1
|
Dobi D, Loberto N, Mauri L, Bassi R, Chiricozzi E, Lunghi G, Aureli M. Effect of CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor on lipid metabolism in human bronchial epithelial cells. Glycoconj J 2025; 42:1-14. [PMID: 39797966 DOI: 10.1007/s10719-024-10174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation. This study investigated ETI's impact on the maturation of the mutated CFTR, the expression levels of its scaffolding proteins, and lipid composition of cells using bronchial epithelial cell lines expressing both wild-type and F508del CFTR. Our findings revealed that ETI treatment enhances CFTR and its scaffolding proteins expression and aids in rescuing mature F508del CFTR, causing also significant alterations in the lipid profile including reduced levels of lactosylceramide and increased content of gangliosides GM1 and GD1a. These changes were linked to ETI's influence on enzymes involved in the sphingolipid metabolism, in particular GM3 synthase and sialidase. Through this work, we aim to deepen understanding CFTR interactions with lipids, and to elucidate the mechanisms of action of CFTR modulators. Our findings may support the development of potential therapeutic strategies contributing to the ongoing efforts to design effective correctors and potentiators for CF treatment.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
| |
Collapse
|
2
|
Naito S, Kawashima N, Ishii D, Fujita T, Iwamura M, Takeuchi Y. Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Exp Nephrol 2022; 26:1078-1085. [PMID: 35804208 DOI: 10.1007/s10157-022-02249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients. METHODS We performed a case-control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent. RESULTS Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = - 0.61, p < 0.01, FSGS: r = - 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = - 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05). CONCLUSION We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.
Collapse
Affiliation(s)
- Shokichi Naito
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Nagako Kawashima
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Daisuke Ishii
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuo Fujita
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
3
|
Cheng X, Wei H, Zhang S, Zhang F. Predictive and Prognostic Value of an MicroRNA Signature for Gastric Carcinoma Undergoing Adjuvant Chemotherapy. DNA Cell Biol 2021; 40:1428-1444. [PMID: 34767733 DOI: 10.1089/dna.2021.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gastric carcinoma (GC) is one of the most common cause of tumor-related death. Chemotherapy resistance usually occurs, leading to cancer relapse and poor survival of GC patients. To investigate the role of miRNAs in chemotherapy resistance for GC patients, we conducted an integrated analysis of miRNA expression and survival information using data obtained from The Cancer Genome Atlas project. Genome-wide screening of chemotherapy response-specific miRNAs was performed using Cox proportional hazards regression analyses for patients who received chemotherapy or those who had never received chemotherapy, respectively. A four-miRNA expression signature (involving two protective miRNAs, miR-200b and miR-103a, and two risk ones miR-199 and miR-152) was predicted as a specific indicator for GC chemoresistance (p = 0.00053; hazard ratio = 8.63), outperforming those clinicopathological factors. Functional experiments confirmed the roles of these signature miRNAs in regulation of chemotherapy response. Functional enrichment of these signature miRNAs and risk score revealed positive association with epithelial-mesenchymal transition (EMT), and negative association with cell cycle checkpoint and DNA damage response. Furthermore, the immune infiltration-miRNA functional network analysis revealed transformation from activated effector cells to resting immunosuppressive cells are preferred in GCs with adverse chemotherapy response. In summary, our work identifies a four-miRNA expression signature as a promising chemoresistance biomarker in GC, which provides novel insights into developing new strategies to overcome GC chemoresistance.
Collapse
Affiliation(s)
- Xiaowei Cheng
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi City, People's Republic of China
| | - Hongkuang Wei
- The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning City, People's Republic of China
| | - Sheng Zhang
- Wuxi Eighth People's Hospital, Wuxi City, People's Republic of China
| | - Fuzheng Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi City, People's Republic of China
| |
Collapse
|
4
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
5
|
Madigan JP, Robey RW, Poprawski JE, Huang H, Clarke CJ, Gottesman MM, Cabot MC, Rosenberg DW. A role for ceramide glycosylation in resistance to oxaliplatin in colorectal cancer. Exp Cell Res 2020; 388:111860. [PMID: 31972222 DOI: 10.1016/j.yexcr.2020.111860] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/27/2022]
Abstract
There is growing evidence to support a role for the ceramide-metabolizing enzyme, glucosylceramide synthase (GCS), in resistance to a variety of chemotherapeutic agents. Whether GCS contributes to oxaliplatin resistance in colorectal cancer (CRC) has not yet been determined. We have addressed this potentially important clinical issue by examining GCS function in two panels of oxaliplatin-resistant, isogenic CRC cell lines. Compared to parental cell lines, oxaliplatin-resistant cells have increased expression of GCS protein associated with increased levels of the pro-survival ceramide metabolite, glucosylceramide (GlcCer). Inhibition of GCS expression by RNAi-mediated gene knockdown resulted in a reduction in cellular GlcCer levels, with restored sensitivity to oxaliplatin. Furthermore, oxaliplatin-resistant CRC cells displayed lower ceramide levels both basally and after treatment with oxaliplatin, compared to parental cells. GlcCer, formed by GCS-mediated ceramide glycosylation, is the precursor to a complex array of glycosphingolipids. Differences in cellular levels and species of gangliosides, a family of glycosphingolipids, were also seen between parental and oxaliplatin-resistant CRC cells. Increased Akt activation was also observed in oxaliplatin-resistant CRC cell lines, together with increased expression of the anti-apoptotic protein survivin. Finally, this study shows that GCS protein levels are greatly increased in human CRC specimens, compared to matched, normal colonic mucosa, and that high levels of UGCG gene expression are significantly associated with decreased disease-free survival in colorectal cancer patients. These findings uncover an important cellular role for GCS in oxaliplatin chemosensitivity and may provide a novel cellular target for augmenting chemotherapeutic drug effectiveness in CRC.
Collapse
Affiliation(s)
- James P Madigan
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanna E Poprawski
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huakang Huang
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA
| | - Christopher J Clarke
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook, Stony Brook, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine and East Carolina Diabetes Institute, East Carolina University, Greenville, NC, USA
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
6
|
Cytotoxicity and molecular activity of fenretinide and metabolites in T-cell lymphoid malignancy, neuroblastoma, and ovarian cancer cell lines in physiological hypoxia. Anticancer Drugs 2019; 30:117-127. [DOI: 10.1097/cad.0000000000000696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Human Remyelination Promoting Antibody Stimulates Astrocytes Proliferation Through Modulation of the Sphingolipid Rheostat in Primary Rat Mixed Glial Cultures. Neurochem Res 2018; 44:1460-1474. [PMID: 30569280 DOI: 10.1007/s11064-018-2701-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 01/17/2023]
Abstract
Remyelination promoting human IgMs effectively increase the number of myelinated axons in animal models of multiple sclerosis. Hence, they ultimately stimulate myelin production by oligodendrocytes (OLs); however, their exact mechanism of action remains to be elucidated, and in particular, it remains unclear whether they are directly targeting OLs, or their action is mediated by effects on other cell types. We assessed the effect of remyelination promoting antibody rHIgM22 on the proliferative response and on the ceramide/sphingosine 1-phosphate rheostat in mixed glial cell cultures (MGCs). rHIgM22 treatment caused a time-dependent increase in PDGFαR protein in MGCs. Forty-eight hours of treatment with rHIgM22 induced a dose-dependent proliferative response (evaluated as total cell number and as EdU(+) cell number) in MGCs. When the proliferation response of MGCs to rHIgM22 was analyzed as a function of the cell types, the most significant proliferative response was associated with GLAST(+) cells, i.e., astrocytes. In many cell types, the balance between different sphingolipid mediators (the "sphingolipid rheostat"), in particular ceramide and sphingosine 1-phosphate, is critical in determining the cell fate. rHIgM22 treatment in MGCs induced a moderate but significant inhibition of total acidic sphingomyelinase activity (measured in vitro on cell lysates), the main enzyme responsible for the stimulus-mediated production of ceramide, when treatment was performed in serum containing medium, but no significant differences were observed when antibody treatment was performed in the absence of serum. Moreover, rHIgM22 treatment, either in the presence or in absence of serum, had no effects on ceramide levels. On the other hand, rHIgM22 treatment for 24 h induced increased production and release of sphingosine 1-phosphate in the extracellular milieu of MGC. Release of sphingosine 1-phosphate upon rHIgM22 treatment was strongly reduced by a selective inhibitor of PDGFαR. Increased sphingosine 1-phosphate production does not seem to be mediated by regulation of the biosynthetic enzymes, sphingosine kinase 1 and 2, since protein levels of these enzymes and phosphorylation of sphingosine kinase 1 were unchanged upon rHIgM22 treatment. Instead, we observed a significant reduction in the levels of sphingosine 1-phosphate lyase 1, one of the key catabolic enzymes. Remarkably, rHIgM22 treatment under the same experimental conditions did not induce changes in the production and/or release of sphingosine 1-phosphate in pure astrocyte cultures. Taken together, these data suggest that rHIgM22 indirectly influences the proliferation of astrocytes in MGCs, by affecting the ceramide/sphingosine 1-phosphate balance. The specific cell population directly targeted by rHIgM22 remains to be identified, however our study unveils another aspect of the complexity of rHIgM22-induced remyelinating effect.
Collapse
|
8
|
Kreitzburg KM, van Waardenburg RCAM, Yoon KJ. Sphingolipid metabolism and drug resistance in ovarian cancer. ACTA ACUST UNITED AC 2018; 1:181-197. [PMID: 31891125 PMCID: PMC6936734 DOI: 10.20517/cdr.2018.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite progress in understanding molecular aberrations that contribute to the development and progression of ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. Emerging data implicate bioactive sphingolipids and regulation of sphingolipid metabolism as components of response to chemotherapy or development of resistance. Increases in cytosolic ceramide induce apoptosis in response to therapy with multiple classes of chemotherapeutic agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or that prevent the production and accumulation of ceramide contribute to resistance to standard of care platinum- and taxane-based agents. The aim of this review is to highlight current literature and research investigating the influence of the sphingolipids and enzymes that comprise the sphingosine-1-phosphate pathway on the progression of ovarian cancer. The focus of the review is on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug resistance in this tumor type.
Collapse
Affiliation(s)
- Kelly M Kreitzburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg? Cell Signal 2017; 38:134-145. [PMID: 28687494 DOI: 10.1016/j.cellsig.2017.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022]
Abstract
The cancer multidrug resistance (MDR) phenotype encompasses a myriad of molecular, genetic and cellular alterations resulting from progressive oncogenic transformation and selection. Drug efflux transporters, in particular the MDR P-glycoprotein ABCB1, play an important role in MDR but cannot confer the complete phenotype alone indicating parallel alterations are prerequisite. Sphingolipids are essential constituents of lipid raft domains and directly participate in functionalization of transmembrane proteins, including providing an optimal lipid microenvironment for multidrug transporters, and are also perturbed in cancer. Here we postulate that increased sphingomyelin content, developing early in some cancers, recruits and functionalizes plasma membrane ABCB1 conferring a state of partial MDR, which is completed by glycosphingolipid disturbance and the appearance of intracellular vesicular ABCB1. In this review, the independent and interdependent roles of sphingolipid alterations and ABCB1 upregulation during the transformation process and resultant conferment of partial and complete MDR phenotypes are discussed.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States; Institute for Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - Richard N Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
10
|
LC-MS Based Sphingolipidomic Study on A2780 Human Ovarian Cancer Cell Line and its Taxol-resistant Strain. Sci Rep 2016; 6:34684. [PMID: 27703266 PMCID: PMC5050431 DOI: 10.1038/srep34684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance.
Collapse
|
11
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
12
|
Gutiérrez-Iglesias G, Hurtado Y, Palma-Lara I, López-Marure R. Resistance to the antiproliferative effect induced by a short-chain ceramide is associated with an increase of glucosylceramide synthase, P-glycoprotein, and multidrug-resistance gene-1 in cervical cancer cells. Cancer Chemother Pharmacol 2014; 74:809-17. [DOI: 10.1007/s00280-014-2552-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
|
13
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
14
|
Tanaka K, Takada H, Isonishi S, Aoki D, Mikami M, Kiguchi K, Iwamori M. Possible involvement of glycolipids in anticancer drug resistance of human ovarian serous carcinoma-derived cells. J Biochem 2012; 152:587-94. [DOI: 10.1093/jb/mvs112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
15
|
Fenretinide sensitizes multidrug-resistant human neuroblastoma cells to antibody-independent and ch14.18-mediated NK cell cytotoxicity. J Mol Med (Berl) 2012; 91:459-72. [PMID: 23052481 DOI: 10.1007/s00109-012-0958-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Combining passive immunotherapy with an antibody to the disialoganglioside GD2 (ch14.18/SP2/0) and cytokines with 13-cis-retinoic acid for post-myeloablative maintenance therapy increased survival in high-risk NB, but the overall prognosis for these children is still in need of improvement. Fenretinide (4-HPR) is a synthetic retinoid that has shown clinical activity in recurrent NB and is cytotoxic to a variety of cancer cells, in part via the accumulation of dihydroceramides, which are precursors of GD2. We investigated the effect of 4-HPR on CHO-derived, ch14.18-mediated anti-NB effector functions, complement-dependent cytotoxicity (CDC), and antibody-dependent and antibody-independent cellular cytotoxicity (ADCC and AICC, respectively). Here, we demonstrate for the first time that pretreatment of fenretinide-resistant NB cells with 4-HPR significantly enhanced ch14.18/CHO-mediated CDC and ADCC and AICC by both human natural killer cells and peripheral blood mononuclear cells. Treatment with 4-HPR increased GD2 and death receptor (DR) expression in resistant NB cells and induced an enhanced granzyme B and perforin production by effector cells. Blocking of ganglioside synthesis with a glucosylceramide synthase inhibitor abrogated the increased ADCC response but had no effect on the AICC, indicating that GD2 induced by 4-HPR mediates the sensitization of NB cells for ADCC. We also showed that 4-HPR induced increased GD2 and DR expression in a resistant NB xenograft model that was associated with an increased ADCC and AICC response using explanted tumor target cells from 4-HPR-treated mice. In summary, these findings provide an important baseline for the combination of 4-HPR and passive immunotherapy with ch14.18/CHO in future clinical trials for high-risk NB patients.
Collapse
|
16
|
Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 2012; 29:585-97. [PMID: 22592846 DOI: 10.1007/s10719-012-9385-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.
Collapse
|
17
|
Abstract
The bioactive sphingolipids including, ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important roles in several types of signaling and regulation of many cellular processes including cell proliferation, apoptosis, senescence, angiogenesis, and transformation. Recent accumulating evidence suggests that ceramide- and S1P-mediated pathways have been implicated in cancer development, progression, and chemotherapy. Ceramide mediates numerous cell-stress responses, such as induction of apoptosis and cell senescence, whereas S1P plays pivotal roles in cell survival, migration, and inflammation. These sphingolipids with opposing roles can be interconverted within cells, suggesting that the balance between them is related to cell fate. Importantly, these sphingolipids are metabolically related through actions of enzymes including ceramidases, ceramide synthases, sphingosine kinases, and S1P phosphatases thereby forming a network of metabolically interrelated bioactive lipid mediators whose importance in normal cellular function and diseases is gaining appreciation. In this review, we summarize involvement of sphingolipids and their related enzymes in pathogenesis and therapy of cancer and discuss future directions of sphingolipid field in cancer research.
Collapse
Affiliation(s)
- Hideki Furuya
- University of Hawaii Cancer Center, 651 Ilalo Street, BSB #222H, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
18
|
Dietary ganglioside reduces proinflammatory signaling in the intestine. J Nutr Metab 2012; 2012:280286. [PMID: 22506104 PMCID: PMC3306953 DOI: 10.1155/2012/280286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022] Open
Abstract
Gangliosides are integral to the structure and function of cell membranes. Ganglioside composition of the intestinal brush border and apical surface of the colon influences numerous cell processes including microbial attachment, cell division, differentiation, and signaling. Accelerated catabolism of ganglioside in intestinal disease results in increased proinflammatory signaling. Restoring proper structure and function to the diseased intestine can resolve inflammation, increase resistance to infection, and improve gut integrity to induce remission of conditions like necrotizing enterocolitis (NEC) and Crohn's disease (CD). Maintaining inactive state of disease may be achieved by reducing the rate that gangliosides are degraded or by increasing intake of dietary ganglioside. Collectively, the studies outlined in this paper indicate that the amount of gangliosides GM3 and GD3 in intestinal mucosa is decreased with inflammation, low level of GM3 is associated with higher production of proinflammatory signals, and ganglioside content of intestinal mucosa can be increased by dietary ganglioside.
Collapse
|
19
|
Huang S, Bijangi-Vishehsaraei K, Saadatzadeh MR, Safa AR. Human GM3 Synthase Attenuates Taxol-Triggered Apoptosis Associated with Downregulation of Caspase-3 in Ovarian Cancer Cells. ACTA ACUST UNITED AC 2012; 3:504-510. [PMID: 25893133 DOI: 10.4236/jct.2012.35065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Taxol (paclitaxel) inhibits proliferation and induces apoptosis in a variety of cancer cells, but it also upregulates cytoprotective proteins and/or pathways that compromise its therapeutic efficacy. MATERIALS AND METHOD The roles of GM3 synthase (α2,3-sialyltransferase, ST3Gal V) in attenuating Taxol-induced apoptosis and triggering drug resistance were determined by cloning and overexpressing this enzyme in the SKOV3 human ovarian cancer cell line, treating SKOV3 and the transfectants (SKOV3/GS) with Taxol and determining apoptosis, cell survival, clonogenic ability, and caspase-3 activation. RESULTS In this report, we demonstrated that Taxol treatment resulted in apoptosis which was associated with caspase-3 activation. Taxol treatment upregulated the expression of human GM3 synthase, an enzyme that transfers a sialic acid to lactosylceramide. Moreover, we cloned the full-length GM3 synthase gene and showed for the first time that forced expression of GM3 synthase attenuated Taxol-induced apoptosis and increased resistance to Taxol in SKOV3 cells. CONCLUSIONS GM3 synthase overexpression inhibited Taxol-triggered caspase-3 activation, revealing that upregulation of GM3 synthase prevents apoptosis and hence reduces the efficacy of Taxol therapy.
Collapse
Affiliation(s)
- Su Huang
- Department of Pharmacology and Toxicology, Indiana University Simon Cancer Center, Indianapolis, USA
| | | | - Mohammad Reza Saadatzadeh
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University Simon Cancer Center, Indianapolis, USA
| |
Collapse
|
20
|
Sonnino S, Prioni S, Chigorno V, Prinetti A. Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:97-115. [DOI: 10.1007/978-1-4614-3381-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells. BMC Cancer 2011; 11:477. [PMID: 22061047 PMCID: PMC3218121 DOI: 10.1186/1471-2407-11-477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model. Methods CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling. Results No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells. Conclusions In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.
Collapse
|
22
|
Prinetti A, Cao T, Illuzzi G, Prioni S, Aureli M, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S. A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J Biol Chem 2011; 286:40900-10. [PMID: 21949119 DOI: 10.1074/jbc.m111.286146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genetic (stable overexpression of sialyltransferase I, GM3 synthase) or pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) manipulation of A2780 human ovarian cancer cells allowed us to obtain clones characterized by higher GM3 synthase activity compared with wild-type cells. Clones with high GM3 synthase expression had elevated ganglioside levels, reduced in vitro cell motility, and enhanced expression of the membrane adaptor protein caveolin-1 with respect to wild-type cells. In high GM3 synthase-expressing clones, both depletion of gangliosides by treatment with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and silencing of caveolin-1 by siRNA were able to strongly increase in vitro cell motility. The motility of wild-type, low GM3 synthase-expressing cells was reduced in the presence of a Src inhibitor, and treatment of these cells with exogenous gangliosides, able to reduce their in vitro motility, inactivated c-Src kinase. Conversely, ganglioside depletion by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol treatment or caveolin-1 silencing in high GM3 synthase-expressing cells led to c-Src kinase activation. In high GM3 synthase-expressing cells, caveolin-1 was associated with sphingolipids, integrin receptor subunits, p130(CAS), and c-Src forming a Triton X-100-insoluble noncaveolar signaling complex. These data suggest a role for gangliosides in regulating tumor cell motility by affecting the function of a signaling complex organized by caveolin-1, responsible for Src inactivation downstream to integrin receptors, and imply that GM3 synthase is a key target for the regulation of cell motility in human ovarian carcinoma.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gouazé-Andersson V, Flowers M, Karimi R, Fabriás G, Delgado A, Casas J, Cabot MC. Inhibition of acid ceramidase by a 2-substituted aminoethanol amide synergistically sensitizes prostate cancer cells to N-(4-hydroxyphenyl) retinamide. Prostate 2011; 71:1064-73. [PMID: 21557271 DOI: 10.1002/pros.21321] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/18/2010] [Indexed: 11/12/2022]
Abstract
BACKGROUND The purpose of this study was to determine whether the therapeutic efficacy of fenretinide (4-HPR), a ceramide-generating anticancer agent, could be enhanced in prostate cancer cells by inclusion of a novel synthetic acid ceramidase (AC) inhibitor, DM102, a pivaloylamide of a 2-substituted aminoethanol. In prostate cancer, AC plays a role in progression and resistance to chemotherapy. METHODS PC-3 and DU 145 hormone-refractory human prostate cancer cell lines were used. Cells were exposed to 4-HPR, DM102, and combinations; viability, apoptosis, cell migration, ceramide metabolism, and levels of reactive oxygen species (ROS) were assessed. RESULTS Single agent 4-HPR and DM102 (2.5-10 µM) were weakly cytotoxic; however, combinations synergistically decreased cell viably to as low as 1.5% of control. N-oleoylethanolamine (NOE), a frequently employed AC inhibitor, was not effective in producing synergy. The 4-HPR/DM102 regimen enhanced caspase activity and increased [(3) H](dihydro)ceramide and ROS levels 6- and 30-fold over control, respectively. The antioxidant vitamin E, but not the de novo ceramide synthesis inhibitor myriocin, partially rescued cells from 4-HPR/DM102 cytotoxicity. The 4-HPR/DM102 combination also elicited synergistic cytotoxicity in DU 145 cells, another human hormone-refractory prostate cancer cell line. CONCLUSION This study shows that 4-HPR cytotoxicity is enhanced in a synergistic fashion by inclusion of the AC inhibitor DM102, by a mechanism that enlists generation of ROS, and thus provides a system to raise 4-HPR therapeutic potential. The role of ceramide however in the cytotoxic response is not clear, as blocking ceramide generation failed to rescue PC-3 cells from 4-HPR/DM102 cytotoxicity.
Collapse
|
24
|
Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S. Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 2011; 116:891-9. [DOI: 10.1111/j.1471-4159.2010.07019.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 2011; 36:1654-68. [DOI: 10.1007/s11064-010-0380-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
|
26
|
Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G, Mauri L, Valsecchi M, Chigorno V, Sonnino S. Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:643-67. [PMID: 21618134 DOI: 10.1007/978-1-4419-7877-6_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Illuzzi G, Bernacchioni C, Aureli M, Prioni S, Frera G, Donati C, Valsecchi M, Chigorno V, Bruni P, Sonnino S, Prinetti A. Sphingosine kinase mediates resistance to the synthetic retinoid N-(4-hydroxyphenyl)retinamide in human ovarian cancer cells. J Biol Chem 2010; 285:18594-602. [PMID: 20404323 DOI: 10.1074/jbc.m109.072801] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A2780 human ovarian carcinoma cells respond to treatment with the synthetic retinoid N-(4-hydroxyphenyl)retinamide (HPR) with the production of dihydroceramide and with a concomitant reduction of cell proliferation and induction of apoptosis. The derived HPR-resistant clonal cell line, A2780/HPR, is less responsive to HPR in terms of dihydroceramide generation. In this report, we show that the production of sphingosine 1-phosphate (S1P) is significantly higher in A2780/HPR versus A2780 cells due to an increased sphingosine kinase (SK) activity and SK-1 mRNA and protein levels. Treatment of A2780 and A2780/HPR cells with a potent and highly selective pharmacological SK inhibitor effectively reduced S1P production and resulted in a marked reduction of cell proliferation. Moreover, A2780/HPR cells treated with a SK inhibitor were sensitized to the cytotoxic effect of HPR, due to an increased dihydroceramide production. On the other hand, the ectopic expression of SK-1 in A2780 cells was sufficient to induce HPR resistance in these cells. Challenge of A2780 and A2780/HPR cells with agonists and antagonists of S1P receptors had no effects on their sensitivity to the drug, suggesting that the role of SK in HPR resistance in these cells is not mediated by the S1P receptors. These data clearly demonstrate a role for SK in determining resistance to HPR in ovarian carcinoma cells, due to its effect in the regulation of intracellular ceramide/S1P ratio, which is critical in the control of cell death and proliferation.
Collapse
Affiliation(s)
- Giuditta Illuzzi
- Department of Medical Chemistry, University of Milan, Center of Excellence on Neurodegenerative Diseases, 20090 Segrate, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Valsecchi M, Aureli M, Mauri L, Illuzzi G, Chigorno V, Prinetti A, Sonnino S. Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. J Lipid Res 2010; 51:1832-40. [PMID: 20194109 DOI: 10.1194/jlr.m004010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.
Collapse
Affiliation(s)
- Manuela Valsecchi
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milano, 20090 Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 2009; 584:1914-22. [DOI: 10.1016/j.febslet.2009.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 12/19/2022]
|
30
|
Prinetti A, Aureli M, Illuzzi G, Prioni S, Nocco V, Scandroglio F, Gagliano N, Tredici G, Rodriguez-Menendez V, Chigorno V, Sonnino S. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 2009; 20:62-77. [PMID: 19759399 DOI: 10.1093/glycob/cwp143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this paper, we describe the effects of the expression of GM3 synthase at high levels in human ovarian carcinoma cells. Overexpression of GM3 synthase in A2780 cells consistently resulted in elevated ganglioside (GM3, GM2 and GD1a) levels. GM3 synthase overexpressing cells had a growth rate similar to wild-type cells, but showed a strongly reduced in vitro cell motility accompanied by reduced levels of the epithelial-mesenchymal transition marker alpha smooth muscle actin. A similar reduction in cell motility was observed upon treatment with exogenous GM3, GM2, and GM1, but not with GD1a. A photolabeling experiment using radioactive and photoactivable GM3 highlighted several proteins directly interacting with GM3. Among those, caveolin-1 was identified as a GM3-interacting protein in GM3 synthase overexpressing cells. Remarkably, caveolin-1 was markedly upregulated in GM3 synthase overexpressing cells. In addition, the motility of low GM3 synthase expressing cells was also reduced in the presence of a Src kinase inhibitor; on the other hand, higher levels of the inactive form of c-Src were detected in GM3 synthase overexpressing cells, associated with a ganglioside- and caveolin-rich detergent insoluble fraction.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, Biochemistry and Biotechnology, University of Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scandroglio F, Loberto N, Valsecchi M, Chigorno V, Prinetti A, Sonnino S. Thin layer chromatography of gangliosides. Glycoconj J 2008; 26:961-73. [DOI: 10.1007/s10719-008-9145-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/28/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
|
32
|
The Yin and Yang of lactosylceramide metabolism: Implications in cell function. Biochim Biophys Acta Gen Subj 2008; 1780:370-82. [DOI: 10.1016/j.bbagen.2007.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 11/18/2022]
|
33
|
Sandro S, Alessandro P. Membrane lipid domains and membrane lipid domain preparations: are they the same thing? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta Gen Subj 2007; 1780:585-96. [PMID: 17889439 DOI: 10.1016/j.bbagen.2007.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 12/11/2022]
Abstract
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Colombo N, Formelli F, Cantù MG, Parma G, Gasco M, Argusti A, Santinelli A, Montironi R, Cavadini E, Baglietto L, Guerrieri-Gonzaga A, Viale G, Decensi A. A phase I-II preoperative biomarker trial of fenretinide in ascitic ovarian cancer. Cancer Epidemiol Biomarkers Prev 2007; 15:1914-9. [PMID: 17035399 DOI: 10.1158/1055-9965.epi-06-0183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To evaluate study feasibility, toxicity, drug concentrations, and activity of escalating doses of the synthetic retinoid fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] in ovarian cancer by measuring serum CA125 and cytomorphometric biomarkers in cancer cells collected from ascitic fluid before and after treatment. METHODS Twenty-two naive patients with ascitic ovarian cancer were treated with escalating doses of 4-HPR at 0, 400, 600, and 800 mg/d for 1 to 4 weeks before surgery. Changes in the proportion of proliferating cells expressed by Ki67 and computer-assisted cytomorphometric variables (nuclear area, DNA index, and chromatin texture) were determined in ascitic cells. Drug levels were measured by high-performance liquid chromatography. RESULTS Doses up to 800 mg/d were well tolerated, and no adverse reactions occurred. There was no effect of 4-HPR on changes in serum CA125, Ki67 expression, which were assessed in 75% of subjects, and cytomorphometric variables, which were assessed in 80% of subjects. Plasma retinol levels were significantly lower in affected women than healthy donors. 4-HPR plasma concentrations increased slightly with increasing doses and attained a 1.4 micromol/L concentration with 800 mg/d. Drug levels in malignant ascitic cells and tumor tissue were higher than in plasma but were 50 and 5 times lower, respectively, than in carcinoma cells treated in vitro with 1 micromol/L 4-HPR. CONCLUSIONS Cell biomarkers can be measured in ascitic cells to assess drug activity. Under our experimental conditions, 4-HPR did not show activity in advanced ovarian cancer cells. However, clinical evidence supports further investigation of fenretinide for ovarian cancer prevention.
Collapse
Affiliation(s)
- Nicoletta Colombo
- Division of Gynecologic Oncology, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Appierto V, Villani MG, Cavadini E, Gariboldi M, De Cecco L, Pierotti MA, Lambert JR, Reid J, Tiberio P, Colombo N, Formelli F. Analysis of gene expression identifies PLAB as a mediator of the apoptotic activity of fenretinide in human ovarian cancer cells. Oncogene 2007; 26:3952-62. [PMID: 17213814 DOI: 10.1038/sj.onc.1210171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fenretinide (4-HPR) is a synthetic retinoid with antitumor activity, which induces apoptosis in cancer cell lines of different histotypes. To identify genes contributing to its apoptotic activity in ovarian cancer cells, we monitored, by cDNA arrays, gene expression changes after 4-HPR exposure in A2780, a human ovarian carcinoma cell line sensitive to the retinoid. Among the differentially expressed transcripts, PLAcental Bone morphogenetic protein (PLAB), a proapoptotic gene, was the most highly induced. In a panel of ovarian carcinoma cell lines with different 4-HPR sensitivities, PLAB upregulation was associated with cellular response to 4-HPR, its overexpression increased basal apoptosis and its silencing by small interfering RNA decreased the ability of 4-HPR to induce apoptosis. PLAB induction by 4-HPR was p53- and EGR-1 independent and was regulated, at least in part, by increased stability of PLAB mRNA. PLAB up-modulation by 4-HPR also occurred in vivo: in ascitic cells collected from patients with ovarian cancer before and after 4-HPR treatment, PLAB was upmodulated in 2/4 patients. Our results in certain ovarian cancer cell lines indicate a role for PLAB as a mediator of 4-HPR-induced apoptosis. The correlation of increased PLAB in vivo with antitumor activity remains to be established.
Collapse
Affiliation(s)
- V Appierto
- Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Self lipid antigens induce selection and expansion of autoreactive T cells which have a role in immunoregulation and disease pathogenesis. Here we review the important biological rules which determine lipid immunogenicity. The impact of lipid structure, synthesis, traffic, membrane distribution and CD1 loading are discussed.
Collapse
Affiliation(s)
- G De Libero
- Department of Research, University Hospital, Basel, Switzerland.
| | | |
Collapse
|
38
|
Ravindranath MH, Muthugounder S, Presser N, Selvan SR, Santin AD, Bellone S, Saravanan TS, Morton DL. Immunogenic gangliosides in human ovarian carcinoma. Biochem Biophys Res Commun 2006; 353:251-8. [PMID: 17188646 DOI: 10.1016/j.bbrc.2006.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Ganglioside signatures of four poorly and three moderately differentiated ovarian epithelial cancer (OEC) cell lines reveal the presence of GM3, GM2, GD2, O-AcGD2, GD1a and GM1b. The expression of GM3, presence of GD1a and GM1b in the ascitic fluid and plasma, together with a positive correlation in the total-gangliosides levels between ascitic fluid and plasma of OEC patients support the earlier contention that the tumor-gangliosides may be released (or shed) into the tumor-microenvironment. The immunogenicity of OEC-gangliosides is determined by comparing anti-ganglioside-IgM titers in ascitic fluid (n = 14) and plasma (n = 23) of OEC-patients and age-matched healthy (n = 14). The titers were measured by ELISA. Strikingly, the level of anti-GD1a-IgM is significantly higher in ascitic fluid and plasma of patients than in the plasma of healthy volunteers. Paired sample analysis of ascitic fluid and plasma from the same patients confirmed the significant expression of anti-GD1a IgM in OEC patients, while no such difference was observed with other anti-ganglioside IgMs among different groups. The significance of the endogenous IgM response to GD1a may be to eliminate this immunosuppressive-ganglioside from the tumor-microenvironment.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404-2302, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gouaze-Andersson V, Cabot MC. Glycosphingolipids and drug resistance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2096-103. [PMID: 17010304 DOI: 10.1016/j.bbamem.2006.08.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 01/31/2023]
Abstract
Drug resistance, an all too frequent characteristic of cancer, represents a serious barrier to successful treatment. Although many resistance mechanisms have been described, those that involve membrane-resident proteins belonging to the ABC (ATP binding cassette) transporter superfamily are of particular interest. In addition to cancer, the ABC transporter proteins are active in diseases such as malaria and leishmaniasis. A recent renaissance in lipid metabolism, specifically ceramide and sphingolipids, has fueled research and provided insight into the role of glycosphingolipids in multidrug resistance. This article reviews current knowledge on ceramide, glucosylceramide synthase and cerebrosides, and the relationship of these lipids to cellular response to anticancer agents.
Collapse
Affiliation(s)
- Valerie Gouaze-Andersson
- Department of Experimental Therapeutics, The John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | | |
Collapse
|
40
|
Dijkhuis AJ, Klappe K, Kamps W, Sietsma H, Kok JW. Gangliosides do not affect ABC transporter function in human neuroblastoma cells. J Lipid Res 2006; 47:1187-95. [PMID: 16547352 DOI: 10.1194/jlr.m500518-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells.
Collapse
Affiliation(s)
- Anne-Jan Dijkhuis
- Department of Cell Biology, Section of Membrane Cell Biology, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Villani MG, Appierto V, Cavadini E, Bettiga A, Prinetti A, Clagett-Dame M, Curley RW, Formelli F. 4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines. Cancer Res 2006; 66:3238-47. [PMID: 16540676 DOI: 10.1158/0008-5472.can-05-3362] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a recently identified metabolite of fenretinide (4-HPR). We explored the effectiveness of 4-oxo-4-HPR in inducing cell growth inhibition in ovarian, breast, and neuroblastoma tumor cell lines; moreover, we investigated the molecular events mediating this effect in two ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/HPR) to 4-HPR. 4-oxo-4-HPR was two to four times more effective than 4-HPR in most cell lines, was effective in both 4-HPR-sensitive and 4-HPR-resistant cells, and, in combination with 4-HPR, caused a synergistic effect. The tumor growth-inhibitory effects of 4-oxo-4-HPR seem to be independent of nuclear retinoid receptors (RAR), as indicated by the failure of RAR antagonists to inhibit its effects and by its poor ability to bind and transactivate RARs. Unlike 4-HPR, which only slightly affected the G(1) phase of the cell cycle, 4-oxo-4-HPR caused a marked accumulation of cells in G(2)-M. This effect was associated with a reduction in the expression of regulatory proteins of G(2)-M (cyclin-dependent kinase 1 and cdc25c) and S (cyclin A) phases, and with an increase in the expression of apoptosis-related proteins, such as p53 and p21. Apoptosis was induced by 4-oxo-4-HPR in both 4-HPR-sensitive and 4-HPR-resistant cells and involved activation of caspase-3 and caspase-9 but not caspase-8. We also showed that 4-oxo-4-HPR, similarly to 4-HPR, increased reactive oxygen species generation and ceramide levels by de novo synthesis. In conclusion, 4-oxo-4-HPR is an effective 4-HPR metabolite that might act as therapeutic agent per se and, when combined with 4-HPR, might improve 4-HPR activity or overcome 4-HPR resistance.
Collapse
Affiliation(s)
- Maria Grazia Villani
- Chemoprevention Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S. Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 2006; 20:1227-9. [PMID: 16645048 DOI: 10.1096/fj.05-5077fje] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ceramide is a key lipid molecule necessary to regulate some cellular processes, including apoptosis and cell differentiation. In this context, its production has been shown to occur via sphingomyelin hydrolysis or sphingosine acylation. Here, we show that in human fibroblasts, plasma membrane ceramide is also produced from ganglioside GM3 by detachment of sugar units. Membrane-bound glycosylhydrolases have a role in this process. In fact, the production of ceramide from GM3 has been observed even under experimental conditions able to block endocytosis or lysosomal activity, and the overexpression of the plasma membrane ganglioside sialidase Neu3 corresponded to a higher production of ceramide in the plasma membrane. The increased activity of Neu3 was paralleled by an increase of GM3 synthase mRNA and GM3 synthase activity. Neu3-overexpressing fibroblasts were characterized by a reduced proliferation rate and higher basal number of apoptotic cells in comparison with wild-type cells. A similar behavior was observed when normal fibroblasts were treated with exogenous C2-ceramide.
Collapse
Affiliation(s)
- Rea Valaperta
- Department of Medical Chemistry, Biochemistry and Biotechnology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Fratelli Cervi 93, Segrate 20090, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Prinetti A, Millimaggi D, D'Ascenzo S, Clarkson M, Bettiga A, Chigorno V, Sonnino S, Pavan A, Dolo V. Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells. Biochem J 2006; 395:311-8. [PMID: 16356169 PMCID: PMC1422777 DOI: 10.1042/bj20051184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PTX (Paclitaxel) is an antimitotic agent used in the treatment of a number of major solid tumours, particularly in breast and ovarian cancer. This study was undertaken to gain insight into the molecular alterations producing PTX resistance in ovarian cancer. PTX treatment is able to induce apoptosis in the human ovarian carcinoma cell line, CABA I. PTX-induced apoptosis in CABA I cells was accompanied by an increase in the cellular Cer (ceramide) levels and a decrease in the sphingomyelin levels, due to the activation of sphingomyelinases. The inhibition of acid sphingomyelinase decreased PTX-induced apoptosis. Under the same experimental conditions, PTX had no effect on Cer and sphingomyelin levels in the stable PTX-resistant ovarian carcinoma cell line, CABA-PTX.The acquisition of the PTX-resistant phenotype is accompanied by unique alterations in the complex sphingolipid pattern found on lipid extraction. In the drug-resistant cell line, the levels of sphingomyelin and neutral glycosphingolipids were unchanged compared with the drug-sensitive cell line. The ganglioside pattern in CABA I cells is more complex compared with that of CABA-PTX cells. Specifically, we found that the total ganglioside content in CABA-PTX cells was approximately half of that in CABA I cells, and GM3 ganglioside content was remarkably higher in the drug-resistant cell line. Taken together our findings indicate that: i) Cer generated by acid sphingomyelinase is involved in PTX-induced apoptosis in ovarian carcinoma cells, and PTX-resistant cells are characterized by their lack of increased Cer upon drug treatment, ii) PTX resistance might be correlated with an alteration in metabolic Cer patterns specifically affecting cellular ganglioside composition.
Collapse
Affiliation(s)
- Alessandro Prinetti
- *Centre of Excellence for Neurodegenerative Disease, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy
| | - Danilo Millimaggi
- †Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sandra D'Ascenzo
- †Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matilda Clarkson
- †Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | - Arianna Bettiga
- *Centre of Excellence for Neurodegenerative Disease, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy
| | - Vanna Chigorno
- *Centre of Excellence for Neurodegenerative Disease, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy
| | - Sandro Sonnino
- *Centre of Excellence for Neurodegenerative Disease, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy
| | - Antonio Pavan
- †Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- †Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Schmelz EM, Symolon H. Sphingolipids and Cancer. SPHINGOLIPID BIOLOGY 2006:363-381. [DOI: 10.1007/4-431-34200-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Gouazé V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC. Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 2005; 65:3861-7. [PMID: 15867385 DOI: 10.1158/0008-5472.can-04-2329] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Overexpression of glucosylceramide synthase (GCS), a pivotal enzyme in glycolipid biosynthesis, contributes to cancer cell resistance to chemotherapy. We previously showed that transfection of doxorubicin-resistant MCF-7-AdrR cells with GCS antisense restored cell sensitivity to doxorubicin and greatly enhanced sensitivity to vinblastine and paclitaxel. In that study, doxorubicin promoted generation of ceramide in MCF-7-AdrR/GCS antisense cells; the present study implicates factors in addition to ceramide that augment sensitivity to chemotherapy. Although GCS antisense cells showed enhanced ceramide formation compared with MCF-7-AdrR when challenged with paclitaxel, GCS antisense cells also showed a 10-fold increase in levels of intracellular drug (paclitaxel and vinblastine). In addition, transfected cells had dramatically decreased expression (80%) of P-glycoprotein and a 4-fold decrease in the level of cellular gangliosides. Chemical inhibition of GCS produced the same effects as antisense transfection: exposure of MCF-7-AdrR cells to the GCS inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, 5.0 micromol/L, 4 days) decreased ganglioside levels, restored sensitivity to vinblastine, enhanced vinblastine uptake 3-fold, and diminished expression of MDR1 by 58%, compared with untreated controls. A similar effect was shown in vinblastin-resistant KB-V0.01 cells; after 7 days with PPMP (10 micromol/L), MDR1 expression fell by 84% and P-glycoprotein protein levels decreased by 50%. MCF-7-AdrR cells treated with small interfering RNAs to specifically block GCS also showed a dramatic decrease in MDR1 expression. This work shows that limiting GCS activity down-regulates the expression of MDR1, a phenomenon that may drive the chemosensitization associated with blocking ceramide metabolism. The data suggest that lipids play a role in the expression of multidrug resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adenocarcinoma/drug therapy
- Adenocarcinoma/enzymology
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Gangliosides/metabolism
- Glucosyltransferases/antagonists & inhibitors
- Glucosyltransferases/genetics
- Humans
- Morpholines/pharmacology
- Oligonucleotides, Antisense/genetics
- Paclitaxel/pharmacology
- Sphingolipids/pharmacology
- Transfection
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Valérie Gouazé
- John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California 90404, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hummel I, Klappe K, Kok JW. Up-regulation of lactosylceramide synthase in MDR1 overexpressing human liver tumour cells. FEBS Lett 2005; 579:3381-4. [PMID: 15936020 DOI: 10.1016/j.febslet.2005.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 04/27/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022]
Abstract
HepG2 cells, stably transfected with MDR1 cDNA, encoding the P-glycoprotein multidrug resistance efflux pump, display an altered sphingolipid composition compared to control cells, stably transfected with empty vector. The MDR1 overexpressing cells display a approximately 3-fold increased level of lactosylceramide and an increased ganglioside mass. Both the mRNA and the activity of lactosylceramide synthase were increased in HepG2/MDR1 cells. In conclusion, the increased glycolipid content in MDR1-transfected HepG2 cells is caused by a transcriptional up-regulation of the enzyme lactosylceramide synthase.
Collapse
Affiliation(s)
- Ina Hummel
- University Medical Center Groningen, Department of Cell Biology, Section Membrane Cell Biology, A. Deusinglaan 1, Bldg 3215, 10th fl, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
47
|
Villani MG, Appierto V, Cavadini E, Valsecchi M, Sonnino S, Curley RW, Formelli F. Identification of the fenretinide metabolite 4-oxo-fenretinide present in human plasma and formed in human ovarian carcinoma cells through induction of cytochrome P450 26A1. Clin Cancer Res 2005; 10:6265-75. [PMID: 15448016 DOI: 10.1158/1078-0432.ccr-04-0655] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The synthetic retinoid fenretinide (4-HPR) exhibits preventive and therapeutic activity against ovarian tumors. An unidentified polar metabolite was previously found in 4-HPR-treated subjects and in A2780 human ovarian carcinoma cells continuously treated with 4-HPR (A2780/HPR). The metabolite and the enzyme involved in its formation in tumor cells are herein identified. EXPERIMENTAL DESIGN The metabolite was identified by mass spectrometry in A2780/HPR cell extracts and in plasma from 11 women participating in a phase III trial and treated with 200 mg/d 4-HPR for 5 years. The expression of proteins involved in retinoid metabolism and transport, cytochrome P450 26A1 (CYP26A1), cellular retinol-binding protein I (CRBP-I), and cellular retinoic acid-binding protein I and II (CRABP-I, CRABP-II) were evaluated in tumor cells by reverse transcription-PCR and Western blot analyses. Overexpression of CYP26A1 and retinoic acid receptors (RARs) in A2780 cells were obtained by cDNAs transfection. RESULTS The polar metabolite was 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) i.e., an oxidized form of 4-HPR with modification in position 4 of the cyclohexene ring. 4-oxo-4-HPR plasma levels were slightly lower (0.52 +/- 0.17 micromol/L) than those of the parent drug (0.84 +/- 0.53 micromol/L) and of the already identified metabolite N-(4-methoxyphenyl)retinamide (1.13 +/- 0.85 micromol/L). In A2780/HPR cells continuously treated with 4-HPR and producing 4-oxo-4-HPR, CYP26A1 and CRBP-I were markedly up-regulated compared with A2780 untreated cells. In A2780 cells, not producing 4-oxo-4-HPR, overexpression of CYP26A1 caused formation of 4-oxo-4-HPR, which was associated with no change in 4-HPR sensitivity. Moreover, the addition of 4-oxo-4-HPR to A2780 cells inhibited cell proliferation. Elevated levels of CYP26A1 protein and metabolism of 4-HPR to 4-oxo-4-HPR were found in A2780 cells transfected with RARbeta and to a lesser extent in those transfected with RARgamma. CONCLUSIONS A new metabolite of 4-HPR, 4-oxo-4-HPR, present in human plasma and in tumor cells, has been identified. The formation of this biologically active metabolite in tumor cells was due to CYP26A1 induction and was influenced by RAR expression. Moreover evidence was provided that 4-HPR up-modulates the expression of CRBP-I transcript, which is lost during ovarian carcinogenesis.
Collapse
|
48
|
Appierto V, Villani MG, Cavadini E, Lotan R, Vinson C, Formelli F. Involvement of c-Fos in fenretinide-induced apoptosis in human ovarian carcinoma cells. Cell Death Differ 2004; 11:270-9. [PMID: 14647238 DOI: 10.1038/sj.cdd.4401349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fenretinide (HPR), a synthetic retinoid that exhibits lower toxicity than other retinoids, has shown preventive and therapeutic activity against ovarian tumors. Although the growth inhibitory effects of HPR have been ascribed to its ability to induce apoptosis, little is known about the molecular mechanisms involved. Since the proto-oncogene c-Fos has been implicated in apoptosis induction, we analyzed its role in mediating HPR response in a human ovarian carcinoma cell line (A2780) sensitive to HPR apoptotic effect. In these cells, HPR treatment caused induction of c-Fos expression, whereas such an effect was not observed in cells made resistant to HPR-induced apoptosis (A2780/HPR). Moreover, in a panel of other human ovarian carcinoma cell lines, c-Fos inducibility and HPR sensitivity were closely associated. Ceramide, which is involved in HPR-induced apoptosis, was also involved in c-Fos induction because its upregulation by HPR was reduced by fumonisin B(1), a ceramide synthase inhibitor. The causal relationship between c-Fos induction and apoptosis was established by the finding of an increased apoptotic rate in cells overexpressing c-Fos. Similarly to that observed for c-Fos expression, HPR treatment increased c-Jun expression in HPR-sensitive but not in HPR-resistant cells, suggesting the involvement of the transcription factor activating protein 1 (AP-1) in HPR-induced apoptosis. In gene reporter experiments, HPR stimulated AP-1 transcriptional activity and potentiated the AP-1 activity induced by 12-tetradecanoylphorbol 13-acetate. Furthermore, inhibition of AP-1 DNA binding, by transfecting A2780 cells with a dominant-negative Fos gene, caused decreased sensitivity to HPR apoptotic effects. Overall, the results indicate that c-Fos plays a role in mediating HPR-induced growth inhibition and apoptosis in ovarian cancer cells and suggest that c-Fos regulates these processes as a member of the AP-1 transcription factor.
Collapse
Affiliation(s)
- V Appierto
- Chemopreventive Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Batra S, Reynolds CP, Maurer BJ. Fenretinide Cytotoxicity for Ewing’s Sarcoma and Primitive Neuroectodermal Tumor Cell Lines Is Decreased by Hypoxia and Synergistically Enhanced by Ceramide Modulators. Cancer Res 2004; 64:5415-24. [PMID: 15289350 DOI: 10.1158/0008-5472.can-04-0377] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with disseminated Ewing's family of tumors (ESFT) often experience drug-resistant relapse. We hypothesize that targeting minimal residual disease with the cytotoxic retinoid N-(4-hydroxyphenyl) retinamide (4-HPR; fenretinide) may decrease relapse. We determined the following: (a) 4-HPR cytotoxicity against 12 ESFT cell lines in vitro; (b) whether 4-HPR increased ceramide species (saturated and desaturated ceramides); (c) whether physiological hypoxia (2% O(2)) affected cytotoxicity, mitochondrial membrane potential (DeltaPsi(m)) change, or ceramide species or reactive oxygen species levels; (d) whether cytotoxicity was enhanced by l-threo-dihydrosphingosine (safingol); (e) whether physiological hypoxia increased acid ceramidase (AC) expression; and (f) the effect of the AC inhibitor N-oleoyl-ethanolamine (NOE) on cytotoxicity and ceramide species. Ceramide species were quantified by thin-layer chromatography and scintillography. Cytotoxicity was measured by a fluorescence-based assay using digital imaging microscopy (DIMSCAN). Gene expression profiling was performed by oligonucleotide array analysis. We observed, in 12 cell lines tested in normoxia (20% O(2)), that the mean 4-HPR LC(99) (the drug concentration lethal to 99% of cells) = 6.1 +/- 5.4 microm (range, 1.7-21.8 microm); safingol (1-3 microm) synergistically increased 4-HPR cytotoxicity and reduced the mean 4-HPR LC(99) to 3.2 +/- 1.7 microm (range, 2.0-8.0 microm; combination index < 1). 4-HPR increased ceramide species in the three cell lines tested (up to 9-fold; P < 0.05). Hypoxia (2% O(2)) reduced ceramide species increase, DeltaPsi(m) loss, reactive oxygen species increase (P < 0.05), and 4-HPR cytotoxicity (P = 0.05; 4-HPR LC(99), 19.7 +/- 23.9 microm; range, 2.3-91.4). However, hypoxia affected 4-HPR + safingol cytotoxicity to a lesser extent (P = 0.04; 4-HPR LC(99), 4.9 +/- 2.3 microm; range, 2.0-8.2). Hypoxia increased AC RNA expression; the AC inhibitor NOE enhanced 4-HPR-induced ceramide species increase and cytotoxicity. The antioxidant N-acetyl-l-cysteine somewhat reduced 4-HPR cytotoxicity but did not affect ceramide species increase. We conclude the following: (a) 4-HPR was active against ESFT cell lines in vitro at concentrations achievable clinically, but activity was decreased in hypoxia; and (b) combining 4-HPR with ceramide modulators synergized 4-HPR cytotoxicity in normoxia and hypoxia.
Collapse
Affiliation(s)
- Sandeep Batra
- Division of Hematology-Oncology, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
50
|
Smoleńska-Sym G, Spychalska J, Zdebska E, Woźniak J, Traczyk Z, Pszenna E, Maj S, Danikiewicz W, Bieńkowski T, Kościelak J. Ceramides and glycosphingolipids in maturation process: leukemic cells as an experimental model. Blood Cells Mol Dis 2004; 33:68-76. [PMID: 15223014 DOI: 10.1016/j.bcmd.2004.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Indexed: 11/25/2022]
Abstract
Leukemic cells were used as experimental material to demonstrate changes in the content of GSLs during the development and maturation of neutrophils. The most abundant cellular GSL is LacCer. An elevation in the LacCer level occurs twice during the maturation process: initially, on formation of azurophil granules, and subsequently, (a more significant rise) on formation of specific granules. The formation of the latter is accompanied by an increase in the level of GalGalCer. During the maturation of myeloblasts, there is a simultaneous growth in the content of LacCer and GM3 as well as that of their common precursors, that is, free ceramides. Like other tumor cells, GM3 rich myeloblasts in the peripheral blood from patients with AML are characterized by shedding of gangliosides. The quantitative Cer/GlcCer ratio in these cells seems to be advantageous for the efficacy of chemotherapy in the induction of apoptosis. Myelo- and metamyelocytes achieve the highest level of GSLs. Their entry into the full maturity stage is accompanied by a decrease in the level of GSLs. Patterns of GSLs expression change greatly during development and maturation. However, with respect to the composition and content of GSLs, there are no significant differences between normal and leukemic mature neutrophils. At each stage of the development and maturation of myelogenous leukemic cells, as well as in normal mature neutrophils, there occurs the synthesis of the same molecular species both free ceramides and ceramide portions of LacCer, precursor of more complex GSLs.
Collapse
Affiliation(s)
- Gabriela Smoleńska-Sym
- Department of Biochemistry, Institute of Hematology and Blood Transfusion Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|