiphilic desmuramyl peptides. Eur J Med Chem 2017; 141:26-36. [PMID: 29028529 DOI: 10.1016/j.ejmech.2017.09.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
Abstract
Muramyl dipeptide (MDP) - an essential bacterial cell wall component - is recognized by our immune system as pathogen-associated molecular pattern (PAMP) which results in immune responses with adverse toxic effects. In order to harness the beneficial properties from the pro-inflammatory characteristics of the bacterial cell wall motif, MDP was strategically re-designed while conserving the L-D configurations of the dipeptide moiety. The muramic acid was replaced with a hydrophilic arene and lipophilic chain was introduced at peptide end to give the amphiphilic desmuramyl peptides (DMPs). The novel DMPs were found to modulate the immune response by amplifying the LPS-induced surface glycoprotein (ICAM-1) expression in THP-1 cells without showing significant toxicity. Furthermore, these compounds were able to trigger the secretion of higher levels of pro-inflammatory cytokine (TNF-α) than the well-studied NOD2 agonist, Murabutide.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada; Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Bing Bai
- Alberta Research Chemicals Inc., 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Damayanthi Yalamati
- Alberta Research Chemicals Inc., 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.
| |
Collapse
|
43
|
Saxena A, Lopes F, Poon KKH, McKay DM. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am J Physiol Gastrointest Liver Physiol 2017; 313:G26-G38. [PMID: 28450277 DOI: 10.1152/ajpgi.00070.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
Abstract
Irregular mitochondria structure and reduced ATP in some patients with IBD suggest that metabolic stress contributes to disease. Loss-of-function mutation in the nucleotide-binding oligomerization domain (NOD)-2 gene is a major susceptibility trait for IBD. Hence, we assessed if loss of NOD2 further impairs the epithelial barrier function instigated by disruption of mitochondrial ATP synthesis via the hydrogen ionophore dinitrophenol (DNP). NOD2 protein (virtually undetectable in epithelia under basal conditions) was increased in T84 (human colon cell line) cells treated with noninvasive Escherichia coli + DNP (16 h). Increased intracellular bacteria in wild-type (WT) and NOD2 knockdown (KD) cells and colonoids from NOD2-/- mice were mediated by reactive oxygen species (ROS) and the MAPK ERK1/2 pathways as determined by cotreatment with the antioxidant mitoTEMPO and the ERK inhibitor U0126: ROS was upstream of ERK1/2 activation. Despite increased E. coli in DNP-treated NOD2 KD compared with WT cells, there were no differences in the internalization of fluorescent inert beads or dead E. coli particles. This suggests that lack of killing in the NOD2 KD cells was responsible for the increased numbers of viable intracellular bacteria; a conclusion supported by evidence of reduced autophagy in NOD2 KD T84 epithelia. Thus, in a two-hit hypothesis, decreased barrier function due to dysfunctional mitochondrial is amplified by lack of NOD2 in transporting enterocytes: subsequently, greater numbers of bacteria entering the mucosa would be a significant inflammatory threat especially since individuals with NOD2 mutations have compromised macrophage and Paneth cell responses to bacteria.NEW & NOTEWORTHY Increased internalization of bacteria by epithelia with dysfunctional mitochondria (reduced ATP) is potentiated if the cells lack nucleotide-binding oligomerization domain 2 (NOD2), mutations in which are inflammatory bowel disease-susceptibility traits. Uptake of bacteria was dependent on reactive oxygen species and MAP-kinase activity, and the increased viable intracellular bacteria in NOD2-/- cells likely reflect a reduced ability to recognize and kill bacteria. Thus a significant barrier defect occurs with NOD2 deficiency in conjunction with metabolic stress that could contribute to inflammation.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen K H Poon
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Corridoni D, Rodriguez-Palacios A, Di Stefano G, Di Martino L, Antonopoulos DA, Chang EB, Arseneau KO, Pizarro TT, Cominelli F. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn's disease-like ileitis independent of functional dysbiosis. Mucosal Immunol 2017; 10:971-982. [PMID: 27848951 PMCID: PMC5433921 DOI: 10.1038/mi.2016.98] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn's disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well as acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- D Corridoni
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - G Di Stefano
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - L Di Martino
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - D A Antonopoulos
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - E B Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - K O Arseneau
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - T T Pizarro
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - F Cominelli
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Digestive Health Research Institute, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Chirieleison SM, Marsh RA, Kumar P, Rathkey JK, Dubyak GR, Abbott DW. Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. J Biol Chem 2017; 292:9666-9679. [PMID: 28404814 DOI: 10.1074/jbc.m117.781500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
The X-linked inhibitor of apoptosis (XIAP) protein has been identified as a key genetic driver of two distinct inflammatory disorders, X-linked lymphoproliferative syndrome 2 (XLP-2) and very-early-onset inflammatory bowel disease (VEO-IBD). Molecularly, the role of XIAP mutations in the pathogenesis of these disorders is unclear. Recent work has consistently shown XIAP to be critical for signaling downstream of the Crohn's disease susceptibility protein nucleotide-binding oligomerization domain-containing 2 (NOD2); however, the reported effects of XLP-2 and VEO-IBD XIAP mutations on cell death have been inconsistent. In this manuscript, we describe a CRISPR-mediated genetic system for cells of the myeloid lineage in which XIAP alleles can be replaced with disease-associated XIAP variants expressed at endogenous levels to simultaneously study inflammation-related cell death and NOD2 signaling. We show that, consistent with previous studies, NOD2 signaling is critically dependent on the BIR2 domain of XIAP. We further used this system to reconcile the aforementioned inconsistent XIAP cell death data to show that XLP-2 and VEO-IBD XIAP mutations that exhibit a loss-of-function NOD2 phenotype also lower the threshold for inflammatory cell death. Last, we identified and studied three novel patient XIAP mutations and used this system to characterize NOD2 and cell death phenotypes driven by XIAP. The results of this work support the role of XIAP in mediating NOD2 signaling while reconciling the role of XLP-2 and VEO-IBD XIAP mutations in inflammatory cell death and provide a set of tools and framework to rapidly test newly discovered XIAP variants.
Collapse
Affiliation(s)
| | - Rebecca A Marsh
- the Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio 45229
| | | | | | - George R Dubyak
- Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | | |
Collapse
|
46
|
Cucu MG, Streața I, Riza AL, Cimpoeru AL, Șerban-Șoșoi S, Ciocoiu A, Pleșea RM, Popescu EL, Dorobanțu Ș, Anghel A, Stroe AM, Ștefan AN, Cioboată R, Băzăvan I, Ciontea MS, Căpitănescu I, Olteanu M, Nițu M, Burada F, Tătaru T, Netea M, van Crevel R, Olaru M, Mixich F, Ioana M. Polymorphisms in autophagy genes and active pulmonary tuberculosis susceptibility in Romania. REV ROMANA MED LAB 2017; 25:47-53. [DOI: 10.1515/rrlm-2017-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Abstract
Autophagy, a homeostatic process involved in nutrient regeneration and immune responses, may be involved in intracellular killing of M. tuberculosis. Several studies linked variation in autophagy genes with susceptibility to pulmonary tuberculosis, but others did not confirm these findings.
We genotyped single nucleotide polymorphisms (SNPs) in the ATG5 (rs2245214, c.574-12777G>C) and NOD2 (rs2066844, c.2104C>T) genes for 256 pulmonary tuberculosis patients and 330 unrelated healthy controls in Romania. Both SNPs have been reported as relevant for the autophagy process and potentially for susceptibility to active pulmonary tuberculosis.
In our study, the polymorphisms in ATG5 and NOD2 were not associated with tuberculosis. This suggests that the two genetic variants we focused on are not related to the risk for developing active TB in a Romanian population.
Collapse
Affiliation(s)
| | - Ioana Streața
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | - Anca Lelia Riza
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | | | | | - Adela Ciocoiu
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | | | | | | | - Andreea Anghel
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | - Aida Maria Stroe
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | | | - Ramona Cioboată
- “Victor Babes” Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Ileana Băzăvan
- “Victor Babes” Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | | | - Iulia Căpitănescu
- “Tudor Vladimirescu” Pneumophtisiology Hospital Runcu, Gorj County, Romania
| | - Mihai Olteanu
- “Victor Babes” Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Mimi Nițu
- “Victor Babes” Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Florin Burada
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | | | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marian Olaru
- “Victor Babes” Infectious Diseases and Pneumophtisiology Hospital Craiova, Dolj County, Romania
| | - Francisc Mixich
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| | - Mihai Ioana
- University of Medicine And Pharmacy Craiova, Dolj County, Romania
| |
Collapse
|
47
|
MacDonald TT, Di Sabatino A, DiSabatino A, Gordon JN. Immunopathogenesis of Crohn's Disease. JPEN J Parenter Enteral Nutr 2016; 29:S118-24; discussion S124-5, S184-8. [PMID: 15980273 DOI: 10.1177/01486071050290s4s118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review highlights the huge advances made in the understanding of Crohn's disease in the last 15 years. The pathogenic immune response in the gut wall is a highly polarised T helper cell type 1 response, probably directed against antigens of the commensal flora. There is marked over-expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha and increased production of matrix degrading enzymes by fibroblasts and macrophages, which are probably responsible for ulceration and fistula formation. Crohn's disease runs in families and the susceptibility genes identified so far are associated with innate recognition of microbial products (Nod2) or epithelial barrier function (OCTN cation transporter genes and DLG5). Endogenous healing pathways mediated by transforming growth factor (TGF)-beta1 are inhibited because mucosal inflammatory cells express Smad7, the endogenous intracellular inhibitor of TGF-beta signalling. This makes it unlikely that enteral feeds containing TFG-beta are therapeutic by means of direct anti-inflammatory effects, however TGF-beta may still be involved because it is a well known epithelial motogen and may promote mucosal healing, in synergy with changes in mucosal bacterial populations as a result of the change in the diet.
Collapse
Affiliation(s)
- Thomas T MacDonald
- Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases - a 'Nod' in the right direction. Immunology 2016; 150:237-247. [PMID: 27706808 DOI: 10.1111/imm.12677] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs) are a family of 23 receptors known as pattern recognition receptors; they are expressed in many cell types and play a key role in the innate immune response. The NLRs are activated by pathogen-associated molecular patterns, which include structurally conserved molecules present on the surfaces of bacteria. The activation of these NLRs by pathogens results in the downstream activation of signalling kinases and transcription factors, culminating in the transcription of genes coding for pro-inflammatory factors. Expression of NLR is altered in many cellular, physiological and disease states. There is a lack of understanding of the mechanisms by which NLR expression is regulated, particularly in chronic inflammatory states. Genetic polymorphisms and protein interactions are included in such mechanisms. This review seeks to examine the current knowledge regarding the regulation of this family of receptors and their signalling pathways as well as how their expression changes in disease states with particular focus on NOD1 and NOD2 in inflammatory bowel diseases among others.
Collapse
Affiliation(s)
- Claire L Feerick
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| |
Collapse
|
49
|
Karaarslan A, Kobak S, Berdeli A. NOD2/CARD15 gene mutations in patients with gouty arthritis. Bosn J Basic Med Sci 2016; 16:276-279. [PMID: 27357501 DOI: 10.17305/bjbms.2016.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/28/2016] [Accepted: 05/21/2016] [Indexed: 11/16/2022] Open
Abstract
Nucleotide binding and oligomerization domains/caspase recruitment domain-containing protein 15 (NOD2/CARD15) is a cytoplasmic molecule controlling apoptosis and inflammatory processes by recognizing some microbial components. We aimed to identify the frequencies of NOD2/CARD15 gene mutations in patients with gouty arthritis and to determine their possible correlation with the disease phenotype. The study included 93 patients with gouty arthritis and 51 healthy controls matched for age, gender, and ethnicity. The NOD2/CARD15 R702W and G908R gene mutations were explored by the polymerase chain reaction restriction fragment length polymorphism method while the 3020insC mutation was analyzed by DNA sequencing. The mean patient age was 54.2 ± 14.2 years and mean duration of the disease was 3.1 ± 2.9 years. The first metatarsophalangeal and finger joint involvements were detected in 72 (77.4%) and 18 (19.5%) patients, respectively. Ankle arthritis and knee arthritis were detected in 43 (46.2%) and 20 (21.5%) patients, respectively. In total, 4 (9%) heterozygous mutations were detected in the G908R and R702W genes, while no mutation was detected in the 3020insC gene. Compared to the control group, there were no significant differences in all three DNA regions (G908R, R702W, and 3020insC; p = 0.452, p = 0.583, and p = 0.350, respectively). No correlation between the NOD2/CARD15 variants and clinical or laboratory findings (p > 0.05) was found. The frequencies of the NOD2/CARD15 gene mutations in the patients were similar to healthy control group. No association between clinical or laboratory findings and the NOD2/CARD15 gene mutations was observed.
Collapse
Affiliation(s)
- Ahmet Karaarslan
- Department of Orthopedics, Faculty of Medicine, Sifa University, Izmir, Turkey.
| | | | | |
Collapse
|
50
|
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: A Critical Regulator of Ileal Microbiota and Crohn's Disease. Front Immunol 2016; 7:367. [PMID: 27703457 PMCID: PMC5028879 DOI: 10.3389/fimmu.2016.00367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The human intestinal tract harbors large bacterial community consisting of commensal, symbiotic, and pathogenic strains, which are constantly interacting with the intestinal immune system. This interaction elicits a non-pathological basal level of immune responses and contributes to shaping both the intestinal immune system and bacterial community. Recent studies on human microbiota are revealing the critical role of intestinal bacterial community in the pathogenesis of both systemic and intestinal diseases, including Crohn’s disease (CD). NOD2 plays a key role in the regulation of microbiota in the small intestine. NOD2 is highly expressed in ileal Paneth cells that provide critical mechanism for the regulation of ileal microbiota through the secretion of anti-bacterial compounds. Genome mapping of CD patients revealed that loss of function mutations in NOD2 are associated with ileal CD. Genome-wide association studies further demonstrated that NOD2 is one of the most critical genetic factor linked to ileal CD. The bacterial community in the ileum is indeed dysregulated in Nod2-deficient mice. Nod2-deficient ileal epithelia exhibit impaired ability of killing bacteria. Thus, altered interactions between ileal microbiota and mucosal immunity through NOD2 mutations play significant roles in the disease susceptibility and pathogenesis in CD patients, thereby depicting NOD2 as a critical regulator of ileal microbiota and CD.
Collapse
Affiliation(s)
- Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Sayuri Yoshihama
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Isaac Downs
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| |
Collapse
|