1
|
Zhihang H, Ezemaduka AN, Hongxia C, Yan P, Yiwen G, Nan Z, Xinrui L, Shan G, Guojun L, Jing Y, Bo X. The joint toxicity effect of glyphosate and cadmium in a concentration-dependent manner on nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117081. [PMID: 39341135 DOI: 10.1016/j.ecoenv.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The co-occurrence of glyphosate (GPS), a commonly used organophosphorus herbicide, and cadmium (Cd), a neurotoxic metal, in agricultural environments prompts concerns about their combined toxic effects on ecosystems. This study explores the combined effects of GPS and Cd on the model organism Caenorhabditis elegans (C. elegans), to understand their cumulative effects in organismal living environments. We investigated the interaction between GPS and Cd over 24 hours using a comprehensive approach that included a variety of toxicity endpoints as well as the novel Automated Recognition and Statistics Tool (NCLE) for body bend measurement. Our data show a concentration-dependent interplay in which antagonistic effects at lower concentrations reduce phenotypic damage while synergistic effects emerge at higher concentrations, particularly at GPS's LC50. Transcriptome analysis under antagonistic conditions revealed significant downregulation of Cd toxicity-related genes and identified Y22D7AL.16, which has a C2H2-type zinc finger domain, as a novel gene involved in metal stress response, implying an alternative Cd-resilience mechanism. The expression profile of this gene shows that it plays a larger role in both development and metal stress adaption. These findings highlight the complexities of compound pollutant interactions, emphasizing the importance of including such dynamics in environmental risk assessments and control techniques.
Collapse
Affiliation(s)
- Huang Zhihang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Anastasia Ngozi Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Cai Hongxia
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Pan Yan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gong Yiwen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhang Nan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Lu Xinrui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Gao Shan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Li Guojun
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Yang Jing
- Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xian Bo
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Laboratory of Ageing Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
2
|
Almutairi N, Khan N, Harrison-Smith A, Arlt VM, Stürzenbaum SR. Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript. Metallomics 2024; 16:mfae016. [PMID: 38549424 PMCID: PMC11066929 DOI: 10.1093/mtomcs/mfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.
Collapse
Affiliation(s)
- Norah Almutairi
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Naema Khan
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alexandra Harrison-Smith
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Karengera A, Sterken MG, Kammenga JE, Riksen JAG, Dinkla IJT, Murk AJ. Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113344. [PMID: 35219257 DOI: 10.1016/j.ecoenv.2022.113344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 05/14/2023]
Abstract
Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 μM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 μM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 μM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 μM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 μM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
4
|
Niemuth N, Williams DN, Mensch AC, Cui Y, Orr G, Rosenzweig Z, Klaper RD. Redesign of hydrophobic quantum dots mitigates ligand-dependent toxicity in the nematode C. elegans. NANOIMPACT 2021; 22:100318. [PMID: 35559975 DOI: 10.1016/j.impact.2021.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 06/15/2023]
Abstract
Surface properties of engineered nanomaterials (ENMs) have been shown to influence their interaction with biological systems. However, studies to date have largely focused on hydrophilic materials, likely due to biocompatibility concerns and aqueous exposure conditions necessary for many model systems. Therefore, a knowledge gap exists in nanotoxicity literature for impacts of hydrophobic ENMs, with studies of hydrophobic materials largely limited to carbon ENMs. Here we demonstrate testing of hydrophobic quantum dots (QDs) using the nematode C. elegans, a model soil organism cultured on solid media and amenable to hydrophobic exposures. To evaluate the influence of hydrophobicity, we compared CdSe/ZnS QDs functionalized with hydrophobic trioctylphosphine oxide (TOPO) to identical QDs functionalized with hydrophilic dihydrolipoic acid-polyethylene glycol (DHLA-PEG) and alternative hydrophobic CdSe/ZnS QDs functionalized with oleic acid (OA). Results show that hydrophobic TOPO QDs are significantly more toxic than hydrophilic DHLA-PEG QDs, and substitution of TOPO with OA yields relatively non-toxic hydrophobic QDs. Fluorescence microscopy shows TOPO QDs loosely associated with the organism's cuticle, but atomic force microscopy shows no difference in cuticle structure from exposure. Importantly, TOPO ligand alone is as toxic as TOPO QDs, and our data suggests that TOPO may impact neuromuscular function, perhaps upon displacement from the QD surface. This study demonstrates the importance of examining ligand-specific impacts of hydrophobic ENMs and indicates OA-functionalized QDs as a potential alternative to TOPO QDs for reduced toxicity.
Collapse
Affiliation(s)
- NicholasJ Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, United States
| | - Denise N Williams
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Arielle C Mensch
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yi Cui
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ze'ev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, United States.
| |
Collapse
|
5
|
Boyle S, Kakouli-Duarte T. Differential gene expression in the insect pathogen Steinernema feltiae in response to chromium VI exposure in contaminated host cadavers. Comput Biol Chem 2020; 88:107331. [PMID: 32781309 DOI: 10.1016/j.compbiolchem.2020.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Stephen Boyle
- enviroCORE, Molecular Ecology and Nematode Research Group, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland.
| | - Thomais Kakouli-Duarte
- enviroCORE, Molecular Ecology and Nematode Research Group, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland
| |
Collapse
|
6
|
Allouche M, Nasri A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Bourioug M, Geret F, Boufahja F. New protocols for the selection and rearing of Metoncholaimus pristiurus and the first evaluation of oxidative stress biomarkers in meiobenthic nematodes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114529. [PMID: 32283405 DOI: 10.1016/j.envpol.2020.114529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Meiobenthic nematodes have been designated as sensitive global models in the development of biomonitoring and ecotoxicology monitoring programs howbeit the sensitivity of these organisms against oxidative stress biomarkers have never been addressed. The present study aimed to decipher this research axis after selecting and culturing a single nematode species from an entire community through original laboratory protocols. The purpose of this investigation was to change the grain size of the sediment into the immediate environment of nematodes by progressively adding a biosubstrate made from Sepia officinalis endoskeletton. At the end of the experiment, Metoncholaimus pristiurus became the unique component of the nematode species when the sediment was enriched with 80% of S. officinalis powder. After the mono-species level had been achieved, the selected species was fed on an another biosubstrate made from bodies of Porcellio scaber under the identical laboratory controlled conditions of light and temperature adopted during the selection process. Accordingly, the bioassay protocol this study layed new foundations for the study of meiobenthic nematodes in the biomarker field. Our results revealed that, in case of M. pritiurus, discernible oxidative stress responses are valid for catalase and gluthatione S-transferase. Indeed, for both enzymes, a clear increase in the activity was recorded, and the response was more reinforced when zinc and permethrin were administrated in combination. The relevance of the protocols proposed in this work parallels their global applicability to reach and maintain the monospecific level in laboratory by using biosubstrates made from animals widely distributed. It is true also that our data provided the first results in terms of biochemical biomarkers for meiobenthic nematodes and showed that the selected taxa, M. pristiurus, could be one of the first marine taxa responding early to the tested stressors, zinc and permethrin, even at very low concentrations.
Collapse
Affiliation(s)
- Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Ahmed Nasri
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - Mohamed Bourioug
- Ecole Nationale d'Agriculture de Meknès, BP S/40 - 50 000, Meknès, Morocco
| | - Florence Geret
- Institut National Universitaire J-F. Champollion, Campus d'Albi/Place de Verdun - 81 012 Albi Cedex, France
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| |
Collapse
|
7
|
Shomer N, Kadhim AZ, Grants JM, Cheng X, Alhusari D, Bhanshali F, Poon AFY, Lee MYY, Muhuri A, Park JI, Shih J, Lee D, Lee SJV, Lynn FC, Taubert S. Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008508. [PMID: 31815936 PMCID: PMC6922464 DOI: 10.1371/journal.pgen.1008508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/19/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Zinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role for mammalian MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to cadmium and excess zinc. Using gain- and loss-of-function mutants and qRT-PCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut and are hypersensitive to zinc-induced reductions in egg-laying. Furthermore, mdt-15 but not hizr-1 mutants are hypersensitive to cadmium-induced reductions in egg-laying, suggesting potential divergence of regulatory pathways. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a cadmium and zinc-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate cadmium detoxification and zinc storage and that this mechanism is at least partially conserved in mammals.
Collapse
Affiliation(s)
- Naomi Shomer
- Graduate Program in Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Alexandre Zacharie Kadhim
- Graduate Program in Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jennifer Margaret Grants
- Graduate Program in Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Deema Alhusari
- Graduate Program in Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Forum Bhanshali
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amy Fong-Yuk Poon
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Michelle Ying Ya Lee
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anik Muhuri
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jung In Park
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - James Shih
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Dongyeop Lee
- Department of Life Sciences, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-Gu, Daejeon, South Korea
| | - Francis Christopher Lynn
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Taubert
- Graduate Program in Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
8
|
Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:13-29. [PMID: 31542693 PMCID: PMC6796749 DOI: 10.1016/j.ijpddr.2019.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
We have undertaken a detailed analysis of the biotransformation of five of the most therapeutically important benzimidazole anthelmintics - albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), oxfendazole (OxBZ) and fenbendazole (FBZ) - in Caenorhabditis elegans and the ruminant parasite Haemonchus contortus. Drug metabolites were detected by LC-MS/MS analysis in supernatants of C. elegans cultures with a hexose conjugate, most likely glucose, dominating for all five drugs. This work adds to a growing body of evidence that glucose conjugation is a major pathway of xenobiotic metabolism in nematodes and may be a target for enhancement of anthelmintic potency. Consistent with this, we found that biotransformation of albendazole by C. elegans reduced drug potency. Glucose metabolite production by C. elegans was reduced in the presence of the pharmacological inhibitor chrysin suggesting that UDP-glucuronosyl/glucosyl transferase (UGT) enzymes may catalyze benzimidazole glucosidation. Similar glucoside metabolites were detected following ex vivo culture of adult Haemonchus contortus. As a step towards identifying nematode enzymes potentially responsible for benzimidazole biotransformation, we characterised the transcriptomic response to each of the benzimidazole drugs using the C. elegans resistant strain CB3474 ben-1(e1880)III. In the case of albendazole, mebendazole, thiabendazole, and oxfendazole the shared transcriptomic response was dominated by the up-regulation of classical xenobiotic response genes including a shared group of UGT enzymes (ugt-14/25/33/34/37/41/8/9). In the case of fenbendazole, a much greater number of genes were up-regulated, as well as developmental and brood size effects suggesting the presence of secondary drug targets in addition to BEN-1. The transcriptional xenobiotic response of a multiply resistant H. contortus strain UGA/2004 was essentially undetectable in the adult stage but present in the L3 infective stage, albeit more muted than C. elegans. This suggests that xenobiotic responses may be less efficient in stages of parasitic nematodes that reside in the host compared with the free-living stages. C. e. & H. c. display hexose conjugation (likely glucose) and excretion of 5 BZs. C. elegans (C.e.) biotransformation of ABZ reduces drug potency. UGT inhibitor chrysin reduces ABZ biotransformation by C. elegans. Transcriptomic response of C. e. (ben-1) to 5 BZs dominated by xenobiotic response and additional targets for FBZ. Minimal transcriptomic response of H. contortus to ABZ exposure.
Collapse
|
9
|
Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:854-861. [PMID: 30929297 PMCID: PMC6766863 DOI: 10.1111/plb.12991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals and a non-essential element to all organisms, including plants; however, the genes involved in Cd resistance in plants remain poorly characterised. To identify Cd resistance genes in rice, we screened a rice cDNA expression library treated with CdCl2 using a yeast (Saccharomyces cerevisiae) mutant ycf1 strain (DTY167) and isolated two rice phytochelatin synthases (OsPCS5 and OsPCS15). The genes were strongly induced by Cd treatment and conferred increased resistance to Cd when expressed in the ycf1 mutant strain. In addition, the Cd concentration was twofold higher in yeast expressing OsPCS5 and OsPCS15 than in vector-transformed yeast, and OsPCS5 and OsPCS15 localised in the cytoplasm. Arabidopsis thaliana plants overexpressing OsPCS5/-15 paradoxically exhibited increased sensitivity to Cd, suggesting that overexpression of OsPCS5/-15 resulted in toxicity due to excess phytochelatin production in A. thaliana. These data indicate that OsPCS5 and OsPCS15 are involved in Cd tolerance, which may be related to the relative abundances of phytochelatins synthesised by these phytochelatin synthases.
Collapse
Affiliation(s)
- H. C. Park
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - J. E. Hwang
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - Y. Jiang
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Y. J. Kim
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - S. H. Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - X. C. Nguyen
- Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - C. Y. Kim
- Biological Resource CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupRepublic of Korea
| | - W. S. Chung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
10
|
PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341-1361. [PMID: 28766017 PMCID: PMC5682872 DOI: 10.1007/s00438-017-1351-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Collapse
|
11
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
12
|
Kumar R, Pradhan A, Khan FA, Lindström P, Ragnvaldsson D, Ivarsson P, Olsson PE, Jass J. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture. PLoS One 2015; 10:e0132896. [PMID: 26168046 PMCID: PMC4500601 DOI: 10.1371/journal.pone.0132896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/22/2015] [Indexed: 02/04/2023] Open
Abstract
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention.
Collapse
Affiliation(s)
- Ranjeet Kumar
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Ajay Pradhan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | | | | | | | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 2013; 8:e82473. [PMID: 24324795 PMCID: PMC3853187 DOI: 10.1371/journal.pone.0082473] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022] Open
Abstract
Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Li WH, Shi YC, Chang CH, Huang CW, Hsiu-Chuan Liao V. Selenite protectsCaenorhabditis elegansfrom oxidative stress via DAF-16 and TRXR-1. Mol Nutr Food Res 2013; 58:863-74. [DOI: 10.1002/mnfr.201300404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/20/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Hsuan Li
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Yeu-Ching Shi
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| |
Collapse
|
15
|
Dallinger R, Höckner M. Evolutionary concepts in ecotoxicology: tracing the genetic background of differential cadmium sensitivities in invertebrate lineages. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:767-778. [PMID: 23576190 DOI: 10.1007/s10646-013-1071-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
In many toxicological and ecotoxicological studies and experimental setups, the investigator is mainly interested in traditional parameters such as toxicity data and effects of toxicants on molecular, cellular or physiological functions of individuals, species or statistical populations. It is clear, however, that such approaches focus on the phenotype level of animal species, whilst the genetic and evolutionary background of reactions to environmental toxicants may remain untold. In ecotoxicological risk assessment, moreover, species sensitivities towards pollutants are often regarded as random variables in a statistical approach. Beyond statistics, however, toxicant sensitivity of every species assumes a biological significance, especially if we consider that sensitivity traits have developed in lineages of species with common evolutionary roots. In this article, the genetic and evolutionary background of differential Cd sensitivities among invertebrate populations and species and their potential of adaptation to environmental Cd exposure will be highlighted. Important evolutionary and population genetic concepts such as genome structure and their importance for evolutionary adaptation, population structure of affected individuals, as well as micro and macroevolutionary mechanisms of Cd resistance in invertebrate lineages will be stressed by discussing examples of work from our own laboratory along with a review of relevant literature data and a brief discussion of open questions along with some perspectives for further research. Both, differences and similarities in Cd sensitivity traits of related invertebrate species can only be understood if we consider the underlying evolutionary processes and genetic (or epigenetic) mechanisms. Keeping in mind this perception can help us to better understand and interpret more precisely why the sensitivity of some species or species groups towards a certain toxicant (or metal) may be ranked in the lower or higher range of species sensitivity distributions. Hence, such a perspective will transcend a purely statistical view of the sensitivity distributions concept, and will enhance ecotoxicology in many respects.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Institut für Zoologie und Limnologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | |
Collapse
|
16
|
Chen YP, Liu Q, Yue XZ, Meng ZW, Liang J. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4807-4816. [PMID: 23296973 DOI: 10.1007/s11356-012-1411-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Heavy metals have long-term adverse impacts on the health of soil ecosystems and even exhibit hazardous influences on human health. Literatures have shown that heavy metals could result in the reduction of crops growth and development and finally result in crops production decline. To determine whether or not ultrasonic vibration alleviate damage induced by cadmium and lead in crops, the wheat seeds, which is one of the most important agriculture crops in China and other countries in the world, were exposed to 10 min ultrasonic vibration and then the toxicological effects were investigated. Wheat seeds were soaked for 3 h with water and then the seeds were placed in clean beaker with some water, the beaker were placed in ultrasonic apparatus to vibrate (model, KQ-200VDV; frequency, 45 KHz; power, 160 W). Pretreatment seeds of 80 were sown in dishes (Ø 15 cm). After seeds emergence, the seedlings were thinned to 60 per dish. The dishes with seedlings were placed in a growth chamber maintained at 25 °C, 70% relative humidity and 380 μmol mol(-1) CO2 under dark condition. A 400 μmol m(-2) s(-1) photosynthetically active radiation was provided for 8 h (dark for 16 h) after the seed germination. When the seedlings were 2 days old, the seedlings were subjected to cadmium and lead for 4 days and then some selective biochemical and physiological parameters were measured. (1) Although each doses of ultrasonic vibration could improve seed germination, enhance biosynthesis of protein and chlorophyll and seedlings growth, the optimum dosage of ultrasonic vibration was 10 min. (2) Compared with the controls, cadmium and lead stress led to significant increase in the concentrations of malondialdehyde (MDA) and O(-2) and in the conductivity of electrolyte leakage, but the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), the glutathione concentration, and the shoot weight were decreased by Cd and Pb stress. In the case of the seeds exposed to ultrasonic vibration and the seedlings followed by cadmium lead stress, the concentrations of MDA and O(-2), and the conductivity of electrolyte leakage were significantly lower than those in cadmium and lead stress; the activities of CAT, SOD, and GR and the shoot weight were significantly higher (except for glutathione (GSH) concentration) than those in cadmium and lead stress seedlings. The membrane is responsible for the selective inflow and outflow of molecules, ions, and water, and is a dynamic structure that performs a variety of functions. Cellular membrane systems play an important role in the compartmentalization of cells and maintaining intercellular homeostasis. Abiotic and biotic stress can induce functional impairments to the cellular membrane systems through triggering an increased formation of reactive oxygen species (ROS), such as superoxide (O2 (-)), hydrogen peroxide (H2O2), and hydroxyl radicals. There are several pathways that can be utilized to eliminate ROS in plants, e.g., CAT, SOD, and GR and GSH, etc. compared with controls, cadmium, and lead enhanced the concentrations of ROS; decreased the SOD, CAT, and GR activities; the GSH concentration, and the seedling growth. In the case of ultrasonic pretreatment followed by cadmium and lead stresses, the activities of CAT, SOD, and GR were significant higher, and the conductivity of electrolyte leakage and the concentrations of MDA and O2 (-) were significant lower than that of those subjected by cadmium and lead stress. This phenomenon demonstrated ultrasonic pretreatment can help plant eliminate the ROS by enhance the activities of antioxidant enzymes. These results suggested that ultrasonic vibration can alleviate the toxicological effect induced by heavy mental.
Collapse
Affiliation(s)
- Yi-ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Science, No. 10, Feng-Hui Road, Xi'an 710075, China.
| | | | | | | | | |
Collapse
|
17
|
Hall J, Haas KL, Freedman JH. Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol Sci 2012; 128:418-26. [PMID: 22552775 PMCID: PMC3493192 DOI: 10.1093/toxsci/kfs166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/12/2022] Open
Abstract
Cadmium is an environmental toxicant whose exposure is associated with multiple human pathologies. To prevent cadmium-induced toxicity, organisms produce a variety of detoxification molecules. In response to cadmium, the nematode Caenorhabditis elegans increases the steady-state levels of several hundred genes, including two metallothioneins, mtl-1 and mtl-2, and the cadmium-specific response gene, cdr-1. Despite the presumed importance in metal detoxification of mtl-1 and mtl-2, knockdown of their expression does not increase cadmium hypersensitivity, which suggests that these genes are not required for resistance to metal toxicity in C. elegans. To determine whether cdr-1 is critical in metal detoxification and compensates for the loss of mtl-1 and/or mtl-2, C. elegans strains were generated in which one, two, and all three genes were deleted, and the effects of cadmium on brood size, embryonic lethality, the Bag phenotype, and growth were determined. Growth at low cadmium concentrations was the only endpoint in which the triple mutant displayed more sensitivity than the single and double mutants. A lack of hypersensitivity in these strains suggests that other factors may be involved in the response to cadmium. Caenorhabditis elegans produces phytochelatins (PCs) that are critical in the defense against cadmium toxicity. PC levels in wild type, cdr-1 single, mtl-1, mtl-2 double, and triple mutants were measured. PC levels were constitutively higher in the mtl-1, mtl-2 double, and triple mutants compared with wild type. Following cadmium exposure, PC levels increased. The lack of cadmium hypersensitivity when these genes are deleted may be attributed to the compensatory effects of increases in PCs.
Collapse
Affiliation(s)
| | - Kathryn L. Haas
- Laboratory of Toxicology and Pharmacology, National Institute of EnvironmentalHealth Sciences, NIH, Research Triangle Park, North Carolina 27709
| | - Jonathan H. Freedman
- Biomolecular Screening Branch and
- Laboratory of Toxicology and Pharmacology, National Institute of EnvironmentalHealth Sciences, NIH, Research Triangle Park, North Carolina 27709
| |
Collapse
|
18
|
Chen C, Samuel TK, Krause M, Dailey HA, Hamza I. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J Biol Chem 2012; 287:9601-12. [PMID: 22303006 DOI: 10.1074/jbc.m111.307694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roundworm Caenorhabditis elegans is a heme auxotroph that requires the coordinated actions of HRG-1 heme permeases to transport environmental heme into the intestine and HRG-3, a secreted protein, to deliver intestinal heme to other tissues including the embryo. Here we show that heme homeostasis in the extraintestinal hypodermal tissue was facilitated by the transmembrane protein HRG-2. Systemic heme deficiency up-regulated hrg-2 mRNA expression over 200-fold in the main body hypodermal syncytium, hyp 7. HRG-2 is a type I membrane protein that binds heme and localizes to the endoplasmic reticulum and apical plasma membrane. Cytochrome heme profiles are aberrant in HRG-2-deficient worms, a phenotype that was partially suppressed by heme supplementation. A heme-deficient yeast strain, ectopically expressing worm HRG-2, revealed significantly improved growth at submicromolar concentrations of exogenous heme. Taken together, our results implicate HRG-2 as a facilitator of heme utilization in the Caenorhabditis elegans hypodermis and provide a mechanism for the regulation of heme homeostasis in an extraintestinal tissue.
Collapse
Affiliation(s)
- Caiyong Chen
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
19
|
Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002013. [PMID: 21455490 PMCID: PMC3063764 DOI: 10.1371/journal.pgen.1002013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/10/2011] [Indexed: 01/16/2023] Open
Abstract
Zinc is an essential trace element involved in a wide range of biological
processes and human diseases. Zinc excess is deleterious, and animals require
mechanisms to protect against zinc toxicity. To identify genes that modulate
zinc tolerance, we performed a forward genetic screen for Caenorhabditis
elegans mutants that were resistant to zinc toxicity. Here we
demonstrate that mutations of the C. elegans histidine ammonia
lyase (haly-1) gene promote zinc tolerance. C. elegans
haly-1 encodes a protein that is homologous to vertebrate HAL, an
enzyme that converts histidine to urocanic acid. haly-1 mutant
animals displayed elevated levels of histidine, indicating that C.
elegans HALY-1 protein is an enzyme involved in histidine
catabolism. These results suggest the model that elevated histidine chelates
zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we
demonstrated that dietary histidine promotes zinc tolerance. Nickel is another
metal that binds histidine with high affinity. We demonstrated that
haly-1 mutant animals are resistant to nickel toxicity and
dietary histidine promotes nickel tolerance in wild-type animals. These studies
identify a novel role for haly-1 and histidine in zinc
metabolism and may be relevant for other animals. Zinc is an essential nutrient that is critical for human health. However, excess
zinc can cause toxicity, indicating that regulatory mechanisms are necessary to
maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis
can elucidate fundamental regulatory processes and suggest new approaches for
treating disorders of zinc metabolism. To discover genes that modulate zinc
tolerance, we screened for C. elegans mutants that were
resistant to zinc toxicity. Here we demonstrate that mutations of the histidine
ammonia lyase (haly-1) gene promote zinc tolerance.
haly-1 encodes a protein that is similar to vertebrate HAL,
an enzyme that converts histidine to urocanic acid. Mutations in the human HAL
gene cause elevated levels of serum histidine and abnormal zinc metabolism.
Mutations in C. elegans haly-1 cause elevated levels of
histidine, suggesting that histidine causes resistance to excess zinc.
Consistent with this hypothesis, we demonstrated that dietary histidine promoted
tolerance to excess zinc in wild-type worms. Mutations in
haly-1 and supplemental dietary histidine also caused
resistance to nickel, another metal that can bind histidine. A likely mechanism
of protection is chelation of zinc and nickel by histidine. These studies
suggest that histidine plays a physiological role in zinc metabolism.
Collapse
|
20
|
Liuzzi VC, Daresta BE, de Gennaro G, De Giorgi C. Different effects of polycyclic aromatic hydrocarbons in artificial and in environmental mixtures on the free living nematode C. elegans. J Appl Toxicol 2011; 32:45-50. [PMID: 21381052 DOI: 10.1002/jat.1634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 11/10/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to exert mutagenic and carcinogenic effects. Research on extracted organic matter (EOM) from environmental mixtures has indicated several mechanisms of intracellular damage in living organisms. The toxic effect of environmental pollutants is usually assessed on cell systems or in single species. We used the model organism Caenorhabditis elegans to compare the effect of synthetic PAHs with that of the EOM from environmental mixtures. The biological effect was measured by monitoring the expression level of some crucial genes, sensitive parameters of the organism's response. The results indicate the ability of C. elegans to counteract damage by mounting a stress-response only in the presence of EOM. On the other hand the exposure of C. elegans to a mixture of synthetic PAHs determines the silencing of the transcriptional machinery, thus preventing the synthesis of proteins that are important for both the damage repair mechanism and survival itself. The results strongly indicate that the study of environmental toxicant effects at the molecular level may provide information on their mechanism of action.
Collapse
Affiliation(s)
- Vania Cosma Liuzzi
- Department of Biochemistry and Molecular Biology 'Ernesto Quagliariello', Via Orabona 4, University of Bari, 70126, Bari, Italy
| | | | | | | |
Collapse
|
21
|
Gupta RS, Ahnn J. Cadmium‐induced gene expression is regulated by MTF‐1, a key metal‐responsive transcription factor. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/12265071.2003.9647702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ronojoy Sen Gupta
- a Department of Life Science and Biotechnology , Jadavpur University , Calcutta , 700032 , India Phone: E-mail:
| | - Joohong Ahnn
- b Department of Life Science , Kwangju Institute of Science and Technology , Gwangju , 500–712 , Korea
| |
Collapse
|
22
|
Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F. Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2793-2808. [PMID: 20619942 DOI: 10.1016/j.envpol.2010.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/09/2010] [Accepted: 06/12/2010] [Indexed: 05/29/2023]
Abstract
Diverse anthropogenic activities often lead to the accumulation of inorganic and organic residues in topsoils. Biota living in close contact with contaminated soils may experience stress at different levels of biological organisation throughout the continuum from the molecular-genetic to ecological and community levels. To date, the relationship between changes at the molecular (mRNA expression) and biochemical/physiological levels evoked by exposures to chemical compounds has been partially established in a limited number of terrestrial invertebrate species. Recently, the advent of a family of transcriptomic tools (e.g. Real-time PCR, Subtractive Suppressive Hybridization, Expressed Sequence Tag sequencing, pyro-sequencing technologies, Microarray chips), together with supporting informatic and statistical procedures, have permitted the robust analyses of global gene expression changes within an ecotoxicological context. This review focuses on how transcriptomics is enlightening our understanding of the molecular-genetic responses of three contrasting terrestrial macroinvertebrate taxa (nematodes, earthworms, and springtails) to inorganics, organics, and agrochemicals.
Collapse
|
23
|
Liu N, Lin ZF, Lin GZ, Song LY, Chen SW, Mo H, Peng CL. Lead and cadmium induced alterations of cellular functions in leaves of Alocasia macrorrhiza L. Schott. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1238-45. [PMID: 20619455 DOI: 10.1016/j.ecoenv.2010.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 05/24/2023]
Abstract
Alocasia macrorrhiza is a fast growing and propagating herbaceous species commonly found in South China. To determine its physiological responses to Pb and Cd stresses, the biochemical, histochemical and cytochemical changes under PbAC2 and CdCl2 phytotoxicity were detected using leaf discs as an experimental model. After leaf discs were infiltrated in different concentrations of PbAC2 and CdCl2 solutions (0, 50, 100, 150, 200 microM) for 72 h, the formation of reactive oxygen species (H2O2 and O2-) in plant tissue were found to be exaggerated together with elevated OH concentration and cell death. Changes in chlorophyll fluorescence (Fv/Fm, PhiPSII, qP and NPQ) imaging colours/areas of leaf discs indicated decreased photosystem II functions by both heavy metal treatments and positive reactions of antioxidants under Pb2+ stress. Results showed that fluorescent detection of hydroxylated terephthlate using terephthalic acid as OH trap is a simple, yet valuable and specific method for monitoring OH generation in plant tissue under heavy metal stresses. As compared with Cd2+, Pb2+ was found to be less toxic, indicating that A. macrorrhiza tissue might have a potential tolerance to Pb.
Collapse
Affiliation(s)
- Nan Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Liao VHC, Liu JT, Li WH, Yu CW, Hsieh YC. Caenorhabditis elegans bicarbonate transporter ABTS-1 is involved in arsenite toxicity and cholinergic signaling. Chem Res Toxicol 2010; 23:926-32. [PMID: 20423156 DOI: 10.1021/tx100016e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arsenic poisoning affects millions of people worldwide. Although there is accumulating evidence to suggest that the nervous system is a target of arsenic, relatively little information is known regarding its effects on the nervous system. The effects of arsenite on the nervous system in Caenorhabditis elegans were investigated in the present study. We found that abts-1, which encodes a Na(+)-dependent Cl(-)/HCO(3)(-) transporter, is required to protect C. elegans from arsenite toxicity. The abts-1::GFP transgene is primarily expressed in neurons and the hypodermis, but stronger expression was also observed in the pharynx and body wall muscle cells after exposure to arsenite. The steady-state level of ABTS-1 mRNA increased in response to arsenite exposure. We showed that worms lacking abts-1 are hypersensitive to the paralytic effects of the cholinesterase inhibitor, aldicarb, and the nicotinic acetylcholine receptor agonist, levamisole. We also showed that arsenite enhanced sensitivity to aldicarb and levamisole in abts-1 mutant worms. Our results indicate neuronal effects of arsenite and the ABTS-1 bicarbonate transporter.
Collapse
Affiliation(s)
- Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
25
|
Tvermoes BE, Boyd WA, Freedman JH. Molecular characterization of numr-1 and numr-2: genes that increase both resistance to metal-induced stress and lifespan in Caenorhabditis elegans. J Cell Sci 2010; 123:2124-34. [PMID: 20501697 PMCID: PMC2880014 DOI: 10.1242/jcs.065433] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 01/04/2023] Open
Abstract
To define the mechanisms involved in the molecular response to the carcinogenic metal cadmium, two novel metal-inducible genes from C. elegans were characterized: numr-1 and numr-2 (nuclear localized metal responsive). numr-1 and numr-2 sequences and cellular patterns of expression are identical, indicating that these are functionally equivalent genes. Constitutive transcription of numr-1 and numr-2 is developmentally regulated and occurs in the intestine, in head and tail neurons, and vulva muscles. Exposure to metals induces numr-1 and numr-2 transcription in pharyngeal and intestinal cells. Other environmental stressors do not affect transcription, indicating that these are metal-specific, stress-responsive genes. NUMR-1 and NUMR-2 target to nuclei and colocalize with HSF-1, suggesting that they may be components of nuclear stress granules. Nematodes overexpressing NUMR-1 and NUMR-2 are resistant to stress and live longer than control animals; likewise reducing expression increases sensitivity to metals and decreases neuromuscular functions. Upstream regulatory regions of both genes contain potential binding sites for DAF-16 and SKN-1, which are components of the insulin-IGF-like signaling pathway. This pathway regulates longevity and stress responses in C. elegans. NUMR-1 and NUMR-2 may function to promote resistance to environmental stressors and longevity, which is mediated by the insulin-IGF-like signaling pathway.
Collapse
Affiliation(s)
- Brooke E. Tvermoes
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, MD E1-05, PO Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27009, USA
- Nicholas School of the Environment at Duke University, Durham, NC 27708, USA
| | - Windy A. Boyd
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27009, USA
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, MD E1-05, PO Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27009, USA
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27009, USA
| |
Collapse
|
26
|
Nakamori T, Fujimori A, Kinoshita K, Ban-nai T, Kubota Y, Yoshida S. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1689-95. [PMID: 20022415 DOI: 10.1016/j.envpol.2009.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/19/2009] [Accepted: 11/29/2009] [Indexed: 05/05/2023]
Abstract
The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated "metallothionein-like motif containing protein" (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil.
Collapse
Affiliation(s)
- Taizo Nakamori
- Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Hinrichsen RD, Tran JR. A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia. Cell Biol Toxicol 2010; 26:379-89. [PMID: 20108033 DOI: 10.1007/s10565-010-9150-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/05/2010] [Indexed: 12/01/2022]
Abstract
The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 microM CdCl(2); the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18 degrees C and 28 degrees C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.
Collapse
Affiliation(s)
- Robert D Hinrichsen
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705, USA.
| | | |
Collapse
|
28
|
Bofill R, Orihuela R, Romagosa M, Domènech J, Atrian S, Capdevila M. Caenorhabditis elegans metallothionein isoform specificity--metal binding abilities and the role of histidine in CeMT1 and CeMT2. FEBS J 2009; 276:7040-56. [PMID: 19860833 DOI: 10.1111/j.1742-4658.2009.07417.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two metallothionein (MT) isoforms have been identified in the model nematode Caenorhabditis elegans: CeMT1 and CeMT2, comprising two polypeptides that are 75 and 63 residues in length, respectively. Both isoforms encompass a conserved cysteine pattern (19 in CeMT1 and 18 in CeMT2) and, most significantly, as a result of their coordinative potential, CeMT1 includes four histidines, whereas CeMT2 has only one. In the present study, we present a comprehensive and comparative analysis of the metal [Zn(II), Cd(II) and Cu(I)] binding abilities of CeMT1 and CeMT2, performed through spectroscopic and spectrometric characterization of the recombinant metal-MT complexes synthesized for wild-type isoforms (CeMT1 and CeMT2), their separate N- and C-terminal moieties (NtCeMT1, CtCeMT1, NtCeMT2 and CtCeMT2) and a DeltaHisCeMT2 mutant. The corresponding in vitro Zn/Cd- and Zn/Cu-replacement and acidification/renaturalization processes have also been studied, as well as protein modification strategies that make it possible to identify and quantify the contribution of the histidine residues to metal coordination. Overall, the data obtained in the present study are consistent with a scenario where both isoforms exhibit a clear preference for divalent metal ion binding, rather than for Cu coordination, although this preference is more pronounced towards cadmium for CeMT2, whereas it is markedly clearer towards Zn for CeMT1. The presence of histidines in these MTs is revealed to be decisive for their coordination performance. In CeMT1, they contribute to the binding of a seventh Zn(II) ion in relation to the M(II)(6)-CeMT2 complexes, both when synthesized in the presence of supplemented Zn(II) or Cd(II). In CeMT2, the unique C-terminal histidine abolishes the Cu-thionein character that this isoform would otherwise exhibit.
Collapse
Affiliation(s)
- Roger Bofill
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Jiang GCT, Hughes S, Stürzenbaum SR, Evje L, Syversen T, Aschner M. Caenorhabditis elegans metallothioneins protect against toxicity induced by depleted uranium. Toxicol Sci 2009; 111:345-54. [PMID: 19617453 DOI: 10.1093/toxsci/kfp161] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Depleted uranium (DU) is a dense and heavy metal used in armor, ammunition, radiation shielding, and counterbalances. The military usage has led to growing public concern regarding the health effects of DU. In this study, we used the nematode, Caenorhabditis elegans, to evaluate the toxicity of DU and its effects in knockout strains of metallothioneins (MTs), which are small thiol-rich proteins that have numerous functions, such as metal sequestration, transport, and detoxification. We examined nematode viability, the accumulation of uranium, changes in MT gene expression by quantitative reverse transcription-PCR, and the induction of green fluorescent protein under the control of the MT promoters, following exposure to DU. Our results indicate that (1) DU causes toxicity in a dose-dependent manner; (2) MTs are protective against DU exposure; and (3) nematode death by DU is not solely a reflection of intracellular uranium concentration. (4) Furthermore, only one of the isoforms of MTs, metallothionein-1 (mtl-1), appears to be important for uranium accumulation in C. elegans. These findings suggest that these highly homologous proteins may have subtle functional differences and indicate that MTs mediate the response to DU.
Collapse
Affiliation(s)
- George C-T Jiang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
30
|
Choi J. Caenorhabditis elegans as a Biological Model for Multilevel Biomarker Analysis in Environmental Toxicology and Risk Assessment. Toxicol Res 2008; 24:235-243. [PMID: 32038801 PMCID: PMC7006315 DOI: 10.5487/tr.2008.24.4.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/20/2022] Open
Abstract
While in some instances, loss of diversity results from acute toxicity (e.g. major pollution incidents), in most cases it results from long-term sub-lethal effects that alter the relative competitive ability and fitness of certain organisms. In such cases the sub-lethal effects will cause a physiological response in the organism that ultimately leads to community level changes. Very sensitive tools are now available to study sub-lethal responses at the molecular level. However, relating such laboratory measurements to ecological effects represents a substantial challenge that can only be met by investigation at all scales (molecular, individual organism and community level) with an appropriate group of organisms. Among the various in vertebrates which can be used as model organisms in such a way, the soil nematode, Caenorhabditis elegans appear to be a promising biological model to diagnose environmental quality. This paper reviews the current status of multilevel biomarkers in environmental toxicology, and C. elegans as promising organisms for this approach.
Collapse
Affiliation(s)
- Jinhee Choi
- Faculty of Environmental Engineering, College of Urban Science, University of Seoul, Seoul, 130-743 Korea
| |
Collapse
|
31
|
Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V, Rupnik M. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 153:537-547. [PMID: 17988772 DOI: 10.1016/j.envpol.2007.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 09/16/2007] [Accepted: 09/23/2007] [Indexed: 05/25/2023]
Abstract
The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10microg Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed.
Collapse
Affiliation(s)
- A Lapanje
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Taubert S, Hansen M, Van Gilst MR, Cooper SB, Yamamoto KR. The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS Genet 2008; 4:e1000021. [PMID: 18454197 PMCID: PMC2265483 DOI: 10.1371/journal.pgen.1000021] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/10/2008] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, RNA polymerase II (PolII) dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to PolII-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds. All organisms adapt their physiology to external input, such as altered food availability or toxic challenges. Many of these responses are driven by changes in gene transcription. In general, sequence specific DNA-binding regulatory factors are considered the specificity determinants of the transcriptional output. Here, we show that, in the roundworm Caenorhabditis elegans, one subunit of a >20 subunit, evolutionarily conserved, non-DNA binding co-factor termed Mediator, specifies a portion of the metabolic responses to a mixture of ingested material. This protein, MDT-15, is required for appropriate expression of genes that protect worms from the effects of toxic compounds and heavy metals. Our previous findings showed that the same protein also cooperates with other regulators to coordinate lipid metabolism. We suggest that MDT-15 may “route” transcriptional responses appropriate to the ingested material. This physiological scope appears broader and more sophisticated than that of any individual regulatory factor, thus coordinating systemic metabolic adaptation with ingestion. Given the evolutionary conservation of MDT-15 and the Mediator, a similar regulatory pathway may ensure health and longevity in mammals.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Malene Hansen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Marc R. Van Gilst
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, Washington, United States of America
| | - Samantha B. Cooper
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program of Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 2008; 8:R122. [PMID: 17592649 PMCID: PMC2394766 DOI: 10.1186/gb-2007-8-6-r122] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/22/2007] [Accepted: 06/25/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to cadmium is associated with a variety of human diseases. At low concentrations, cadmium activates the transcription of stress-responsive genes, which can prevent or repair the adverse effects caused by this metal. RESULTS Using Caenorhabditis elegans, 290 genes were identified that are differentially expressed (>1.5-fold) following a 4 or 24 hour exposure to cadmium. Several of these genes are known to be involved in metal detoxification, including mtl-1, mtl-2, cdr-1 and ttm-1, confirming the efficacy of the study. The majority, however, were not previously associated with metal-responsiveness and are novel. Gene Ontology analysis mapped these genes to cellular/ion trafficking, metabolic enzymes and proteolysis categories. RNA interference-mediated inhibition of 50 cadmium-responsive genes resulted in an increased sensitivity to cadmium toxicity, demonstrating that these genes are involved in the resistance to cadmium toxicity. Several functional protein interacting networks were identified by interactome analysis. Within one network, the signaling protein KEL-8 was identified. Kel-8 protects C. elegans from cadmium toxicity in a mek-1 (MAPKK)-dependent manner. CONCLUSION Because many C. elegans genes and signal transduction pathways are evolutionarily conserved, these results may contribute to the understanding of the functional roles of various genes in cadmium toxicity in higher organisms.
Collapse
Affiliation(s)
- Yuxia Cui
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | - Sandra J McBride
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | - Windy A Boyd
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Scott Alper
- Laboratory of Environmental Lung Disease, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27707, USA
| | - Jonathan H Freedman
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Dong J, Boyd WA, Freedman JH. Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J Mol Biol 2008; 376:621-33. [PMID: 18177893 PMCID: PMC2262181 DOI: 10.1016/j.jmb.2007.11.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
A novel cadmium-inducible gene, cdr-1, was previously identified and characterized in the nematode Caenorhabditis elegans and found to mediate resistance to cadmium toxicity. Subsequently, six homologs of cdr-1 were identified in C. elegans. Here, we describe two homologs: cdr-4, which is metal inducible, and cdr-6, which is noninducible. Both cdr-4 and cdr-6 mRNAs contain open reading frames of 831 nt and encode predicted 32-kDa integral membrane proteins, which are similar to CDR-1. cdr-4 expression is induced by arsenic, cadmium, mercury, and zinc exposure as well as by hypotonic stress. In contrast, cdr-6 is constitutively expressed at a high level in C. elegans, and expression is not affected by these stressors. Both cdr-4 and cdr-6 are transcribed in postembryonic pharyngeal and intestinal cells in C. elegans. In addition, cdr-4 is transcribed in developing embryos. Like CDR-1, CDR-4 is targeted to intestinal cell lysosomes in vivo. Inhibition of CDR-4 and/or CDR-6 expression does not render C. elegans more susceptible to cadmium toxicity; however, there is a significant decrease in their lifespan in the absence of metal. Although nematodes in which CDR-4 and/or CDR-6 expression is knocked down accumulate fluid in the pseudocoelomic space, exposure to hypertonic conditions did not significantly affect growth or reproduction in these nematodes. These results suggest that CDR expression is required for optimal viability but does not function in osmoregulation.
Collapse
Affiliation(s)
- Jie Dong
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, 27708
| | - Windy A. Boyd
- Laboratory of Molecular Toxicology and the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology and the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
35
|
Current research in soil invertebrate ecotoxicogenomics. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1872-2423(08)00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 2007; 8:R122. [PMID: 17592649 DOI: 10.1186/gb-2007-8-6-r122|issn1465-6914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/22/2007] [Accepted: 06/25/2007] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Exposure to cadmium is associated with a variety of human diseases. At low concentrations, cadmium activates the transcription of stress-responsive genes, which can prevent or repair the adverse effects caused by this metal. RESULTS Using Caenorhabditis elegans, 290 genes were identified that are differentially expressed (>1.5-fold) following a 4 or 24 hour exposure to cadmium. Several of these genes are known to be involved in metal detoxification, including mtl-1, mtl-2, cdr-1 and ttm-1, confirming the efficacy of the study. The majority, however, were not previously associated with metal-responsiveness and are novel. Gene Ontology analysis mapped these genes to cellular/ion trafficking, metabolic enzymes and proteolysis categories. RNA interference-mediated inhibition of 50 cadmium-responsive genes resulted in an increased sensitivity to cadmium toxicity, demonstrating that these genes are involved in the resistance to cadmium toxicity. Several functional protein interacting networks were identified by interactome analysis. Within one network, the signaling protein KEL-8 was identified. Kel-8 protects C. elegans from cadmium toxicity in a mek-1 (MAPKK)-dependent manner. CONCLUSION Because many C. elegans genes and signal transduction pathways are evolutionarily conserved, these results may contribute to the understanding of the functional roles of various genes in cadmium toxicity in higher organisms.
Collapse
Affiliation(s)
- Yuxia Cui
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Metals have complex environmental chemistry. When metals are present at elevated levels, they cause toxicity. Some metals are essential for living organisms, and those metals occur naturally in the environment. The latter aspect has allowed biological species to adapt to long- and short-term variations in metal levels. Chemical speciation, bioavailability, bioaccumulation, toxicity, and mixture effects are key issues in assessing the hazards of metals.In the present contribution, a global overview is given of the interactions between the chemistry and biology of metals, mostly at the interface of biological and environmental matrices. The environmental chemistry of metals and resulting methods for assessing metal availability are assumed as tokens, and the emphasis is thus on biological processes affecting the fate and effects of metals following interaction of the organism with the bioavailable metal fraction. The overview culminates in linking metal compartmentalization in organisms to bioaccumulation and toxicity.
Collapse
|
38
|
Van der Wurff AWG, Kools SAE, Boivin MEY, Van den Brink PJ, Van Megen HHM, Riksen JAG, Doroszuk A, Kammenga JE. Type of disturbance and ecological history determine structural stability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2007; 17:190-202. [PMID: 17479845 DOI: 10.1890/1051-0761(2007)017[0190:todaeh]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy contamination. Nematodes were used as model organisms because they are an abundant and trophically diverse group and representative of the soil food web and ecosystem complexity. In a field survey, a relationship between contaminants and community structures was established. Following, two groups of soil mesocosms from the field that differed in contamination level were exposed to different disturbance regimes, namely, to the contaminant zinc and a heat shock. The zinc treatment revealed that community structure is stable, irrespective of soil contamination levels. This implies that centuries of exposure to contamination led to adaptation of the soil nematode community irrespective of the patchy distribution of contaminants. In contrast, the heat shock had adverse effects on species richness in the highly contaminated soils only. The total nematode biomass was lower in the highly contaminated field samples; however, the biomass was not affected by zinc and heat treatments of the mesocosms. This means that density compensation occurred rapidly, i.e., tolerant species quickly replaced sensitive species. Our results support the hypothesis that the history of contamination and the type of disturbance determine the response of communities. Despite that ecosystems may be exposed for centuries to contamination and communities show adaptation, biodiversity in highly contaminated sites is at increased risk when exposed to a different disturbance regime. We discuss how the loss of higher trophic levels from the entire system, such as represented by carnivorous nematodes after the heat shock, accompanied by local biodiversity loss at highly contaminated sites, may result in detrimental effects on ecosystem functions.
Collapse
Affiliation(s)
- A W G Van der Wurff
- Wageningen University, Laboratory of Nematology, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liao VHC, Yu CW. Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 2006; 18:519-28. [PMID: 16333752 DOI: 10.1007/s10534-005-2996-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Gamma-glutamylcysteine synthetase (gamma-GCS) catalyzes the first, rate-limiting step in the biosynthesis of glutathione (GSH). To evaluate the protective role of cellular GSH against arsenic-induced oxidative stress in Caenorhabditis elegans (C. elegans), we examined the effect of the C. elegans ortholog of GCS(h), gcs-1, in response to inorganic arsenic exposure. We have evaluated the responses of wild-type and gcs-1 mutant nematodes to both inorganic arsenite (As(III)) and arsenate (As(V)) ions and found that gcs-1 mutant nematodes are more sensitive to arsenic toxicity than that of wild-type animals. The amount of metal ion required to kill half of the population of worms falls in the order of wild-type/As(V)>gcs-1/As(V)> wild-type/As(III)>gcs-1/As(III). gcs-1 mutant nematodes also showed an earlier response to the exposure of As(III) and As(V) than that of wild-type animals. Pretreatment with GSH significantly raised the survival rate of gcs-1 mutant worms compared to As(III)- or As(V)-treated worms alone. These results indicate that GCS-1 is essential for the synthesis of intracellular GSH in C. elegans and consequently that the intracellular GSH status plays a critical role in protection of C. elegans from arsenic-induced oxidative stress.
Collapse
Affiliation(s)
- Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | |
Collapse
|
40
|
Tan Y, Shi L, Hussain SM, Xu J, Tong W, Frazier JM, Wang C. Integrating time-course microarray gene expression profiles with cytotoxicity for identification of biomarkers in primary rat hepatocytes exposed to cadmium. ACTA ACUST UNITED AC 2005; 22:77-87. [PMID: 16249259 DOI: 10.1093/bioinformatics/bti737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION DNA microarrays can provide information about the expression levels of thousands of genes simultaneously at the transcriptomic level, while conventional cell viability and cytotoxicity measurement methods provide information about the biological functions at the cellular level. Integrating these data at different levels provides a promising approach for evaluating or predicting how cells respond to chemical exposure. It is important to investigate the multi-scale biological system in a systematic way to better understand the gene regulation networks and signal transduction pathways involved in the cellular responses to environmental factors. RESULTS Primary rat hepatocytes were exposed to cadmium acetate at 0, 1.25 and 2 microM. mRNA expression profiles at 0, 3, 6, 12 and 24 h were measured using the Affymetrix RatTox U34 GeneChip arrays. Simultaneously, cytotoxicity was assessed by lactase dehydrogenase leakage assay. Gene expression profiles at different time points were used to evaluate cytotoxicity at subsequent time points using partial least squares, and it was found that gene expression profiles at 0 h had the best prediction accuracy for the cytotoxicity observed at 12 h. Some biomarkers whose expression profiles showed strong relationship with cytotoxicity were identified and the underlying pathways were reconstructed to illustrate how hepatocytes respond to cadmium exposure. Permutation studies were also applied to assess the reliability of the predictive models. AVAILABILITY Matlab source code is available upon request and DNA microarray data are available at GEO (http://www.ncbi.nlm.nih.gov/geo).
Collapse
Affiliation(s)
- Yongxi Tan
- Cedars-Sinai Research Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA. CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 2005; 280:23684-90. [PMID: 15840570 DOI: 10.1074/jbc.m503362200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochelatins (PCs), (gamma-Glu-Cys)n Gly polymers that were formerly considered to be restricted to plants and some fungal systems, are now known to play a critical role in heavy metal (notably Cd2+) detoxification in Caenorhabditis elegans. In view of the functional equivalence of the gene encoding C. elegans PC synthase 1, ce-pcs-1, to its homologs from plant and fungal sources, we have gone on to explore processes downstream of PC fabrication in this organism. Here we describe the identification of a half-molecule ATP-binding cassette transporter, CeHMT-1, from C. elegans with an equivalent topology to that of the putative PC transporter SpHMT-1 from Schizosaccharomyces pombe. At one level, CeHMT-1 satisfies the requirements of a Cd2+ tolerance factor involved in the sequestration and/or elimination of Cd x PC complexes. Heterologous expression of cehmt-1 in S. pombe alleviates the Cd2+-hypersensitivity of hmt- mutants concomitant with the localization of CeHMT-1 to the vacuolar membrane. Suppression of the expression of ce-hmt-1 in intact worms by RNA interference (RNAi) confers a Cd2+-hypersensitive phenotype similar to but more pronounced than that exhibited by ce-pcs-1 RNAi worms. At another level, it is evident from comparisons of the cell morphology of ce-hmt-1 and cepcs-1 single and double RNAi mutants that CeHMT-1 also contributes to Cd2+ tolerance in other ways. Whereas the intestinal epithelial cells of ce-pcs-1 RNAi worms undergo necrosis upon exposure to toxic levels of Cd2+, the corresponding cells of ce-hmt-1 RNAi worms instead elaborate punctate refractive inclusions within the vicinity of the nucleus. Moreover, a deficiency in CeHMT-1 does not interfere with the phenotype associated with CePCS-1 deficiency and vice versa. Double ce-hmt-1; ce-pcs-1 RNAi mutants exhibit both cell morphologies when exposed to Cd2+. These results and those from our previous investigations of the requirement for PC synthase for heavy metal tolerance in C. elegans demonstrate PC-dependent, HMT-1-mediated heavy metal detoxification not only in S. pombe but also in some invertebrates while at the same time indicating that the action of CeHMT-1 does not depend exclusively on PC synthesis.
Collapse
Affiliation(s)
- Olena K Vatamaniuk
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
42
|
Dong J, Song MO, Freedman JH. Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmium-responsive gene cdr-1. ACTA ACUST UNITED AC 2005; 1727:16-26. [PMID: 15652154 DOI: 10.1016/j.bbaexp.2004.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/03/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022]
Abstract
Six Caenorhabditis elegans genes that are homologous to the novel, cadmium-responsive gene cdr-1 have been identified and characterized. Nucleotide and amino acid sequence comparisons among the CDR family, which includes cdr-1, cdr-2, cdr-3, cdr-4, cdr-5, cdr-6, and cdr-7, reveals a high degree of identity among the seven members in this family. There are high levels of amino acid and nucleotide sequence similarity in the lengths of the open reading frames, predicted sizes, and protein characteristics. The seven proteins are predicted to be extremely hydrophobic, and are classified as integral membrane proteins. Structural analysis of the predicted proteins suggests that they may have similar biological functions. In response to cadmium exposure, cdr-1, cdr-2, cdr-3, and cdr-4 transcription significantly increases. In contrast, the levels of cdr-5, cdr-6, and cdr-7 transcription are not significantly affected or inhibited by cadmium exposure. Further, in non-exposed C. elegans, cdr-2, cdr-4, cdr-6, and cdr-7 are constitutively expressed. When CDR-1 expression was inhibited using RNAi, numerous fluid droplets were observed throughout the nematode body cavity. This phenotype became more pronounced in the presence of hypotonic stress. This suggests that CDR-1 may function in osmoregulation to maintain salt balance in C. elegans.
Collapse
Affiliation(s)
- Jie Dong
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
43
|
Swain SC, Keusekotten K, Baumeister R, Stürzenbaum SR. C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 2004; 341:951-59. [PMID: 15328611 DOI: 10.1016/j.jmb.2004.06.050] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 06/04/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
Metallothioneins are considered to be the primary player in the detoxification of and protection from cadmium, a teratogen, mutagen and potentially lethal heavy metal. The nematode Caenorhabditis elegans has only two metallothioneins, mtl-i and mtIl-2, thus making it an ideal organism to investigate the phenotypic effects of cadmium toxicosis. The functional importance of metallothioneins in cadmium trafficking was highlighted through the generation of viable green fluorescent protein (GFP) expressing transgenes, a metallothionein null allele, as well as RNAi mediated metallothionein knock-downs. A highly sensitive dose and temporal transcriptional response to cadmium, but not copper or zinc, was shown to be equally prevalent in both isoforms. No measurable compensatory up-regulation of mtl-l could be observed in the null allele of mtl-2, suggesting that both isoforms are independent and not synergistic in their mode of action. Exposure to cadmium affected all demographic indices measured, manifested by a reduction in body size, generation time, brood size and lifespan. These effects were magnified in the knock-out or wild-type subjected to a knock down by RNAi, however, only in the presence of cadmium. This substantiates the notion that metallothioneins play a pivotal role in the protection from cadmium toxicosis. Finally, an earthworm metallothionein-GFP construct could be activated in C. elegans upon exposure to cadmium, the results providing further evidence that the transcriptional control of metallothioneins is fundamentally divergent in lower invertebrates and not mediated via MTF-1 as in more complex organisms.
Collapse
Affiliation(s)
- S C Swain
- Cardiff University, School of Biosciences, Wales, UK
| | | | | | | |
Collapse
|
44
|
Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1027-39. [PMID: 15181212 PMCID: PMC514137 DOI: 10.1104/pp.103.037739] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/13/2004] [Accepted: 02/19/2004] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is a widespread pollutant that is toxic to plant growth. However, only a few genes that contribute to Cd resistance in plants have been identified. To identify additional Cd(II) resistance genes, we screened an Arabidopsis cDNA library using a yeast (Saccharomyces cerevisiae) expression system employing the Cd(II)-sensitive yeast mutant ycf1. This screening process yielded a small Cys-rich membrane protein (Arabidopsis plant cadmium resistance, AtPcrs). Database searches revealed that there are nine close homologs in Arabidopsis. Homologs were also found in other plants. Four of the five homologs that were tested also increased resistance to Cd(II) when expressed in ycf1. AtPcr1 localizes at the plasma membrane in both yeast and Arabidopsis. Arabidopsis plants overexpressing AtPcr1 exhibited increased Cd(II) resistance, whereas antisense plants that showed reduced AtPcr1 expression were more sensitive to Cd(II). AtPcr1 overexpression reduced Cd uptake by yeast cells and also reduced the Cd contents of both yeast and Arabidopsis protoplasts treated with Cd. Thus, it appears that the Pcr family members may play an important role in the Cd resistance of plants.
Collapse
Affiliation(s)
- Won-Yong Song
- National Research Laboratory of Phytoremediation, Division of Molecular Life Science, POSTECH, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sterenborg I, Roelofs D. Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:741-747. [PMID: 12826101 DOI: 10.1016/s0965-1748(03)00070-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Populations of the springtail Orchesella cincta that live in metal contaminated soils have developed tolerance to cadmium by increased metal retention in the midgut epithelium and excretion at every moult. Regulation of the MT gene was studied in a tolerant population (Plombières, Belgium) and a laboratory culture. Animals were exposed to a range of concentrations of cadmium in the food (0-1.5 microM Cd/g food). RNA was extracted after 5-14 days of cadmium exposure and used for Northern blot analysis to quantify MT mRNA. MT expression levels were significantly higher (p <0.01) in individuals from laboratory-raised strains originating from the soils of the metal contaminated forest Plombières (2.4- to 7.8-fold expression) compared to the reference population (1.5- to 2.4-fold expression). No variable sites were found in the complete MT coding sequence. Southern blot analysis suggests that in both populations the gene is not tandemly repeated. This is the first evidence of evolution of metal tolerance via gene regulation of MT in a natural population. These data indicate a higher fitness of the tolerant population in the polluted environment due to selection of high MT expression phenotypes.
Collapse
Affiliation(s)
- Ingrid Sterenborg
- Department of Animal Ecology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | |
Collapse
|