1
|
Marquèze-Pouey B, Mailfert S, Rouger V, Goaillard JM, Marguet D. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations. PLoS One 2014; 9:e106803. [PMID: 25265278 PMCID: PMC4179260 DOI: 10.1371/journal.pone.0106803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.
Collapse
Affiliation(s)
- Béatrice Marquèze-Pouey
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
- * E-mail:
| | - Sébastien Mailfert
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Vincent Rouger
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Jean-Marc Goaillard
- INSERM, UMR_S 1072, Marseille, France
- Aix-Marseille Université, UNIS, Marseille, France
| | - Didier Marguet
- Centre d’Immunologie de Marseille-Luminy, UM2 Aix Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| |
Collapse
|
2
|
Capiod T. Cell proliferation, calcium influx and calcium channels. Biochimie 2011; 93:2075-9. [PMID: 21802482 DOI: 10.1016/j.biochi.2011.07.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/12/2011] [Indexed: 01/14/2023]
Abstract
Both increases in the basal cytosolic calcium concentration ([Ca(2+)](cyt)) and [Ca(2+)](cyt) transients play major roles in cell cycle progression, cell proliferation and division. Calcium transients are observed at various stages of cell cycle and more specifically during late G(1) phase, before and during mitosis. These calcium transients are mainly due to calcium release and reuptake by the endoplasmic reticulum (ER) and are observed over periods of hours in oocytes and mammalian cells. Calcium entry sustains the ER Ca(2+) load and thereby helps to maintain these calcium transients for such a long period. Calcium influx also controls cell growth and proliferation in several cell types. Various calcium channels are involved in this process and the tight relation between the expression and activity of cyclins and calcium channels also suggests that calcium entry may be needed only at particular stages of the cell cycle. Consistent with this idea, the expression of l-type and T-type calcium channels and SOCE amplitude fluctuate along the cell cycle. But, as calcium influx regulates several other transduction pathways, the presence of a specific connection to trigger activation of proliferation and cell division in mammalian cells will be discussed in this review.
Collapse
Affiliation(s)
- Thierry Capiod
- INSERM U807, Faculté de Médecine, 156 rue de Vaugirard, Paris, France.
| |
Collapse
|
3
|
Yin X, Li B, Chen H, Catt KJ. Differential signaling pathways in angiotensin II- and epidermal growth factor-stimulated hepatic C9 cells. Mol Pharmacol 2008; 74:1223-33. [PMID: 18687808 PMCID: PMC6528799 DOI: 10.1124/mol.108.048504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Caveolin1 (Cav1) is an important component of the plasmamembrane microdomains, such as caveolae/lipid rafts, that are associated with angiotensin II type 1 (AT(1)) and epidermal growth factor (EGF) receptors in certain cell types. The interactions of Cav1 with other signaling molecules that mediate AT(1) receptor function were analyzed in angiotensin II (Ang II)- and EGF-stimulated hepatic C9 cells. This study demonstrated that cholesterol-rich domains mediate the actions of early upstream signaling molecules such as Src and intracellular Ca(2+) in cells stimulated by Ang II, but not by EGF, and that Cav1 has a scaffolding role in the process of mitogen-activated protein kinase activation. Furthermore, Cav1 phosphorylation by Ang II and EGF was regulated by intracellular Ca(2+) and Src, further indicating reciprocal interactions among Cav1, Src, and intracellular Ca(2+) through the AT(1) receptor. Phosphorylation of Cav1 and the EGF receptor by Ang II, but not of extracellular signal-regulated kinase 1/2, was dependent on intracellular Ca(2+). The phosphatidylinositol 3-kinase inhibitors, 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) and wortmannin, differentially modulated both Cav1 and EGF receptor activation by Ang II through intracellular Ca(2+). These findings further demonstrate the importance of Cav1 in conjunction with the receptor-mediated signaling pathways involved in cell proliferation and survival. It is clear that differential signaling pathways are operative in Ang II- and EGF-stimulated C9 cells and that cholesterol-enriched microdomains are essential components in cellular signaling processes that are dependent on specific agonists and/or cell types.
Collapse
Affiliation(s)
- Xing Yin
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
4
|
Zhang H, Li ZH, Zhang MQ, Katz MS, Zhang BX. Heat shock protein 90beta1 is essential for polyunsaturated fatty acid-induced mitochondrial Ca2+ efflux. J Biol Chem 2008; 283:7580-9. [PMID: 18178560 DOI: 10.1074/jbc.m707192200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonesterified fatty acids may influence mitochondrial function by alterations in gene expression, metabolism, and/or mitochondrial Ca(2+) ([Ca(2+)](m)) homeostasis. We have previously reported that polyunsaturated fatty acids induce Ca(2+) efflux from mitochondria, an action that may deplete [Ca(2+)](m) and thus contribute to nonesterified fatty acid-responsive mitochondrial dysfunction. Here we show that the chaperone protein heat shock protein 90 beta1 (hsp90beta1) is required for polyunsaturated fatty acid-induced mitochondrial Ca(2+) efflux (PIMCE). Retinoic acid induced differentiation of human teratocarcinoma NT2 cells in association with attenuation of PIMCE. Proteomic analysis of mitochondrial proteins revealed that hsp90beta1, among other proteins, was reduced in retinoic acid-differentiated cells. Blockade of PIMCE in NT2 cells by 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin, a known inhibitor of the chaperone activity of hsp90, and hsp90beta1 RNA interference demonstrated that hsp90beta1 is essential for PIMCE. We also show localization of hsp90beta1 in mitochondria by Western blot and immunofluorescence. Distinctive effects of inhibitors binding to the N or C terminus of hsp90 on PIMCE in isolated mitochondria suggested that the C terminus of hsp90beta1 plays a critical role in PIMCE.
Collapse
Affiliation(s)
- Hua Zhang
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Division, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
5
|
Liao JY, Li LL, Wei Q, Yue JC. Heregulinβ activates store-operated Ca2+ channels through c-erbB2 receptor level-dependent pathway in human breast cancer cells. Arch Biochem Biophys 2007; 458:244-52. [PMID: 17214955 DOI: 10.1016/j.abb.2006.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/23/2006] [Accepted: 12/03/2006] [Indexed: 11/21/2022]
Abstract
The heregulinbeta (HRGbeta) is a ligand to activate c-erbB2/c-erbB3 interaction and can subsequently increases cytosolic [Ca(2+)](i). In the two human breast cancer cell lines, MCF-7 shows a low c-erbB2 expression level, whereas SK-BR-3 overexpress c-erbB2 receptor. In this article, we have found that in MCF-7, HRGbeta induced Ca(2+) release from the endoplasmic reticulums (ER) and subsequently activated Ca(2+) entry via store-operated Ca(2+) channel (SOC). However, in SK-BR-3, HRGbeta failed to induce Ca(2+) release and Ca(2+)entry. RNA interference to decrease c-erbB2 level in SK-BR-3 resulted in reactivation of HRGbeta-evoked Ca(2+) release and Ca(2+) entry via SOC, which was similar to that of MCF-7. In addition, in the absence of HRGbeta, a constitutive activation of SOC was observed in SK-BR-3 rather than in MCF-7 and c-erbB2-siRNA treated SK-BR-3. Compared to the cells with low c-erbB2 level, c-erbB2 might tend to interact with c-erbB3 in the resting state in the cells with high c-erbB2 level, which resulted in different [Ca(2+)](i) responses to HRGbeta. In SK-BR-3, the Ca(2+) mobilization in the presence or in the absence of HRGbeta was completely blocked by PLC inhibitor U73122. In summary, our results indicate that HRGbeta-induced SOC was regulated by c-erbB2 level and dependent on activation of PLC in human breast cancer cells.
Collapse
Affiliation(s)
- Jie-Ying Liao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | |
Collapse
|
6
|
Zhang W, Meng H, Li ZH, Shu Z, Ma X, Zhang BX. Regulation of STIM1, store-operated Ca2+ influx, and nitric oxide generation by retinoic acid in rat mesangial cells. Am J Physiol Renal Physiol 2006; 292:F1054-64. [PMID: 17090780 DOI: 10.1152/ajprenal.00286.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown that store-operated Ca(2+) influx (SOC) plays critical roles in the activation of endothelial nitric oxide (NO) synthase (eNOS) and generation of NO in endothelial cells. Recent studies indicate stromal interaction molecule 1 (STIM1) is the molecule responsible for SOC activation following Ca(2+) depletion in the ER. Retinoic acids (RA) have beneficial effects in the treatment of renal diseases. The mechanism of the RA action is still largely unknown. In the current study, we used primary cultured rat mesangial cells to examine the effect of RA on SOC and STIM1. In these cells, BK caused concentration-dependent [Ca(2+)](i) mobilization. Treatment of the cells with RA, while it had no effect on the initial peak, reduced the plateau phase of BK-mediated [Ca(2+)](i) response, indicating the inhibition of SOC by RA. The level of STIM1 protein but not mRNA in RA-treated cells was significantly reduced. RA treatment did not affect TGF-beta-mediated gradual Ca(2+) influx which occurred by superoxide anion-mediated mechanism, indicating RA treatment specifically inhibited SOC in mesangial cells. RT-PCR and Western blot analysis demonstrated that eNOS was expressed in rat mesangial cells grown in media containing 11 and 30 but not 5.5 mM glucose. Downregulation of STIM1 protein and BK-induced SOC by RA treatment or STIM1 dsRNA were associated with abolished NO production. The 26S proteasome inhibitor lactacystin blocked the RA-mediated downregulation of BK-induced SOC, suggesting that ubiquitin-proteasome pathway may be involved in RA-mediated STIM1 protein downregulation in rat mesangial cells. Our data suggest that glucose-induced eNOS expression and NO production in mesangial cells may contribute to hyperfiltration in diabetes and RA may exert beneficial effects by downregulation of STIM1 and SOC in mesangial cells.
Collapse
Affiliation(s)
- Wanke Zhang
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Division, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zhang BX, Ma X, Zhang W, Yeh CK, Lin A, Luo J, Sprague EA, Swerdlow RH, Katz MS. Polyunsaturated fatty acids mobilize intracellular Ca2+in NT2 human teratocarcinoma cells by causing release of Ca2+from mitochondria. Am J Physiol Cell Physiol 2006; 290:C1321-33. [PMID: 16601147 DOI: 10.1152/ajpcell.00335.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+([Ca2+]m), which fluctuates in coordination with intracellular Ca2+([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]imobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]imobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]iresponse to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]imobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+stores. Furthermore, PUFA-mediated [Ca2+]imobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]mwith X-rhod-1 and45Ca2+indicate that PUFA induce Ca2+efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+uniporter, blocks PUFA-induced Ca2+efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+release from mitochondria, possibly via the Ca2+uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]imobilization in NT2 cells.
Collapse
Affiliation(s)
- Bin-Xian Zhang
- Geriatric Research, Education and Clinical Center (182), South Texas Veterans Health Care System, Audie L. Murphy Division, 7400 Merton Minter Blvd., San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L. PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 2005; 25:8285-98. [PMID: 16135816 PMCID: PMC1234340 DOI: 10.1128/mcb.25.18.8285-8298.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PKD2, or polycystin 2, the product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, belongs to the transient receptor potential channel superfamily and has been shown to function as a nonselective cation channel in the plasma membrane. However, the mechanism of PKD2 activation remains elusive. We show that PKD2 overexpression increases epidermal growth factor (EGF)-induced inward currents in LLC-PK(1) kidney epithelial cells, while the knockdown of endogenous PKD2 by RNA interference or the expression of a pathogenic missense variant, PKD2-D511V, blunts the EGF-induced response. Pharmacological experiments indicate that the EGF-induced activation of PKD2 occurs independently of store depletion but requires the activity of phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K). Pipette infusion of purified phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppresses the PKD2-mediated effect on EGF-induced conductance, while pipette infusion of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) does not have any effect on this conductance. Overexpression of type Ialpha phosphatidylinositol-4-phosphate 5-kinase [PIP(5)Kalpha], which catalyzes the formation of PIP(2), suppresses EGF-induced currents. Biochemical experiments show that PKD2 physically interacts with PLC-gamma2 and EGF receptor (EGFR) in transfected HEK293T cells and colocalizes with EGFR and PIP(2) in the primary cilium of LLC-PK(1) cells. We propose that plasma membrane PKD2 is under negative regulation by PIP(2). EGF may reduce the threshold of PKD2 activation by mechanical and other stimuli by releasing it from PIP(2)-mediated inhibition.
Collapse
Affiliation(s)
- Rong Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mergler S, Pleyer U, Reinach P, Bednarz J, Dannowski H, Engelmann K, Hartmann C, Yousif T. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. Exp Eye Res 2005; 80:285-93. [PMID: 15670807 DOI: 10.1016/j.exer.2004.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 09/21/2004] [Indexed: 11/24/2022]
Abstract
Endogenous generated hydrogen peroxide during eye bank storage limits viability. We determined in cultured human corneal endothelial cells (HCEC) whether: (1) this oxidant induces elevations in intracellular calcium concentration [Ca2+]i; (2) epidermal growth factor (EGF) medium supplementation has a protective effect against peroxide mediated rises in [Ca2+]i. Whereas pathophysiological concentrations of H2O2 (10 mM) induced irreversible large increases in [Ca2+]i, lower concentrations (up to 1 mM) had smaller effects, which were further reduced by exposure to either 5 microM nifedipine or EGF (10 ng ml(-1)). EGF had a larger protective effect against H2O2-induced rises in [Ca2+]i than nifedipine. In addition, icilin, the agonist for the temperature sensitive transient receptor potential protein, TRPM8, had complex dose-dependent effects (i.e. 10 and 50 microM) on [Ca2+]i. At 10 microM, it reversibly elevated [Ca2+]i whereas at 50 microM an opposite effect occurred suggesting complex effects of temperature on endothelial viability. Taken together, H2O2 induces rises in [Ca2+]i that occur through increases in Ca2+ permeation along plasma membrane pathways that include L-type Ca2+ channels as well as other EGF-sensitive pathways. As EGF overcomes H2O2-induced rises in [Ca2+]i, its presence during eye bank storage could improve the outcome of corneal transplant surgery.
Collapse
Affiliation(s)
- Stefan Mergler
- Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang H, Sun X, Wang Z, Ning G, Zhang F, Kong J, Lu L, Reinach PS. EGF stimulates growth by enhancing capacitative calcium entry in corneal epithelial cells. J Membr Biol 2004; 194:47-58. [PMID: 14502442 DOI: 10.1007/s00232-003-2025-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Indexed: 10/27/2022]
Abstract
In rabbit corneal epithelial cells (RCEC), we determined whether capacitative calcium entry (CCE) mediates the mitogenic response to epidermal growth factor, EGF. [Ca2+]i was measured with single-cell fluorescence imaging of fura2-loaded RCEC. EGF (5 ng/ml) maximally increased [Ca2+]i 4.4-fold. Following intracellular store (ICS) calcium depletion in calcium-free medium with 10 microM cyclopiazonic acid (CPA) (endoplasmic reticulum calcium ATPase inhibitor), calcium addback elicited plasma membrane Ca2+ influx as a result of activation of plasma membrane store operated channel (SOC) activity. Based on Mn2+ quench measurements of fura2 fluorescence, 5 ng/ml EGF enhanced such influx 2.3-fold, whereas with Rp-cAMPS (protein kinase A inhibitor) plus EGF it increased by 5.3-fold. In contrast, SOC activation was blocked with 100 microM 2-aminoethyldiphenylborate (2-APB, store-operated channel inhibitor). During exposure to either 50 microM UO126 (MEK-1/2 inhibitor) or 10 microM forskolin (adenylate cyclase activator), 5 ng/ml EGF failed to affect [Ca2+]i. RT-PCR detected gene expression of: 1) transient receptor potential (TRP) protein isoforms 1, 3, 4, 6 and 7; 2) IP3R isoforms 1-3. Immunocytochemistry, in conjunction with confocal and immunogold electron microscopy, detected plasma membrane localization of TRP4 expression. Inhibition of CCE with 2-APB and/or CPA, eliminated the 2.5-fold increase in intracellular [3H]-thymidine incorporation induced by EGF. Taken together, CCE in RCEC mediates the mitogenic response to EGF. EGF induces CCE through its stimulation of Erkl/2 activity, whereas PKA stimulation suppresses these effects of EGF. TRP4 may be a component of plasma membrane SOC activity, which is stimulated by ICS calcium depletion.
Collapse
Affiliation(s)
- H Yang
- SUNY, College of Optometry, Biological Sciences, 33 West 42nd Street, New York, NY 10036, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gooch JL, Gorin Y, Zhang BX, Abboud HE. Involvement of calcineurin in transforming growth factor-beta-mediated regulation of extracellular matrix accumulation. J Biol Chem 2004; 279:15561-70. [PMID: 14742441 DOI: 10.1074/jbc.m308759200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Calcineurin is a calcium-dependent, serine/threonine phosphatase that functions as a signaling intermediate. In this study, we investigated the role of calcineurin in transforming growth factor-beta (TGF-beta)-mediated cellular effects and examined the signaling pathway involved in activation of calcineurin. Calcineurin is activated by TGF-beta in a time- and dose-dependent manner. Consistent with increased phosphatase activity, the calcineurin substrate, NFATc1, is dephosphorylated and transported to the nucleus. Inhibition of calcineurin prior to the addition of TGF-beta revealed that calcineurin is required for TGF-beta-mediated accumulation of extracellular matrix (ECM) proteins but not cell hypertrophy. Conversely, overexpression of constitutively active calcineurin was sufficient to induce ECM protein expression. The mechanism of calcineurin activation by TGF-beta was found to be induction of a low, sustained increase of intracellular calcium. Chelation of extracellular calcium blocked both TGF-beta-mediated calcium influx and calcineurin activity. Finally, calcium entry was found to be dependent upon generation of reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide. Accordingly, inhibition of ROS generation also blocked TGF-beta-mediated calcineurin phosphatase activity and decreased ECM accumulation. In conclusion, this study describes a new pathway for TGF-beta-mediated regulation of ECM via generation of ROS, calcium influx, and activation of calcineurin.
Collapse
Affiliation(s)
- Jennifer L Gooch
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
12
|
Humez S, Legrand G, Vanden-Abeele F, Monet M, Marchetti P, Lepage G, Crepin A, Dewailly E, Wuytack F, Prevarskaya N. Role of endoplasmic reticulum calcium content in prostate cancer cell growth regulation by IGF and TNFalpha. J Cell Physiol 2004; 201:201-13. [PMID: 15334655 DOI: 10.1002/jcp.20049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Variations in calcium concentration within the endoplasmic reticulum ([Ca(2+)](ER)) may play a role in cell growth. This study evaluates the regulation of calcium pools by growth modulators of prostate cancer (PC) cells, the insulin growth factor (IGF), and the tumor necrosis growth factor-alpha (TNFalpha) as well as evaluating the possible role of [Ca(2+)](ER) variations as signals for growth modulation. We show that IGF (5 ng/ml), which increases cell growth, induces an increase in [Ca(2+)](ER) whereas TNFalpha (1 ng/ml) which reduces cell proliferation and induces apoptosis, reduces [Ca(2+)](ER). IGF-induced [Ca(2+)](ER) increase is correlated to an overexpression of the sarcoendoplasmic calcium-ATPase 2B (SERCA2b), whereas TNFalpha-induced [Ca(2+)](ER) decrease is associated to a reduction in SERCA2b expression. Pretreatment with epidermal growth factors (EGF) or IGF does not prevent TNFalpha from affecting the induction of apoptosis, [Ca(2+)](ER) reduction and SERCA2b downregulation. Reduction in [Ca(2+)](ER) induced by thapsigargin (TG) (from 1 pM to 1 microM, 48 h) reduces LNCaP growth in a dose dependent manner and induces apoptosis when cells are treated with 1 microM TG. We also show that a transient TG application (1 pM, 1 nM, 1 microM 15 min) is insufficient to induce a long lasting decrease in [Ca(2+)](ER), since [Ca(2+)](ER) remains identical to the control for 48 h following TG application. These treatments (1 pM and 1 nM, 15 min) do not modify cell growth. However, TG (1 microM, 15 min) induces apoptosis. We thus identify [Ca(2+)](ER) and SERCA2b as a central targets for causing LNCaP PC cell life or death induced by growth modulators. Furthermore our results indicate that calcium pool contents can regulate cell growth.
Collapse
Affiliation(s)
- Sandrine Humez
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li WP, Tsiokas L, Sansom SC, Ma R. Epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent pathway in human glomerular mesangial cells. J Biol Chem 2003; 279:4570-7. [PMID: 14612458 DOI: 10.1074/jbc.m304334200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the fastest cellular responses following activation of epidermal growth factor receptor is an increase in intracellular Ca2+ concentration. This event is attributed to a transient Ca2+ release from internal stores and Ca2+ entry from extracellular compartment. Store-operated Ca2+ channels are defined the channels activated in response to store depletion. In the present study, we determined whether epidermal growth factor activated store-operated Ca2+ channels and further, whether depletion of internal Ca2+ stores was required for the epidermal growth factor-induced Ca2+ entry in human glomerular mesangial cells. We found that 100 nm epidermal growth factor activated a Ca2+-permeable channel that had identical biophysical and pharmacological properties to channels activated by 1 microm thapsigargin in human glomerular mesangial cells or A431 cells. The epidermal growth factor-induced Ca2+ currents were completely abolished by a selective phospho-lipase C inhibitor, U73122. However, xestospongin C, a specific inositol 1,4,5-trisphosphate receptor inhibitor, did not affect the membrane currents elicited by epidermal growth factor despite a slight reduction in background currents. Following emptying of internal Ca2+ stores by thapsigargin, epidermal growth factor still potentiated the Ca2+ currents as determined by the whole-cell patch configuration. Furthermore, epidermal growth factor failed to trigger measurable Ca2+ release from endoplasmic reticulum. However, another physiological agent linked to phospholipase C and inositol 1,4,5-trisphosphate cascade, angiotensin II, produced a striking Ca2+ transient. These results indicate that epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent, but phospholipase C-dependent, pathway in human glomerular mesangial cells.
Collapse
Affiliation(s)
- Wei-Ping Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|