1
|
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K ATP channel structure and function. Channels (Austin) 2024; 18:2327708. [PMID: 38489043 PMCID: PMC10950283 DOI: 10.1080/19336950.2024.2327708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
Collapse
Affiliation(s)
- Bruce L. Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
McClenaghan C, Rapini N, De Rose DU, Gao J, Roeglin J, Bizzarri C, Schiaffini R, Tiberi E, Mucciolo M, Deodati A, Perri A, Vento G, Barbetti F, Nichols CG, Cianfarani S. Sulfonylurea-Insensitive Permanent Neonatal Diabetes Caused by a Severe Gain-of-Function Tyr330His Substitution in Kir6.2. Horm Res Paediatr 2022; 95:215-223. [PMID: 34999583 PMCID: PMC9259755 DOI: 10.1159/000521858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS Mutations in KCNJ11, the gene encoding the Kir6.2 subunit of pancreatic and neuronal KATP channels, are associated with a spectrum of neonatal diabetes diseases. METHODS Variant screening was used to identify the cause of neonatal diabetes, and continuous glucose monitoring was used to assess effectiveness of sulfonylurea treatment. Electrophysiological analysis of variant KATP channel function was used to determine molecular basis. RESULTS We identified a previously uncharacterized KCNJ11 mutation, c.988T>C [p.Tyr330His], in an Italian child diagnosed with sulfonylurea-resistant permanent neonatal diabetes and developmental delay (intermediate DEND). Functional analysis of recombinant KATP channels reveals that this mutation causes a drastic gain-of-function, due to a reduction in ATP inhibition. Further, we demonstrate that the Tyr330His substitution causes a significant decrease in sensitivity to the sulfonylurea, glibenclamide. CONCLUSIONS In this subject, the KCNJ11 (c.988T>C) mutation provoked neonatal diabetes, with mild developmental delay, which was insensitive to correction by sulfonylurea therapy. This is explained by the molecular loss of sulfonylurea sensitivity conferred by the Tyr330His substitution and highlights the need for molecular analysis of such mutations.
Collapse
Affiliation(s)
- Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Novella Rapini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus - Newborn - Infant, “Bambino Gesù” Children’s Hospital IRCCS, Rome, Italy,Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Jian Gao
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacob Roeglin
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Bizzarri
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Riccardo Schiaffini
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Eloisa Tiberi
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mafalda Mucciolo
- Genetics and Rare Disease Research Division, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy
| | - Alessandro Perri
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Giovanni Vento
- Neonatal Intensive Care Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabrizio Barbetti
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00131 Rome, Italy
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS “Bambino Gesù” Children’s Hospital, Piazza S. Onofrio 4, 00164 Rome, Italy,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Ding D, Wang M, Wu JX, Kang Y, Chen L. The Structural Basis for the Binding of Repaglinide to the Pancreatic K ATP Channel. Cell Rep 2020; 27:1848-1857.e4. [PMID: 31067468 DOI: 10.1016/j.celrep.2019.04.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 01/13/2023] Open
Abstract
Repaglinide (RPG) is a short-acting insulin secretagogue widely prescribed for the treatment of type 2 diabetes. It boosts insulin secretion by inhibiting the pancreatic ATP-sensitive potassium channel (KATP). However, the mechanisms by which RPG binds to the KATP channel are poorly understood. Here, we describe two cryo-EM structures: the pancreatic KATP channel in complex with inhibitory RPG and adenosine-5'-(γ-thio)-triphosphate (ATPγS) at 3.3 Å and a medium-resolution structure of a RPG-bound mini SUR1 protein in which the N terminus of the inward-rectifying potassium channel 6.1 (Kir6.1) is fused to the ABC transporter module of the sulfonylurea receptor 1 (SUR1). These structures reveal the binding site of RPG in the SUR1 subunit. Furthermore, the high-resolution structure reveals the complex architecture of the ATP binding site, which is formed by both Kir6.2 and SUR1 subunits, and the domain-domain interaction interfaces.
Collapse
Affiliation(s)
- Dian Ding
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengmeng Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Wu JX, Ding D, Wang M, Chen L. Structural Insights into the Inhibitory Mechanism of Insulin Secretagogues on the Pancreatic ATP-Sensitive Potassium Channel. Biochemistry 2019; 59:18-25. [PMID: 31566370 DOI: 10.1021/acs.biochem.9b00692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sulfonylureas and glinides are commonly used oral insulin secretagogues (ISs) that act on the pancreatic ATP-sensitive potassium (KATP) channel to promote insulin secretion in order to lower the blood glucose level. Physiologically, KATP channels are inhibited by intracellular ATP and activated by Mg-ADP. Therefore, they sense the cellular energy status to regulate the permeability of potassium ions across the plasma membrane. The pancreatic KATP channel is composed of the pore-forming Kir6.2 subunits and the regulatory SUR1 subunits. Previous electrophysiological studies have established that ISs bind to the SUR1 subunit and inhibit the channel activity primarily by two mechanisms. First, ISs prevent Mg-ADP activation. Second, ISs inhibit the channel activity of Kir6.2 directly. Several cryo-EM structures of the pancreatic KATP channel determined recently have provided remarkable structural insights into these two mechanisms.
Collapse
Affiliation(s)
- Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| | - Dian Ding
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China.,Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Mengmeng Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China.,Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
5
|
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Mechanism of pharmacochaperoning in a mammalian K ATP channel revealed by cryo-EM. eLife 2019; 8:46417. [PMID: 31343405 PMCID: PMC6699824 DOI: 10.7554/elife.46417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of a pore-forming Kir6.2 potassium channel and a regulatory ABC transporter sulfonylurea receptor 1 (SUR1) regulate insulin secretion in pancreatic β-cells to maintain glucose homeostasis. Mutations that impair channel folding or assembly prevent cell surface expression and cause congenital hyperinsulinism. Structurally diverse KATP inhibitors are known to act as pharmacochaperones to correct mutant channel expression, but the mechanism is unknown. Here, we compare cryoEM structures of a mammalian KATP channel bound to pharmacochaperones glibenclamide, repaglinide, and carbamazepine. We found all three drugs bind within a common pocket in SUR1. Further, we found the N-terminus of Kir6.2 inserted within the central cavity of the SUR1 ABC core, adjacent the drug binding pocket. The findings reveal a common mechanism by which diverse compounds stabilize the Kir6.2 N-terminus within SUR1’s ABC core, allowing it to act as a firm ‘handle’ for the assembly of metastable mutant SUR1-Kir6.2 complexes.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Min Woo Sung
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Laura M Innes
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
6
|
Balamurugan K, Kavitha B, Yang Z, Mohan V, Radha V, Shyng SL. Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children. Pediatr Diabetes 2019; 20:397-407. [PMID: 30861254 PMCID: PMC11423867 DOI: 10.1111/pedi.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gain-of-function of ATP-sensitive K+ (KATP ) channels because of mutations in the genes encoding SUR1 (ABCC8) or Kir6.2 (KCNJ11) is a major cause of neonatal diabetes mellitus (NDM). Our aim is to determine molecular defects in KATP channels caused by ABCC8 mutations in Asian Indian children with NDM by in vitro functional studies. METHODS Wild-type (WT; NM_000352.4) or mutant sulfonylurea receptor 1 (SUR1) and Kir6.2 were co-expressed in COSm6 cells. Biogenesis efficiency and surface expression of mutant channels were assessed by immunoblotting and immunostaining. The response of mutant channels to cytoplasmic ATP and ADP was assessed by inside-out patch-clamp recordings. The response of mutant channels to known KATP inhibitors in intact cells were determined by 86 Rb efflux assays. RESULTS Five SUR1 missense mutations, D212Y, P254S, R653Q, R992C, and Q1224H, were studied and showed increased activity in MgATP/MgADP. Two of the mutants, D212Y and P254S, also showed reduced response to ATP4- inhibition, as well as markedly reduced surface expression. Moreover, all five mutants were inhibited by the KATP channel inhibitors glibenclamide and carbamazepine. CONCLUSIONS The study shows the mechanisms by which five SUR1 mutations identified in Asian Indian NDM patients affect KATP channel function to cause the disease. The reduced ATP4- sensitivity caused by the D212Y and P254S mutations in the L0 of SUR1 provides novel insight into the role of L0 in channel inhibition by ATP. The results also explain why sulfonylurea therapy is effective in two patients and inform how it should be effective for the other three patients.
Collapse
Affiliation(s)
- Kandasamy Balamurugan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
7
|
Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K ATP channels. J Biol Chem 2018; 294:3707-3719. [PMID: 30587573 DOI: 10.1074/jbc.ra118.005236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jelena Sikimic
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Timothy S McMillen
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Cita Bleile
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Frank Dastvan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Ulrich Quast
- Department of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, D-72074 Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Gisela Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| |
Collapse
|
8
|
Yan Z, Shyr ZA, Fortunato M, Welscher A, Alisio M, Martino M, Finck BN, Conway H, Remedi MS. High-fat-diet-induced remission of diabetes in a subset of K ATP -GOF insulin-secretory-deficient mice. Diabetes Obes Metab 2018; 20:2574-2584. [PMID: 29896801 PMCID: PMC6407888 DOI: 10.1111/dom.13423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
AIMS To examine the effects of a high-fat-diet (HFD) on monogenic neonatal diabetes, without the confounding effects of compensatory hyperinsulinaemia. METHODS Mice expressing KATP channel gain-of-function (KATP -GOF) mutations, which models human neonatal diabetes, were fed an HFD. RESULTS Surprisingly, KATP -GOF mice exhibited resistance to HFD-induced obesity, accompanied by markedly divergent blood glucose control, with some KATP -GOF mice showing persistent diabetes (KATP -GOF-non-remitter [NR] mice) and others showing remission of diabetes (KATP -GOF-remitter [R] mice). Compared with the severely diabetic and insulin-resistant KATP -GOF-NR mice, HFD-fed KATP -GOF-R mice had lower blood glucose, improved insulin sensitivity, and increased circulating plasma insulin and glucagon-like peptide-1 concentrations. Strikingly, while HFD-fed KATP -GOF-NR mice showed increased food intake and decreased physical activity, reduced whole body fat mass and increased plasma lipids, KATP -GOF-R mice showed similar features to those of control littermates. Importantly, KATP -GOF-R mice had restored insulin content and β-cell mass compared with the marked loss observed in both HFD-fed KATP -GOF-NR and chow-fed KATP -GOF mice. CONCLUSION Together, our results suggest that restriction of dietary carbohydrates and caloric replacement by fat can induce metabolic changes that are beneficial in reducing glucotoxicity and secondary consequences of diabetes in a mouse model of insulin-secretory deficiency.
Collapse
Affiliation(s)
- Zihan Yan
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Zeenat A. Shyr
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Manuela Fortunato
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Alecia Welscher
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Mariana Alisio
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Michael Martino
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Brian N. Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Hannah Conway
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Maria S. Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Sooklal CR, López-Alonso JP, Papp N, Kanelis V. Phosphorylation Alters the Residual Structure and Interactions of the Regulatory L1 Linker Connecting NBD1 to the Membrane-Bound Domain in SUR2B. Biochemistry 2018; 57:6278-6292. [PMID: 30273482 DOI: 10.1021/acs.biochem.8b00503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels in vascular smooth muscle are comprised of four pore-forming Kir6.1 subunits and four copies of the sulfonylurea receptor 2B (SUR2B), which acts as a regulator of channel gating. Recent electron cryo-microscopy (cryo-EM) structures of the pancreatic KATP channel show a central Kir6.2 pore that is surrounded by the SUR1 subunits. Mutations in the L1 linker connecting the first membrane-spanning domain and the first nucleotide binding domain (NBD1) in SUR2B cause cardiac disease; however, this part of the protein is not resolved in the cryo-EM structures. Phosphorylation of the L1 linker, by protein kinase A, disrupts its interactions with NBD1, which increases the MgATP affinity of NBD1 and KATP channel gating. To elucidate the mode by which the L1 linker regulates KATP channels, we have probed the effects of phosphorylation on its structure and interactions using nuclear magnetic resonance (NMR) spectroscopy and other techniques. We demonstrate that the L1 linker is an intrinsically disordered region of SUR2B but possesses residual secondary and compact structure, both of which are disrupted with phosphorylation. NMR binding studies demonstrate that phosphorylation alters the mode by which the L1 linker interacts with NBD1. The data show that L1 linker residues with the greatest α-helical propensity also form the most stable interaction with NBD1, highlighting a hot spot within the L1 linker. This hot spot is the site of disease-causing mutations and is associated with other processes that regulate KATP channel gating. These data provide insights into the mode by which the phospho-regulatory L1 linker regulates KATP channels.
Collapse
Affiliation(s)
- Clarissa R Sooklal
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Jorge P López-Alonso
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Natalia Papp
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6
| | - Voula Kanelis
- Department of Chemistry , University of Toronto , Toronto , ON , Canada M5S 3H8.,Department of Chemical and Physical Sciences , University of Toronto Mississauga , Mississauga , ON , Canada L5L 1C6.,Department of Cell and Systems Biology , University of Toronto , Toronto , ON , Canada M5S 3G5
| |
Collapse
|
10
|
Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein Cell 2018; 9:553-567. [PMID: 29594720 PMCID: PMC5966361 DOI: 10.1007/s13238-018-0530-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
ATP-sensitive potassium channels (KATP) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic KATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic KATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.
Collapse
|
11
|
Alvarez CP, Stagljar M, Muhandiram DR, Kanelis V. Hyperinsulinism-Causing Mutations Cause Multiple Molecular Defects in SUR1 NBD1. Biochemistry 2017; 56:2400-2416. [PMID: 28346775 DOI: 10.1021/acs.biochem.6b00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptor 1 (SUR1) protein forms the regulatory subunit in ATP sensitive K+ (KATP) channels in the pancreas. SUR proteins are members of the ATP binding cassette (ABC) superfamily of proteins. Binding and hydrolysis of MgATP at the SUR nucleotide binding domains (NBDs) lead to channel opening. Pancreatic KATP channels play an important role in insulin secretion. SUR1 mutations that result in increased levels of channel opening ultimately inhibit insulin secretion and lead to neonatal diabetes. In contrast, SUR1 mutations that disrupt trafficking and/or decrease gating of KATP channels cause congenital hyperinsulinism, where oversecretion of insulin occurs even in the presence of low glucose levels. Here, we present data on the effects of specific congenital hyperinsulinism-causing mutations (G716V, R842G, and K890T) located in different regions of the first nucleotide binding domain (NBD1). Nuclear magnetic resonance (NMR) and fluorescence data indicate that the K890T mutation affects residues throughout NBD1, including residues that bind MgATP, NBD2, and coupling helices. The mutations also decrease the MgATP binding affinity of NBD1. Size exclusion and NMR data indicate that the G716V and R842G mutations cause aggregation of NBD1 in vitro, possibly because of destabilization of the domain. These data describe structural characterization of SUR1 NBD1 and shed light on the underlying molecular basis of mutations that cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Claudia P Alvarez
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Marijana Stagljar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - D Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Voula Kanelis
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
12
|
Vedovato N, Ashcroft FM, Puljung MC. The Nucleotide-Binding Sites of SUR1: A Mechanistic Model. Biophys J 2016; 109:2452-2460. [PMID: 26682803 PMCID: PMC4699857 DOI: 10.1016/j.bpj.2015.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
New insights into the roles of the N-terminal region of the ABCC6 transporter. J Bioenerg Biomembr 2016; 48:259-67. [PMID: 26942607 DOI: 10.1007/s10863-016-9654-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
ABCC6 is a human ATP binding cassette (ABC) transporter of the plasma membrane associated with Pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of elastic fibers in dermal, ocular and vascular tissues. Similar to other ABC transporters, ABCC6 encloses the core structure of four domains: two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) but also an additional N-terminal extension, including a transmembrane domain (TMD0) and a cytosolic loop (L0), which is only found in some members of ABCC subfamily, and for which the function remains to be established. To investigate the functional roles of this N-terminal region, we generated several domain deletion constructs of ABCC6, expressed in HEK293 and polarized LLC-PK1 cells. ABCC6 lacking TMD0 displayed full transport activity as the wild type protein. Unlike the wild type protein, ABCC6 without L0 was not targeted to the basolateral membrane. Moreover, homology modeling of L0 suggests that it forms an ATPase regulatory domain. Furthermore, we show that the expression of ABCC6 is linked to a cellular influx of Ca(2+). The results suggest that TMD0 is not required for transport function and that L0 maintains ABCC6 in a targeting-competent state for the basolateral membrane and might be involved in regulating the NBDs. These findings shed new light on a possible physiological function of ABCC6 and may explain some of the hallmarks of the clinical features associated with PXE that could contribute to the identification of novel pharmacological targets.
Collapse
|
14
|
Quinn JC. Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine. J Parasitol Res 2015; 2015:368064. [PMID: 26576290 PMCID: PMC4630403 DOI: 10.1155/2015/368064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
The alkaloid toxin quinine and its derivative compounds have been used for many centuries as effective medications for the prevention and treatment of malaria. More recently, synthetic derivatives, such as the quinoline derivative mefloquine (bis(trifluoromethyl)-(2-piperidyl)-4-quinolinemethanol), have been widely used to combat disease caused by chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. However, the parent compound quinine, as well as its more recent counterparts, suffers from an incidence of adverse neuropsychiatric side effects ranging from mild mood disturbances and anxiety to hallucinations, seizures, and psychosis. This review considers how the pharmacology, cellular neurobiology, and membrane channel kinetics of mefloquine could lead to the significant and sometimes life-threatening neurotoxicity associated with mefloquine exposure. A key role for mefloquine blockade of ATP-sensitive potassium channels and connexins in the substantia nigra is considered as a unifying hypothesis for the pathogenesis of severe neuropsychiatric events after mefloquine exposure in humans.
Collapse
Affiliation(s)
- Jane C. Quinn
- Plant and Animal Toxicology Group, School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
15
|
de Araujo ED, Alvarez CP, López-Alonso JP, Sooklal CR, Stagljar M, Kanelis V. Phosphorylation-dependent changes in nucleotide binding, conformation, and dynamics of the first nucleotide binding domain (NBD1) of the sulfonylurea receptor 2B (SUR2B). J Biol Chem 2015. [PMID: 26198630 DOI: 10.1074/jbc.m114.636233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels.
Collapse
Affiliation(s)
- Elvin D de Araujo
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Claudia P Alvarez
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Jorge P López-Alonso
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Clarissa R Sooklal
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Marijana Stagljar
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Voula Kanelis
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
16
|
de Araujo ED, Kanelis V. Successful development and use of a thermodynamic stability screen for optimizing the yield of nucleotide binding domains. Protein Expr Purif 2014; 103:38-47. [PMID: 25153533 DOI: 10.1016/j.pep.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
ATP sensitive potassium (KATP) channels consist of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B). SUR proteins are members of the ATP-binding cassette superfamily of proteins. Binding of ATP to the Kir6.x subunit mediates channel inhibition, whereas MgATP binding and hydrolysis at the SUR NBDs results in channel opening. Mutations in SUR1 and SUR2A NBDs cause diseases of insulin secretion and cardiac disorders, respectively, underlying the importance of studying the NBDs. Although purification of SUR2A NBD1 in a soluble form is possible, the lack of long-term sample stability of the protein in a concentrated form has precluded detailed studies of the protein aimed at gaining a molecular-level understanding of how SUR mutations cause disease. Here we use a convenient and cost-effective thermodynamic screening method to probe stabilizing conditions for SUR2A NBD1. Results from the screen are used to alter the purification protocol to allow for significantly increased yields of the purified protein. In addition, the screen provides strategies for long-term storage of NBD1 and generating NBD1 samples at high concentrations suitable for NMR studies. NMR spectra of NBD1 with MgAMP-PNP are of higher quality compared to using MgATP, indicating that MgAMP-PNP be used as the ligand in future NMR studies. The screen presented here can be expanded to using different additives and can be employed to enhance purification yields, sample life times, and storage of other low stability nucleotide binding domains, such as GTPases.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
17
|
Zhou Q, Pratt EB, Shyng SL. Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations. Channels (Austin) 2013; 7:313-7. [PMID: 23695995 DOI: 10.4161/chan.25003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. The molecular interactions between SUR1 and Kir6.2 that govern channel gating and biogenesis are incompletely understood. In a recent study, we showed that a SUR1 and Kir6.2 mutation pair, E203K-SUR1 and Q52E-Kir6.2, at the SUR1/Kir6.2 interface near the plasma membrane increases the ATP-sensitivity of the channel by nearly 100-fold. Here, we report the finding that the same mutation pair also suppresses channel folding/trafficking defects caused by select SUR1 mutations in the first transmembrane domain of SUR1. Analysis of the contributions from individual mutations, however, revealed that the correction effect is attributed largely to Q52E-Kir6.2 alone. Moreover, the correction is dependent on the negative charge of the substituting amino acid at the Q52 position in Kir6.2. Our study demonstrates for the first time that engineered mutations in Kir6.2 can correct the biogenesis defect caused by specific mutations in the SUR1 subunit.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biochemistry and Molecular Biology; Oregon Health & Science University; Portland, OR USA
| | | | | |
Collapse
|
18
|
Abstract
ATP-sensitive potassium (K(ATP)) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical activity, thus modulating many cellular functions. An increase in the ADP/ATP ratio opens K(ATP) channels, leading to membrane hyperpolarization. K(ATP) channels are ubiquitously expressed in neurons located in different regions of the brain, including the hippocampus and cortex. Brief hypoxia triggers membrane hyperpolarization in these central neurons. In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the K(ATP) channels increases ischemic infarction, and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults. These findings provide the basis for a practical strategy whereby activation of endogenous K(ATP) channels reduces cellular damage resulting from cerebral ischemic stroke. K(ATP) channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future.
Collapse
|
19
|
López-Alonso JP, de Araujo ED, Kanelis V. NMR and fluorescence studies of drug binding to the first nucleotide binding domain of SUR2A. Biochemistry 2012; 51:9211-22. [PMID: 23078514 DOI: 10.1021/bi301019e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ATP sensitive potassium (K(ATP)) channels are composed of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B) that surround the pore. SUR proteins are members of the ATP-binding cassette (ABC) superfamily of proteins. Binding of MgATP at the SUR nucleotide binding domains (NBDs) results in NBD dimerization, and hydrolysis of MgATP at the NBDs leads to channel opening. The SUR proteins also mediate interactions with K(ATP) channel openers (KCOs) that activate the channel, with KCO binding and/or activation involving residues in the transmembrane helices and cytoplasmic loops of the SUR proteins. Because the cytoplasmic loops make extensive interactions with the NBDs, we hypothesized that the NBDs may also be involved in KCO binding. Here, we report nuclear magnetic resonance (NMR) spectroscopy studies that demonstrate a specific interaction of the KCO pinacidil with the first nucleotide binding domain (NBD1) from SUR2A, the regulatory SUR protein in cardiac K(ATP) channels. Intrinsic tryptophan fluorescence titrations also demonstrate binding of pinacidil to SUR2A NBD1, and fluorescent nucleotide binding studies show that pinacidil binding increases the affinity of SUR2A NBD1 for ATP. In contrast, the KCO diazoxide does not interact with SUR2A NBD1 under the same conditions. NMR relaxation experiments and size exclusion chromatography indicate that SUR2A NBD1 is monomeric under the conditions used in drug binding studies. These studies identify additional binding sites for commonly used KCOs and provide a foundation for testing binding of drugs to the SUR NBDs.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
20
|
Winkler M, Kühner P, Russ U, Ortiz D, Bryan J, Quast U. Role of the amino-terminal transmembrane domain of sulfonylurea receptor SUR2B for coupling to KIR6.2, ligand binding, and oligomerization. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:287-98. [DOI: 10.1007/s00210-011-0708-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/24/2011] [Indexed: 01/11/2023]
|
21
|
Babenko AP, Vaxillaire M. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8). FEBS Lett 2011; 585:3555-9. [PMID: 22020219 DOI: 10.1016/j.febslet.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023]
Abstract
Activating mutations in different domains of the ABCC8 gene-coded sulfonylurea receptor 1 (SUR1) cause neonatal diabetes. Here we show that a diabetogenic mutation in an unexplored helix preceding the ABC core of SUR1 dramatically increases open probability of (SUR1/Kir6.2)(4) channel (KATP) by reciprocally changing rates of its transitions to and from the long-lived, inhibitory ligand-stabilized closed state. This kinetic mechanism attenuates ATP and sulfonylurea inhibition, but not Mg-nucleotide stimulation, of SUR1/Kir6.2. The results suggest a key role for L0 helix in KATP gating and together with previous findings from mutant KATP clarify why many patients with neonatal diabetes require high doses of sulfonylureas.
Collapse
Affiliation(s)
- Andrey P Babenko
- Pacific Northwest Research Institute, University of Washington Diabetes Endocrinology Research Center, Seattle, WA 98122, United States.
| | | |
Collapse
|
22
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
23
|
Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y, Trower TC, Zhang S, Jiang C. Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J Biol Chem 2011; 286:9298-307. [PMID: 21216949 DOI: 10.1074/jbc.m110.195123] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vascular ATP-sensitive K(+) (K(ATP)) channel is targeted by a variety of vasoactive substances, playing an important role in vascular tone regulation. Our recent studies indicate that the vascular K(ATP) channel is inhibited in oxidative stress via S-glutathionylation. Here we show evidence for the molecular basis of the S-glutathionylation and its structural impact on channel gating. By comparing the oxidant responses of the Kir6.1/SUR2B channel with the Kir6.2/SUR2B channel, we found that the Kir6.1 subunit was responsible for oxidant sensitivity. Oxidant screening of Kir6.1-Kir6.2 chimeras demonstrated that the N terminus and transmembrane domains of Kir6.1 were crucial. Systematic mutational analysis revealed three cysteine residues in these domains: Cys(43), Cys(120), and Cys(176). Among them, Cys(176) was prominent, contributing to >80% of the oxidant sensitivity. The Kir6.1-C176A/SUR2B mutant channel, however, remained sensitive to both channel opener and inhibitor, which indicated that Cys(176) is not a general gating site in Kir6.1, in contrast to its counterpart (Cys(166)) in Kir6.2. A protein pull-down assay with biotinylated glutathione ethyl ester showed that mutation of Cys(176) impaired oxidant-induced incorporation of glutathione (GSH) into the Kir6.1 subunit. In contrast to Cys(176), Cys(43) had only a modest contribution to S-glutathionylation, and Cys(120) was modulated by extracellular oxidants but not intracellular GSSG. Simulation modeling of Kir6.1 S-glutathionylation suggested that after incorporation to residue 176, the GSH moiety occupied a space between the slide helix and two transmembrane helices. This prevented the inner transmembrane helix from undergoing conformational changes necessary for channel gating, retaining the channel in its closed state.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers Med 2010; 3:145-61. [PMID: 23226049 PMCID: PMC3513215 DOI: 10.2147/pgpm.s6969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 12/14/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter K(ATP) channel activity, leading to faulty insulin secretion. Inactivation mutations decrease K(ATP) channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase K(ATP) channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs) that inhibit the K(ATP) channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the K(ATP) channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain K(ATP) channel activation mutations can be successfully switched to SU therapy.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
26
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1142] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
28
|
Hosy E, Dupuis JP, Vivaudou M. Impact of disease-causing SUR1 mutations on the KATP channel subunit interface probed with a rhodamine protection assay. J Biol Chem 2009; 285:3084-91. [PMID: 19933268 DOI: 10.1074/jbc.m109.043307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the ATP-sensitive potassium (K(ATP)) channel relies on the proper coupling between its two subunits: the pore-forming Kir6.2 and the regulator SUR. The conformation of the interface between these two subunits can be monitored using a rhodamine 123 (Rho) protection assay because Rho blocks Kir6.2 with an efficiency that depends on the relative position of transmembrane domain (TMD) 0 of the associated SUR (Hosy, E., Dérand, R., Revilloud, J., and Vivaudou, M. (2007) J. Physiol. 582, 27-39). Here we find that the natural and synthetic K(ATP) channel activators MgADP, zinc, and SR47063 induced a Rho-insensitive conformation. The activating mutation F132L in SUR1, which causes neonatal diabetes, also rendered the channel resistant to Rho block, suggesting that it stabilized an activated conformation by uncoupling TMD0 from the rest of SUR1. At a nearby residue, the SUR1 mutation E128K impairs trafficking, thereby reducing surface expression and causing hyperinsulinism. To augment channel density at the plasma membrane to investigate the effect of mutating this residue on channel function, we introduced the milder mutation E126A at the matching residue of SUR2A. Mutation E126A imposed a hypersensitive Rho phenotype indicative of a functional uncoupling between TMD0 and Kir6.2. These results suggest that the TMD0-Kir6.2 interface is mobile and that the gating modes of Kir6.2 correlate with distinct positions of TMD0. They further demonstrate that the second intracellular loop of SUR, which contains the two residues studied here, is a key structural element of the TMD0-Kir6.2 interface.
Collapse
Affiliation(s)
- Eric Hosy
- Institut de Biologie Structurale (CEA, CNRS, UJF), Laboratoire des Protéines Membranaires, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | | | | |
Collapse
|
29
|
Craig TJ, Shimomura K, Holl RW, Flanagan SE, Ellard S, Ashcroft FM. An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1. J Clin Endocrinol Metab 2009; 94:2551-7. [PMID: 19351728 PMCID: PMC7611921 DOI: 10.1210/jc.2009-0159] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Activating mutations in genes encoding the Kir6.2 (KCNJ11) and SUR1 (ABCC8) subunits of the pancreatic ATP-sensitive K(+) channel are a common cause of permanent neonatal diabetes (PNDM). All Kir6.2 mutations identified to date are missense mutations. We describe here a novel in-frame deletion (residues 28-32) in Kir6.2 in a heterozygous patient with PNDM without neurological problems that are detectable by standard evaluation. OBJECTIVE The aim of the study was to identify the mutation responsible for neonatal diabetes in this patient and characterize its functional effects. DESIGN Wild-type and mutant Kir6.2/SUR1 channels were examined by heterologous expression in Xenopus oocytes. RESULTS The Kir6.2-28Delta32 mutation produced a significant decrease in ATP inhibition and an increase in whole-cell K(ATP) currents, explaining the diabetes of the patient. Tolbutamide block was only slightly reduced in the simulated heterozygous state, suggesting that the patient should respond to sulfonylurea therapy. The mutation decreased ATP inhibition indirectly, by increasing the intrinsic (unliganded) channel open probability. Neither effect was observed when Kir6.2 was expressed in the absence of SUR1, suggesting that the mutation impairs coupling between SUR1 and Kir6.2. Coimmunoprecipitation studies further revealed that the mutation disrupted a physical interaction between Kir6.2 and residues 1-288 (but not residues 1-196) of SUR1. CONCLUSIONS We report a novel KCNJ11 mutation causing PNDM. Our results show that residues 28-32 in the N terminus of Kir6.2 interact both physically and functionally with SUR1 and suggest that residues 196-288 of SUR1 are important in this interaction.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Binding Sites/genetics
- Diabetes Mellitus, Type 2/congenital
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Gene Deletion
- Humans
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Male
- Models, Biological
- Open Reading Frames/genetics
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium Channels, Inwardly Rectifying/physiology
- Protein Binding/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Xenopus
Collapse
Affiliation(s)
- Tim J Craig
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Winkler M, Lutz R, Russ U, Quast U, Bryan J. Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 I60G substitution: differences between the channel subtypes formed with SUR1. J Biol Chem 2009; 284:6752-62. [PMID: 19139106 PMCID: PMC2652280 DOI: 10.1074/jbc.m805435200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
beta-Cell-type K(ATP) channels are octamers assembled from Kir6.2/KCNJ11 and SUR1/ABCC8. Adenine nucleotides play a major role in their regulation. Nucleotide binding to Kir6.2 inhibits channel activity, whereas ATP binding/hydrolysis on sulfonylurea receptor 1 (SUR1) opposes inhibition. Segments of the Kir6.2 N terminus are important for open-to-closed transitions, form part of the Kir ATP, sulfonylurea, and phosphoinositide binding sites, and interact with L0, an SUR cytoplasmic loop. Inputs from these elements link to the pore via the interfacial helix, which forms an elbow with the outer pore helix. Mutations that destabilize the interfacial helix increase channel activity, reduce sensitivity to inhibitory ATP and channel inhibitors, glibenclamide and repaglinide, and cause neonatal diabetes. We compared Kir6.x/SUR1 channels carrying the V59G substitution, a cause of the developmental delay, epilepsy, and neonatal diabetes syndrome, with a V59A substitution and the equivalent I60G mutation in the related Kir6.1 subunit from vascular smooth muscle. The substituted channels have increased P(O) values, decreased sensitivity to inhibitors, and impaired stimulation by phosphoinositides but retain sensitivity to Ba(2+)-block. The V59G and V59A channels are either not, or poorly, stimulated by phosphoinositides, respectively. Inhibition by sequestrating phosphatidylinositol 4,5-bisphosphate with neomycin and polylysine is reduced in V59A, and abolished in V59G channels. Stimulation by SUR1 is intact, and increasing the concentration of inhibitory ATP restores the sensitivity of Val-59-substituted channels to glibenclamide. The I60G channels, strongly dependent on SUR stimulation, remain sensitive to sulfonylureas. The results suggest the interfacial helix dynamically links inhibitory inputs from the Kir N terminus to the gate and that sulfonylureas stabilize an inhibitory configuration.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Substitution
- Cell Line
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Humans
- Infant, Newborn
- Ion Channel Gating/drug effects
- Ion Channel Gating/genetics
- KATP Channels
- Muscle, Smooth, Vascular/metabolism
- Mutation, Missense
- Myocytes, Smooth Muscle/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Syndrome
Collapse
Affiliation(s)
- Marcus Winkler
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, Tübingen D-72074, Germany
| | | | | | | | | |
Collapse
|
31
|
Kajioka S, Nakayama S, Asano H, Seki N, Naito S, Brading AF. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways. J Pharmacol Exp Ther 2008; 327:114-23. [PMID: 18596222 DOI: 10.1124/jpet.108.140269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharmacological studies have suggested the existence of ATP-sensitive K(+) (K(ATP)) channel as a therapeutic target in urinary bladders; however, electrical properties have not yet been shown. Patch-clamp techniques were applied to investigate the properties of K(ATP) channels in pig detrusor cells. In whole-cell configuration, levcromakalim, a K(ATP) channel opener, induced a long-lasting outward current in a concentration-dependent manner. The current-voltage curve of the levcromakalim-induced membrane current intersected at approximately -80 mV. This current was abolished by glibenclamide. Intracellular application of 0.1 mM GDP significantly enhanced the levcromakalim-induced membrane current, whereas cAMP did not. Furthermore, neurotransmitters related to cAMP signaling, such as calcitonin gene-related peptide, vasointestinal peptide, adenosine, and somatostatin, had little effect on the membrane current. In cell-attached configuration, levcromakalim activated K(+) channels with a unitary conductance of approximately 12 pS. When the patch configuration was changed to inside-out mode, the K(+) channel activity ran down. Subsequent application of 1 mM GDP reactivated the channels. The openings of the approximately 12 pS K(+) channels in the presence of 1 mM GDP was suppressed by ATP and glibenclamide. In reverse transcription-polymerase chain reaction, K(+) channel pore 6.1 and sulfonylurea receptor (SUR)2A were predominant in pig detrusor cells. The 12 pS K(+) channel activated by levcromakalim in pig detrusor smooth muscle cells is a K(ATP) channel. The predominant expression of SUR2A can account for the lack of effect of neurotransmitters related to cAMP.
Collapse
|
32
|
Burke MA, Mutharasan RK, Ardehali H. The Sulfonylurea Receptor, an Atypical ATP-Binding Cassette Protein, and Its Regulation of the KATPChannel. Circ Res 2008; 102:164-76. [DOI: 10.1161/circresaha.107.165324] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael A. Burke
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| | - R. Kannan Mutharasan
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| | - Hossein Ardehali
- From the Division of Cardiology, Feinberg Cardiovascular Institute, Northwestern University, Chicago, Ill
| |
Collapse
|
33
|
Smith AJ, Taneja TK, Mankouri J, Sivaprasadarao A. Molecular cell biology of KATP channels: implications for neonatal diabetes. Expert Rev Mol Med 2007; 9:1-17. [PMID: 17666135 DOI: 10.1017/s1462399407000403] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.
Collapse
Affiliation(s)
- Andrew J Smith
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
34
|
Xie LH, John SA, Ribalet B, Weiss JN. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:320-35. [PMID: 16837026 DOI: 10.1016/j.pbiomolbio.2006.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All members of the inwardly rectifying potassium channels (Kir1-7) are regulated by the membrane phospholipid, phosphatidylinosital-4,5-bisphosphate (PIP(2)). Some are also modulated by other regulatory factors or ligands such as ATP and G-proteins, which give them their common names, such as the ATP sensitive potassium (K(ATP)) channel and the G-protein gated potassium channel. Other more non-specific regulators include polyamines, kinases, pH and Na(+) ions. Recent studies have demonstrated that PIP(2) acts cooperatively with other regulatory factors to modulate Kir channels. Here we review how PIP(2) and co-factors modulate channel activities in each subfamily of the Kir channels.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
35
|
Mobasheri A, Gent TC, Nash AI, Womack MD, Moskaluk CA, Barrett-Jolley R. Evidence for functional ATP-sensitive (K(ATP)) potassium channels in human and equine articular chondrocytes. Osteoarthritis Cartilage 2007; 15:1-8. [PMID: 16891130 DOI: 10.1016/j.joca.2006.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/25/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocytes are highly sensitive to variations in extracellular glucose and oxygen levels in the extracellular matrix. As such, they must possess a number of mechanisms to detect and respond to alterations in the metabolic state of cartilage. In other organs such as the pancreas, heart and brain, such detection is partly mediated by a family of potassium channels known as K(ATP) (adenosine 5'-triphosphate-sensitive potassium) channels. Here we investigate whether chondrocytes too express functional K(ATP) channels, which might, potentially, serve to couple metabolic state with cell activity. METHODS Immunohistochemistry was used to explore K(ATP) channel expression in equine and human chondrocytes. Biophysical properties of equine chondrocyte K(ATP) channels were investigated with patch-clamp electrophysiology. RESULTS Polyclonal antibodies directed against the K(ATP) Kir6.1 subunit revealed high levels of expression in human and equine chondrocytes mainly in superficial and middle zones of normal cartilage. Kir6.1 was also detected in superficial chondrocytes in osteoarthritic (OA) cartilage. In single-channel electrophysiological studies of equine chondrocytes, we found K(ATP) channels to have a maximum unitary conductance of 47 +/- 9 pS (n=5) and a density of expression comparable to that seen in excitable cells. CONCLUSION We have shown, for the first time, functional K(ATP) channels in chondrocytes. This suggests that K(ATP) channels are involved in coupling metabolic and electrical activities in chondrocytes through sensing of extracellular glucose and intracellular adenosine triphosphate (ATP) levels. Altered K(ATP) channel expression in OA chondrocytes may result in impaired intracellular ATP sensing and optimal metabolic regulation.
Collapse
Affiliation(s)
- A Mobasheri
- Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Yan FF, Casey J, Shyng SL. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J Biol Chem 2006; 281:33403-13. [PMID: 16956886 DOI: 10.1074/jbc.m605195200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels mediate glucose-induced insulin secretion by coupling metabolic signals to beta-cell membrane potential and the secretory machinery. Reduced K(ATP) channel expression caused by mutations in the channel proteins: sulfonylurea receptor 1 (SUR1) and Kir6.2, results in loss of channel function as seen in congenital hyperinsulinism. Previously, we reported that sulfonylureas, oral hypoglycemic drugs widely used to treat type II diabetes, correct the endoplasmic reticulum to the plasma membrane trafficking defect caused by two SUR1 mutations, A116P and V187D. In this study, we investigated the mechanism by which sulfonylureas rescue these mutants. We found that glinides, another class of SUR-binding hypoglycemic drugs, also markedly increased surface expression of the trafficking mutants. Attenuating or abolishing the ability of mutant SUR1 to bind sulfonylureas or glinides by the following mutations: Y230A, S1238Y, or both, accordingly diminished the rescuing effects of the drugs. Interestingly, rescue of the trafficking defects requires mutant SUR1 to be co-expressed with Kir6.2, suggesting that the channel complex, rather than SUR1 alone, is the drug target. Observations that sulfonylureas also reverse trafficking defects caused by neonatal diabetes-associated Kir6.2 mutations in a way that is dependent on intact sulfonylurea binding sites in SUR1 further support this notion. Our results provide insight into the mechanistic and structural basis on which sulfonylureas rescue K(ATP) channel surface expression defects caused by channel mutations.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
37
|
Bryan J, Muñoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 2006; 453:703-18. [PMID: 16897043 DOI: 10.1007/s00424-006-0116-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K(+) channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K(+) (K(ATP)) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic beta cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K(ATP) channel activity by a K(IR)6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K(ATP) channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In responding to cytoplasmic nucleotide levels, ATP-sensitive potassium (K(ATP)) channel activity provides a unique link between cellular energetics and electrical excitability. Over the past ten years, a steady drumbeat of crystallographic and electrophysiological studies has led to detailed structural and kinetic models that define the molecular basis of channel activity. In parallel, the uncovering of disease-causing mutations of K(ATP) has led to an explanation of the molecular basis of disease and, in turn, to a better understanding of the structural basis of channel function.
Collapse
Affiliation(s)
- Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.
| |
Collapse
|
39
|
Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 2005; 580:1023-35. [PMID: 16375896 DOI: 10.1016/j.febslet.2005.11.079] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
40
|
Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MSP, Ford RC, Ashcroft FM. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 2005; 24:4166-75. [PMID: 16308567 PMCID: PMC1356316 DOI: 10.1038/sj.emboj.7600877] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/15/2005] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.
Collapse
Affiliation(s)
| | - Jeff D Campbell
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Heidi de Wet
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Brittany Zadek
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Robert C Ford
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Frances M Ashcroft
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Laboratory of Physiology, University of Oxford, Parks Road, OX1 3PT, UK. Tel.: +44 1865 285810; Fax: +44 1865 285813. E-mail:
| |
Collapse
|
41
|
Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 2005; 54:2503-13. [PMID: 16123337 DOI: 10.2337/diabetes.54.9.2503] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Closure of ATP-sensitive K(+) channels (K(ATP) channels) in response to metabolically generated ATP or binding of sulfonylurea drugs stimulates insulin release from pancreatic beta-cells. Heterozygous gain-of-function mutations in the KCJN11 gene encoding the Kir6.2 subunit of this channel are found in approximately 47% of patients diagnosed with permanent diabetes at <6 months of age. There is a striking genotype-phenotype relationship with specific Kir6.2 mutations being associated with transient neonatal diabetes, permanent neonatal diabetes alone, and a novel syndrome characterized by developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. All mutations appear to cause neonatal diabetes by reducing K(ATP) channel ATP sensitivity and increasing the K(ATP) current, which inhibits beta-cell electrical activity and insulin secretion. The severity of the clinical symptoms is reflected in the ATP sensitivity of heterozygous channels in vitro with wild type > transient neonatal diabetes > permanent neonatal diabetes > DEND syndrome channels. Sulfonylureas still close mutated K(ATP) channels, and many patients can discontinue insulin injections and show improved glycemic control when treated with high-dose sulfonylurea tablets. In conclusion, the finding that Kir6.2 mutations can cause neonatal diabetes has enabled a new therapeutic approach and shed new light on the structure and function of the Kir6.2 subunit of the K(ATP) channel.
Collapse
|
42
|
Tammaro P, Girard C, Molnes J, Njølstad PR, Ashcroft FM. Kir6.2 mutations causing neonatal diabetes provide new insights into Kir6.2-SUR1 interactions. EMBO J 2005; 24:2318-30. [PMID: 15962003 PMCID: PMC1173155 DOI: 10.1038/sj.emboj.7600715] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 05/20/2005] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.2 and regulatory SUR1 subunits, play a critical role in regulating insulin secretion. Binding of ATP to Kir6.2 inhibits, whereas interaction of MgATP with SUR1 activates, K(ATP) channels. We tested the functional effects of two Kir6.2 mutations (Y330C, F333I) that cause permanent neonatal diabetes mellitus, by heterologous expression in Xenopus oocytes. Both mutations reduced ATP inhibition and increased whole-cell currents, which in pancreatic beta-cells is expected to reduce insulin secretion and precipitate diabetes. The Y330C mutation reduced ATP inhibition both directly, by impairing ATP binding (and/or transduction), and indirectly, by stabilizing the intrinsic open state of the channel. The F333I mutation altered ATP binding/transduction directly. Both mutations also altered Kir6.2/SUR1 interactions, enhancing the stimulatory effect of MgATP (which is mediated via SUR1). This effect was particularly dramatic for the Kir6.2-F333I mutation, and was abolished by SUR1 mutations that prevent MgATP binding/hydrolysis. Further analysis of F333I heterozygous channels indicated that at least three SUR1 must bind/hydrolyse MgATP to open the mutant K(ATP) channel.
Collapse
Affiliation(s)
- Paolo Tammaro
- University Laboratory of Physiology, Oxford University, Oxford, UK
| | | | - Janne Molnes
- Section for Pediatrics, Department of Clinical Medicine, University of Bergen, Norway
| | - Pål R Njølstad
- Section for Pediatrics, Department of Clinical Medicine, University of Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
43
|
Hansen AMK, Hansen JB, Carr RD, Ashcroft FM, Wahl P. Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels. Br J Pharmacol 2005; 144:551-7. [PMID: 15678092 PMCID: PMC1576033 DOI: 10.1038/sj.bjp.0706082] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The beta-cell K(ATP) channel is composed of two types of subunit - the inward rectifier K(+) channel (Kir6.2) which forms the channel pore, and the sulphonylurea receptor (SUR1), which serves as a regulatory subunit. The N-terminus of Kir6.2 is involved in transduction of sulphonylurea binding into channel closure, and deletion of the N-terminus (Kir6.2DeltaN14) results in functional uncoupling of the two subunits. In this study, we investigate the interaction of the hypoglycaemic agents repaglinide and glibenclamide with SUR1 and the effect of Kir6.2 on this interaction. We further explore how the binding properties of repaglinide and glibenclamide are affected by functional uncoupling of SUR1 and Kir6.2 in Kir6.2DeltaN14/SUR1 channels. All binding experiments are performed on membranes in ATP-free buffer at 37 degrees C. 2. Repaglinide was found to bind with low affinity (K(D)=59+/-16 nM) to SUR1 alone, but with high affinity (increased approximately 150-fold) when SUR1 was co-expressed with Kir6.2 (K(D)=0.42+/-0.03 nM). Glibenclamide, tolbutamide and nateglinide all bound with marginally lower affinity to SUR1 than to Kir6.2/SUR1. 3. Repaglinide bound with low affinity (K(D)=51+/-23 nM) to SUR1 co-expressed with Kir6.2DeltaN14. In contrast, the affinity for glibenclamide, tolbutamide and nateglinide was only mildly changed as compared to wild-type channels. 4. In whole-cell patch-clamp experiments inhibition of Kir6.2DeltaN14/SUR1 currents by both repaglinide and nateglinde is abolished. 5. The results suggest that Kir6.2 causes a conformational change in SUR1 required for high-affinity repaglinide binding, or that the high-affinity repaglinide-binding site includes contributions from both SUR1 and Kir6.2. Glibenclamide, tolbutamide and nateglinide binding appear to involve only SUR1.
Collapse
Affiliation(s)
| | - John Bondo Hansen
- Novo Nordisk A/S, Discovery, Diabetes Biology, DK-2760 Måløv, Denmark
| | - Richard D Carr
- Novo Nordisk A/S, Discovery, Diabetes Biology, DK-2760 Måløv, Denmark
| | | | - Philip Wahl
- Novo Nordisk A/S, Discovery, Diabetes Biology, DK-2760 Måløv, Denmark
- Author for correspondence:
| |
Collapse
|
44
|
Ohkubo K, Nagashima M, Naito Y, Taguchi T, Suita S, Okamoto N, Fujinaga H, Tsumura K, Kikuchi K, Ono J. Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy. Clin Endocrinol (Oxf) 2005; 62:458-65. [PMID: 15807877 DOI: 10.1111/j.1365-2265.2005.02242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Persistent hyperinsulinaemic hypoglycaemia of infancy (PHHI) is a disorder of glucose metabolism that is characterized by dysregulated secretion of insulin from pancreatic beta-cells. This disease has been reported to be associated with mutations of the sulfonylurea receptor SUR1 (ABCC8) or the inward-rectifying potassium channel Kir6.2 (KCNJ11), which are two subunits of the pancreatic beta-cell ATP-sensitive potassium channel. PATIENTS AND METHODS In 14 Japanese PHHI patients, all exons of SUR1 and Kir6.2 genes were analysed by polymerase chain reaction (PCR) and direct sequencing. Four patients responded to diazoxide, and nine patients underwent a subtotal pancreatectomy. Histologically, seven patients were diagnosed to have a focal form and two a diffuse form of the disease. RESULTS We found nine novel mutations in the SUR1 gene and two in the Kir6.2 gene. In the SUR1 gene mutations, three were nonsense mutations (Y512X, Y1354X and G1469X), one was a one-base deletion in exon 7, and two were missense mutations in the nucleotide-binding domain 2 (K1385Q, R1487K). The other three mutations occurred in introns 14, 29 and 36, which might cause aberrant splicing of RNA. Two siblings in one family were heterozygotes for a missense mutation, K1385Q, which was maternally inherited. In Kir6.2 gene screening, one patient was found to be a compound heterozygote of a missense mutation (R34H) and a one-base deletion (C344fs/ter). CONCLUSION The novel mutations reported here could be pathological candidates for PHHI in Japan. They also reveal that SUR1 and Kir6.2 mutations in the Japanese population exhibit heterogeneity and that they occurred at a frequency similar to other genetic populations.
Collapse
Affiliation(s)
- Kumiko Ohkubo
- Department of Laboratory Medicine, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 2004; 53 Suppl 3:S104-12. [PMID: 15561897 DOI: 10.2337/diabetes.53.suppl_3.s104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
46
|
Rainbow RD, James M, Hudman D, Al Johi M, Singh H, Watson PJ, Ashmole I, Davies NW, Lodwick D, Norman RI. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels. Biochem J 2004; 379:173-81. [PMID: 14672537 PMCID: PMC1224041 DOI: 10.1042/bj20031087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/11/2003] [Accepted: 12/12/2003] [Indexed: 11/17/2022]
Abstract
Functional KATP (ATP-sensitive potassium) channels are hetero-octamers of four Kir6 (inwardly rectifying potassium) channel subunits and four SUR (sulphonylurea receptor) subunits. Possible interactions between the C-terminal domain of SUR2A and Kir6.2 were investigated by co-immunoprecipitation of rat SUR2A C-terminal fragments with full-length Kir6.2 and by analysis of cloned KATP channel function and distribution in HEK-293 cells (human embryonic kidney 293 cells) in the presence of competing rSUR2A fragments. Three maltose-binding protein-SUR2A fusions, rSUR2A-CTA (rSUR2A residues 1254-1545), rSUR2A-CTB (residues 1254-1403) and rSUR2A-CTC (residues 1294-1403), were co-immunoprecipitated with full-length Kir6.2 using a polyclonal anti-Kir6.2 antiserum. A fourth C-terminal domain fragment, rSUR2A-CTD (residues 1358-1545) did not co-immunoprecipitate with Kir6.2 under the same conditions, indicating a direct interaction between Kir6.2 and a 65-amino-acid section of the cytoplasmic C-terminal region of rSUR2A between residues 1294 and 1358. ATP- and glibenclamide-sensitive K+ currents were decreased in HEK-293 cells expressing full-length Kir6 and SUR2 subunits that were transiently transfected with fragments rSUR2A-CTA, rSUR2A-CTC and rSUR2A-CTE (residues 1294-1359) compared with fragment rSUR2A-CTD or mock-transfected cells, suggesting either channel inhibition or a reduction in the number of functional KATP channels at the cell surface. Anti-KATP channel subunit-associated fluorescence in the cell membrane was substantially lower and intracellular fluorescence increased in rSUR2A-CTE expressing cells; thus, SUR2A fragments containing residues 1294-1358 reduce current by decreasing the number of channel subunits in the cell membrane. These results identify a site in the C-terminal domain of rSUR2A, between residues 1294 and 1358, whose direct interaction with full-length Kir6.2 is crucial for the assembly of functional KATP channels.
Collapse
Affiliation(s)
- Richard D Rainbow
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dabrowski M, Tarasov A, Ashcroft FM. Mapping the architecture of the ATP-binding site of the KATP channel subunit Kir6.2. J Physiol 2004; 557:347-54. [PMID: 15004210 PMCID: PMC1665110 DOI: 10.1113/jphysiol.2003.059105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels comprise Kir6.2 and SUR subunits. The site at which ATP binds to mediate K(ATP) channel inhibition lies on Kir6.2, but the potency of block is enhanced by coexpression with SUR1. To assess the structure of the ATP-binding site on Kir6.2, we used a range of adenine nucleotides as molecular measuring sticks to map the internal dimensions of the binding site. We compared their efficacy on Kir6.2-SUR1, and on a truncated Kir6.2 (Kir6.2DeltaC) that expresses in the absence of SUR. We show here that SUR1 modifies the ATP-binding pocket of Kir6.2, by increasing the width of the groove that binds the phosphate tail of ATP, without changing the length of the groove, and by enhancing interaction with the adenine ring.
Collapse
|
48
|
Koch J, Guntrum R, Heintke S, Kyritsis C, Tampé R. Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 2003; 279:10142-7. [PMID: 14679198 DOI: 10.1074/jbc.m312816200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transporter associated with antigen processing (TAP1/2) translocates cytosolic peptides of proteasomal degradation into the endoplasmic reticulum (ER) lumen. A peptide-loading complex of tapasin, major histocompatibility complex class I, and several auxiliary factors is assembled at the transporter to optimize antigen display to cytotoxic T-lymphocytes at the cell surface. The heterodimeric TAP complex has unique N-terminal domains in addition to a 6 + 6-transmembrane segment core common to most ABC transporters. Here we provide direct evidence that this core TAP complex is sufficient for (i) ER targeting, (ii) heterodimeric assembly within the ER membrane, (iii) peptide binding, (iv) peptide transport, and (v) specific inhibition by the herpes simplex virus protein ICP47 and the human cytomegalovirus protein US6. We show for the first time that the translocation pore of the transporter is composed of the predicted TM-(5-10) of TAP1 and TM-(4-9) of TAP2. Moreover, we demonstrate that the N-terminal domains of TAP1 and TAP2 are essential for recruitment of tapasin, consequently mediating assembly of the macromolecular peptide-loading complex.
Collapse
Affiliation(s)
- Joachim Koch
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Germany
| | | | | | | | | |
Collapse
|
49
|
Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 2003; 278:41577-80. [PMID: 12941953 DOI: 10.1074/jbc.c300363200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs. Several competing models for SUR/KIR coupling exist. We show that SUR TMD0, the N-terminal bundle of five transmembrane helices, specifically associates with KIR6.2, forcing nearly silent pores to burst like native KATP channels and enhancing surface expression. Inclusion of adjacent submembrane residues of L0, the linker between TMD0 and the stimulatory nucleotide- and drug-binding ABC core, generates constitutively active channels, whereas additional cytoplasmic residues counterbalance this activation establishing a relationship between the mean open and burst times of intact pores. SUR fragments, lacking TMD0, fail to modulate KIR. TMD0 is thus the domain that anchors SUR to the KIR pore. Consistent with data on chimeric ABCC/KIRs and a modeled channel structure, we propose that interactions of TMD0-L0 with the outer helix and N terminus of KIR bidirectionally modulate gating. The results explain and predict pathologies associated with alteration of the 5' ends of clustered ABCC8 (9)/KCNJ11 (8) genes.
Collapse
Affiliation(s)
- Andrey P Babenko
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza 112C, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. Diabetologia 2003; 46:875-91. [PMID: 12819907 DOI: 10.1007/s00125-003-1143-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 04/22/2003] [Indexed: 12/13/2022]
Abstract
Hypoglycaemic agents such as sulphonylureas and the newer group of "glinides" stimulate insulin secretion by closing ATP-sensitive potassium (K(ATP)) channels in pancreatic beta cells, but have varying cross-reactivity with related channels in extrapancreatic tissues such as heart, vascular smooth and skeletal muscle. Experiments on the structure-function relationships of recombinant K(ATP) channels and the phenotypes of mice deficient in different K(ATP) channel subunits have provided important insights into the mechanisms underlying sulphonylurea selectivity, and the potential consequences of K(ATP) channel blockade outside the pancreatic beta cell. The different pharmacological properties of K(ATP) channels from beta cells compared with those from cardiac, smooth and skeletal muscle, are accounted for by the expression of alternative types of sulphonylurea receptor, with non-identical drug binding sites. The sulphonylureas and glinides are found to fall into two groups: one exhibiting selectivity for beta cell sulphonylurea receptors (SUR1), and the other blocking cardiovascular and skeletal muscle sulphonylurea receptors (SUR2) with potencies similar to their action on SUR1. In seeking potential side effects of K(ATP) channel inhibitors in humans, it is essential to take these drug differences into account, along with the probability (suggested by the studies on K(ATP) channel knockout mice) that the effects of extrapancreatic K(ATP) channel inhibition might be either subtle or rare. Further studies are still required before a final decision can be made on whether non-selective agents are appropriate for the therapy of Type 2 diabetes.
Collapse
Affiliation(s)
- F M Gribble
- Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Box 232, Cambridge CB2 2QR, UK.
| | | |
Collapse
|