1
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Yeung MC, Dermawan JK, Liu AP, Lam AY, Antonescu CR, Shek TW. Spindle cell neoplasms with novel LTK fusion - Expanding the spectrum of kinase fusion-positive soft tissue tumors. Genes Chromosomes Cancer 2024; 63:e23227. [PMID: 38517106 PMCID: PMC10963038 DOI: 10.1002/gcc.23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.
Collapse
Affiliation(s)
- Maximus C.F. Yeung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony P.Y. Liu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong
| | - Albert Y.L. Lam
- Division of General Orthopaedics and Oncology, Department of Orthopedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tony W.H. Shek
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Chameettachal S, Venuganti A, Parekh Y, Prasad D, Joshi VP, Vashishtha A, Basu S, Singh V, Bokara KK, Pati F. Human cornea-derived extracellular matrix hydrogel for prevention of post-traumatic corneal scarring: A translational approach. Acta Biomater 2023; 171:289-307. [PMID: 37683964 DOI: 10.1016/j.actbio.2023.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Corneal scarring and opacification are a significant cause of blindness affecting millions worldwide. The current standard of care for corneal blindness is corneal transplantation, which suffers from several drawbacks. One alternative approach that has shown promise is the use of xenogeneic corneal extracellular matrix (ECM), but its clinical applicability is challenging due to safety concerns. This study reports the innovative use of human cornea-derived ECM to prevent post-traumatic corneal scarring. About 30 - 40% of corneas donated to the eye banks do not meet the standards defined for clinical use and are generally discarded, although they are completely screened for their safety. In this study, human cornea-derived decellularized ECM hydrogel was prepared from the non-transplantation grade human cadaveric corneas obtained from an accredited eye-bank. The prepared hydrogel was screened for its efficacy against corneal opacification following an injury in an animal model. Our in vivo study revealed that, the control collagen-treated group developed corneal opacification, while the prophylactic application of human cornea-derived hydrogel effectively prevented corneal scarring and opacification. The human hydrogel-treated corneas were indistinguishable from healthy corneas and comparable to those treated with the xenogeneic bovine corneal hydrogel. We also demonstrated that the application of the hydrogel retained the biological milieu including cell behavior, protein components, optical properties, curvature, and nerve regeneration by remodeling the corneal wound after injury. The hydrogel application is also sutureless, resulting in faster corneal healing. We envision that this human cornea-derived ECM-based hydrogel has potential clinical application in preventing scarring from corneal wounding. STATEMENT OF SIGNIFICANCE: There are significant challenges surrounding corneal regeneration after injury due to extensive scarring. Although there is substantial research on corneal regeneration, much of it uses synthetic materials with chemical cross-linking methods or xenogeneic tissue-based material devices which have to undergo exhaustive safety analysis before clinical trials. Herein, we demonstrate the potential application of a human corneal extracellular matrix hydrogel without any additional materials for scarless corneal tissue regeneration, and a method to reduce the wasting of donated allogenic corneal tissue from eye banks. We found no difference in efficacy between the usage of human tissues compared to xenogeneic sources. This may help ease clinical translation and can be used topically without sutures as an outpatient procedure.
Collapse
Affiliation(s)
- Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Animith Venuganti
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Yash Parekh
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vineet P Joshi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India; Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Anviti Vashishtha
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India.
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
4
|
Brito C, Pereira JM, Mesquita FS, Cabanes D, Sousa S. Src-Dependent NM2A Tyrosine Phosphorylation Regulates Actomyosin Remodeling. Cells 2023; 12:1871. [PMID: 37508535 PMCID: PMC10377941 DOI: 10.3390/cells12141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Joana M Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Defective VWF secretion due to the expression of MYH9-RD E1841K mutant in endothelial cells disrupts hemostasis. Blood Adv 2022; 6:4537-4552. [PMID: 35764499 DOI: 10.1182/bloodadvances.2022008011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIa (NMII-A), cause MYH9-related disease (MYH9-RD) that is an autosomal-dominant thrombocytopenia with bleeding tendency. Previously, we showed that NMII-A in endothelial cells (ECs) is critical for hemostasis via regulating von Willebrand factor (VWF) release from Weibel-Palade bodies (WPBs). The aim of this study was to determine the role of the expression of MYH9 mutants in ECs in the pathogenesis of the MYH9-RD bleeding symptom. First, we expressed the 5 most common NMII-A mutants in ECs, and found that E1841K mutant-expressing ECs secreted less VWF than the controls in response to a cAMP signaling agonist. Then, we generated 2 knockin mouse lines, one with Myh9 E1841K in ECs and the other in megakaryocytes. Endothelium-specific E1841K mice exhibited impaired cAMP-induced VWF release and a prolonged bleeding time with normal platelets, while megakaryocyte-specific E1841K mice exhibited macrothrombocytopenia and a prolonged bleeding time with normal VWF release. Finally, we present mechanistic findings that E1841K mutation not only interferes with S1943 phosphorylation and impairs the peripheral distribution of Rab27a positive WPBs in ECs under quiescent condition, but also interferes with S1916 phosphorylation by disrupting the interaction with zyxin and CKIIα, and reduces actin framework formation around WPBs and subsequent VWF secretion under the stimulation by a cAMP agonist. Altogether, our results suggest that impaired cAMP-induced endothelial VWF secretion by E1841K mutant expression may contribute to the MYH9-RD bleeding phenotype.
Collapse
|
6
|
Gargey A, Iragavarapu SB, Grdzelishvili AV, Nesmelov YE. Electrostatic interactions in the SH1-SH2 helix of human cardiac myosin modulate the time of strong actomyosin binding. J Muscle Res Cell Motil 2021; 42:137-147. [PMID: 32929610 PMCID: PMC7956043 DOI: 10.1007/s10974-020-09588-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Two single mutations, R694N and E45Q, were introduced in the beta isoform of human cardiac myosin to remove permanent salt bridges E45:R694 and E98:R694 in the SH1-SH2 helix of the myosin head. Beta isoform-specific bridges E45:R694 and E98:R694 were discovered in the molecular dynamics simulations of the alpha and beta myosin isoforms. Alpha and beta isoforms exhibit different kinetics, ADP dissociates slower from actomyosin containing beta myosin isoform, therefore, beta myosin stays strongly bound to actin longer. We hypothesize that the electrostatic interactions in the SH1-SH2 helix modulate the affinity of ADP to actomyosin, and therefore, the time of the strong actomyosin binding. Wild type and the mutants of the myosin head construct (1-843 amino acid residues) were expressed in differentiated C2C12 cells, and the duration of the strongly bound state of actomyosin was characterized using transient kinetics spectrophotometry. All myosin constructs exhibited a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. The mutant R694N showed a faster rate of ADP release from actomyosin, compared to the wild type and the E45Q mutant, thus indicating that electrostatic interactions within the SH1-SH2 helix region of human cardiac myosin modulate ADP release and thus, the duration of the strongly bound state of actomyosin.
Collapse
Affiliation(s)
- Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Shiril Bhardwaj Iragavarapu
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Alexander V Grdzelishvili
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
7
|
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2021; 135:1887-1898. [PMID: 32315395 DOI: 10.1182/blood.2019003064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.
Collapse
|
8
|
A De Novo Mutation in MYH9 in a Child With Severe and Prolonged Macrothrombocytopenia. J Pediatr Hematol Oncol 2021; 43:e7-e10. [PMID: 32520844 DOI: 10.1097/mph.0000000000001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Congenital macrothrombocytopenia is a diverse group of hereditary disorders caused by mutations in the MYH9 gene, which encodes the nonmuscle myosin heavy chain-A, an important motor protein in hemopoietic cells. Thus, the term MYH9-related disease has been proposed, but the clinicopathologic basis of MYH9 mutations has been poorly investigated. Here, we report a sporadic case of Epstein syndrome, an MYH9 disorder, in a 4-year-old Chinese boy who presented with macrothrombocytopenia. He had no family history of thrombocytopenia, hearing loss, or renal failure. A de novo heterozygous MYH9 mutation, c.287C>T; p. (Ser96Leu), was found in this patient. Genotype-phenotype analysis of all reported mutations suggested a domain-specific relationship between the location of the MYH9 mutation and the penetrance of the nonhematologic characteristics of MYH9-related disorders. Our study highlights the importance of suspecting MYH9-related disease even in cases of chronic macrothrombocytopenia without a family history or extrahematologic symptoms.
Collapse
|
9
|
Sung DC, Ahmad M, Lerma Cervantes CB, Zhang Y, Adelstein RS, Ma X. Mutations in non-muscle myosin 2A disrupt the actomyosin cytoskeleton in Sertoli cells and cause male infertility. Dev Biol 2020; 470:49-61. [PMID: 33188738 DOI: 10.1016/j.ydbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.
Collapse
Affiliation(s)
- Derek C Sung
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Mohsin Ahmad
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Connie B Lerma Cervantes
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Yingfan Zhang
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, Cell and Developmental Biology Center, Bethesda, MD, 20892-1583, United States; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1583, United States.
| |
Collapse
|
10
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
11
|
Osório DS, Chan FY, Saramago J, Leite J, Silva AM, Sobral AF, Gassmann R, Carvalho AX. Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development 2019; 146:dev.179150. [PMID: 31582415 PMCID: PMC6857588 DOI: 10.1242/dev.179150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
Cytokinesis in animal cells requires the assembly and constriction of a contractile actomyosin ring. Non-muscle myosin II is essential for cytokinesis, but the role of its motor activity remains unclear. Here, we examine cytokinesis in C. elegans embryos expressing non-muscle myosin motor mutants generated by genome editing. Two non-muscle motor-dead myosins capable of binding F-actin do not support cytokinesis in the one-cell embryo, and two partially motor-impaired myosins delay cytokinesis and render rings more sensitive to reduced myosin levels. Further analysis of myosin mutants suggests that it is myosin motor activity, and not the ability of myosin to crosslink F-actin, that drives the alignment and compaction of F-actin bundles during contractile ring assembly, and that myosin motor activity sets the pace of contractile ring constriction. We conclude that myosin motor activity is required at all stages of cytokinesis. Finally, characterization of the corresponding motor mutations in C. elegans major muscle myosin shows that motor activity is required for muscle contraction but is dispensable for F-actin organization in adult muscles. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: The motor activity of non-muscle myosin II is essential for cytokinesis and contributes to all stages of the process in C. elegans embryos.
Collapse
Affiliation(s)
- Daniel S Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Leite
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Sobral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
12
|
Kasza KE, Supriyatno S, Zallen JA. Cellular defects resulting from disease-related myosin II mutations in Drosophila. Proc Natl Acad Sci U S A 2019; 116:22205-22211. [PMID: 31615886 PMCID: PMC6825282 DOI: 10.1073/pnas.1909227116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The nonmuscle myosin II motor protein produces forces that are essential to driving the cell movements and cell shape changes that generate tissue structure. Mutations in myosin II that are associated with human diseases are predicted to disrupt critical aspects of myosin function, but the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology are not well understood. Here we use the Drosophila embryo to model human disease mutations that affect myosin motor activity. Using in vivo imaging and biophysical analysis, we show that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. In embryos that express the Drosophila myosin motor variants R707C or N98K and have reduced levels of wild-type myosin, myosin motors are correctly planar polarized and generate anisotropic contractile tension in the tissue. However, expression of these motor variants is associated with a cellular-scale reduction in the speed of cell intercalation, resulting in a failure to promote full elongation of the body axis. In addition, these myosin motor variants display slowed turnover and aberrant aggregation at the cell cortex, indicating that mutations in the motor domain influence mesoscale properties of myosin organization and dynamics. These results demonstrate that disease-associated mutations in the myosin II motor domain disrupt specific aspects of myosin localization and activity during cell intercalation, linking molecular changes in myosin activity to defects in tissue morphogenesis.
Collapse
Affiliation(s)
- Karen E Kasza
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Sara Supriyatno
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| |
Collapse
|
13
|
Smith AS, Pal K, Nowak RB, Demenko A, Zaninetti C, Da Costa L, Favier R, Pecci A, Fowler VM. MYH9-related disease mutations cause abnormal red blood cell morphology through increased myosin-actin binding at the membrane. Am J Hematol 2019; 94:667-677. [PMID: 30916803 PMCID: PMC6510596 DOI: 10.1002/ajh.25472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/29/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability. Here, we tested the effects of MYH9 mutations in different NMIIA domains (motor, coiled-coil rod, or non-helical tail) on RBC NMIIA function. We found that MYH9-RD does not cause clinically significant anemia and that patient RBCs have normal osmotic deformability as well as normal membrane skeleton composition and micron-scale distribution. However, analysis of complete blood count data and peripheral blood smears revealed reduced hemoglobin content and elongated shapes, respectively, of MYH9-RD RBCs. Patients with mutations in the NMIIA motor domain had the highest numbers of elongated RBCs. Patients with mutations in the motor domain also had elevated association of NMIIA with F-actin at the RBC membrane. Our findings support a central role for motor domain activity in NMIIA regulation of RBC shape and define a new sub-clinical phenotype of MYH9-RD.
Collapse
Affiliation(s)
- Alyson S. Smith
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Kasturi Pal
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Anastasiya Demenko
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
| | - Carlo Zaninetti
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique,
Hôpital R. Debré, Paris F-75019, France; Université Paris 7,
Sorbonne Paris Cité, Paris F-75010, France; INSERM U1134, INTS, F-75015,
France; Laboratoire d’Excellence GR-Ex, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand
Trousseau Children Hospital, French Reference Center for platelet disorders, Paris,
75012, France
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San
Matteo Foundation and University of Pavia, Pavia, Italy
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research
Institute, La Jolla, CA 92037
- Department of Biological Sciences, University of Delaware, Newark, DE 19711
| |
Collapse
|
14
|
Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules 2019; 9:biom9050194. [PMID: 31109067 PMCID: PMC6572417 DOI: 10.3390/biom9050194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis is the last stage of cell division, which partitions the mother cell into two daughter cells. It requires the assembly and constriction of a contractile ring that consists of a filamentous contractile network of actin and myosin. Network contractility depends on network architecture, level of connectivity and myosin motor activity, but how exactly is the contractile ring network organized or interconnected and how much it depends on motor activity remains unclear. Moreover, the contractile ring is not an isolated entity; rather, it is integrated into the surrounding cortex. Therefore, the mechanical properties of the cell cortex and cortical behaviors are expected to impact contractile ring functioning. Due to the complexity of the process, experimental approaches have been coupled to theoretical modeling in order to advance its global understanding. While earlier coarse-grained descriptions attempted to provide an integrated view of the process, recent models have mostly focused on understanding the behavior of an isolated contractile ring. Here we provide an overview of the organization and dynamics of the actomyosin network during cytokinesis and discuss existing theoretical models in light of cortical behaviors and experimental evidence from several systems. Our view on what is missing in current models and should be tested in the future is provided.
Collapse
|
15
|
Taneja N, Burnette DT. Myosin IIA drives membrane bleb retraction. Mol Biol Cell 2019; 30:1051-1059. [PMID: 30785846 PMCID: PMC6724514 DOI: 10.1091/mbc.e18-11-0752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
16
|
Genome-wide identification and characterization of myosin genes in the silkworm, Bombyx mori. Gene 2019; 691:45-55. [PMID: 30611842 DOI: 10.1016/j.gene.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/18/2018] [Accepted: 12/01/2018] [Indexed: 11/21/2022]
Abstract
Myosins are a large family of actin filament-based motor proteins with a broad range of functions such as intracellular membrane trafficking, endocytosis, exocytosis, organellar transport, growth cone motility, cytokinesis, and cell locomotion. They are found in many organisms from fungi to humans. The myosin gene family in Bombyx mori is poorly studied, even though the molecular functions of these genes in vertebrates and insects, such as Drosophila, are well known. We identified 16 myosin genes from B. mori and identified the myosin genes in 12 vertebrates, eight insects, three nematodes, and seven protozoa. The number of myosin genes in vertebrates is double the number in invertebrates. The number of myosin isoforms in classes I and II is larger in vertebrates compared to invertebrates. B. mori myosin genes can be classified into 11 classes. Compared to B. mori, some myosin classes are not present in other insects. Classes I, II, XVIII, and XXI appear to be important for insect survival because they are conserved among nine insects. The relatively large sizes of B. mori myosin genes are due to their longer introns. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) analysis demonstrated that many B. mori myosin genes have tissue-specific expression and exhibit temporal-specific activity during metamorphosis. These data provide insights into evolutionary and functional aspects of B. mori myosin genes that could be useful for the study of homologous myosins in other Lepidoptera species.
Collapse
|
17
|
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664:152-167. [PMID: 29679756 PMCID: PMC5970098 DOI: 10.1016/j.gene.2018.04.048] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, via Dell'Istria, 65/1, I-34137 Trieste, Italy; IRCCS Burlo Garofolo, via Dell'Istria, 65/1, I-34137 Trieste, Italy.
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
18
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
19
|
Suggs JA, Melkani GC, Glasheen BM, Detor MM, Melkani A, Marsan NP, Swank DM, Bernstein SI. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects. Dis Model Mech 2017; 10:761-771. [PMID: 28258125 PMCID: PMC5483004 DOI: 10.1242/dmm.028050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/27/2017] [Indexed: 12/04/2022] Open
Abstract
Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro motility, reduced muscle power output and focal myofibrillar disorganization similar to that seen in individuals with IBM3. Summary: Reduced muscle power output and progressive myofibrillar defects in a Drosophila model of inclusion body myopathy 3 arise from the decreased rate of weak to strong actin-binding transition of myosin.
Collapse
Affiliation(s)
- Jennifer A Suggs
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Girish C Melkani
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Bernadette M Glasheen
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Mia M Detor
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Anju Melkani
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Nathan P Marsan
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Sanford I Bernstein
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
20
|
Fenix AM, Taneja N, Buttler CA, Lewis J, Van Engelenburg SB, Ohi R, Burnette DT. Expansion and concatenation of non-muscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis. Mol Biol Cell 2016; 27:mbc.E15-10-0725. [PMID: 26960797 PMCID: PMC4850034 DOI: 10.1091/mbc.e15-10-0725] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, non-muscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks) but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non-mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-F/NMIIA-F stacks move together and align. We found NMIIA-F stack formation was regulated by both motor-activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus, interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II-based contractile systems are assembled.
Collapse
Affiliation(s)
- Aidan M Fenix
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nilay Taneja
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - John Lewis
- Vanderbilt University School of Medicine, Nashville, TN 37232 Kalamazoo College, Kalamazoo, MI 49008
| | | | - Ryoma Ohi
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
21
|
Priya R, Gomez GA, Budnar S, Verma S, Cox HL, Hamilton NA, Yap AS. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol 2015; 17:1282-93. [PMID: 26368311 DOI: 10.1038/ncb3239] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
Actomyosin at the epithelial zonula adherens (ZA) generates junctional tension for tissue integrity and morphogenesis. This requires the RhoA GTPase, which establishes a strikingly stable active zone at the ZA. Mechanisms must then exist to confer robustness on junctional RhoA signalling at the population level. We now identify a feedback network that generates a stable mesoscopic RhoA zone out of dynamic elements. The key is scaffolding of ROCK1 to the ZA by myosin II. ROCK1 protects junctional RhoA by phosphorylating Rnd3 to prevent the cortical recruitment of the Rho suppressor, p190B RhoGAP. Combining predictive modelling and experimentation, we show that this network constitutes a bistable dynamical system that is realized at the population level of the ZA. Thus, stability of the RhoA zone is an emergent consequence of the network of interactions that allow myosin II to feedback to RhoA.
Collapse
Affiliation(s)
- Rashmi Priya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Guillermo A Gomez
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Srikanth Budnar
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Suzie Verma
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Hayley L Cox
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nicholas A Hamilton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Takaine M, Numata O, Nakano K. An actin-myosin-II interaction is involved in maintaining the contractile ring in fission yeast. J Cell Sci 2015; 128:2903-18. [PMID: 26092938 DOI: 10.1242/jcs.171264] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 01/26/2023] Open
Abstract
The actomyosin-based contractile ring, which assembles at the cell equator, maintains its circularity during cytokinesis in many eukaryotic cells, ensuring its efficient constriction. Although consistent maintenance of the ring is one of the mechanisms underpinning cytokinesis, it has not yet been fully addressed. We here investigated the roles of fission yeast myosin-II proteins [Myo2 and Myo3 (also known as Myp2)] in ring maintenance during cytokinesis, with a focus on Myo3. A site-directed mutational analysis showed that the motor properties of Myo3 were involved in its accumulation in the contractile ring. The assembled ring was often deformed and not properly maintained under conditions in which the activities of myosin-II proteins localizing to the contractile ring were decreased, leading to inefficient cell division. Moreover, Myo3 appeared to form motile clusters on the ring. We propose that large assemblies of myosin-II proteins consolidate the contractile ring by continuously binding to F-actin in the ring, thereby contributing to its maintenance.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
23
|
Elliott H, Fischer RS, Myers KA, Desai RA, Gao L, Chen CS, Adelstein RS, Waterman CM, Danuser G. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature. Nat Cell Biol 2015; 17:137-47. [PMID: 25621949 PMCID: PMC4312523 DOI: 10.1038/ncb3092] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.
Collapse
Affiliation(s)
- Hunter Elliott
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A Myers
- 1] Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, USA
| | - Ravi A Desai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lin Gao
- 1] Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA [2] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Christopher S Chen
- 1] Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA [3] Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Robert S Adelstein
- Genetics and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Münnich S, Pathan-Chhatbar S, Manstein DJ. Crystal structure of the rigor-like human non-muscle myosin-2 motor domain. FEBS Lett 2014; 588:4754-60. [PMID: 25451231 DOI: 10.1016/j.febslet.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/19/2014] [Accepted: 11/06/2014] [Indexed: 11/27/2022]
Abstract
We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50 kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A).
Collapse
Affiliation(s)
- Stefan Münnich
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Ma X, Adelstein RS. The role of vertebrate nonmuscle Myosin II in development and human disease. BIOARCHITECTURE 2014; 4:88-102. [PMID: 25098841 DOI: 10.4161/bioa.29766] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three different genes each located on a different chromosome encode the heavy chains of nonmuscle myosin II in humans and mice. This review explores the functional consequences of the presence of three isoforms during embryonic development and beyond. The roles of the various isoforms in cell division, cell-cell adhesion, blood vessel formation and neuronal cell migration are addressed in animal models and at the cellular level. Particular emphasis is placed on the role of nonmuscle myosin II during cardiac and brain development, and during closure of the neural tube and body wall. Questions addressed include the consequences on organ development, of lowering or ablating a particular isoform as well as the effect of substituting one isoform for another, all in vivo. Finally the roles of the three isoforms in human diseases such as cancer as well as in syndromes affecting a variety of organs in humans are reviewed.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD USA
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
26
|
Lu Z, Ma XN, Zhang HM, Ji HH, Ding H, Zhang J, Luo D, Sun Y, Li XD. Mouse myosin-19 is a plus-end-directed, high-duty ratio molecular motor. J Biol Chem 2014; 289:18535-48. [PMID: 24825904 DOI: 10.1074/jbc.m114.569087] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament.
Collapse
Affiliation(s)
- Zekuan Lu
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Xiao-Nan Ma
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Hai-Man Zhang
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Huan-Hong Ji
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Hao Ding
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Jie Zhang
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Dan Luo
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| | - Yujie Sun
- the Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiang-Dong Li
- From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and
| |
Collapse
|
27
|
Pecci A, Klersy C, Gresele P, Lee KJD, De Rocco D, Bozzi V, Russo G, Heller PG, Loffredo G, Ballmaier M, Fabris F, Beggiato E, Kahr WHA, Pujol-Moix N, Platokouki H, Van Geet C, Noris P, Yerram P, Hermans C, Gerber B, Economou M, De Groot M, Zieger B, De Candia E, Fraticelli V, Kersseboom R, Piccoli GB, Zimmermann S, Fierro T, Glembotsky AC, Vianello F, Zaninetti C, Nicchia E, Güthner C, Baronci C, Seri M, Knight PJ, Balduini CL, Savoia A. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2013; 35:236-47. [PMID: 24186861 DOI: 10.1002/humu.22476] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/18/2013] [Indexed: 01/05/2023]
Abstract
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen Y, Boukour S, Milloud R, Favier R, Saposnik B, Schlegel N, Nurden A, Raslova H, Vainchenker W, Balland M, Nurden P, Debili N. The abnormal proplatelet formation in MYH9-related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition. J Thromb Haemost 2013; 11:2163-75. [PMID: 24165359 DOI: 10.1111/jth.12436] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mutations in the MYH9 gene cause autosomal dominant MYH9-related diseases (MYH9-RD) that associate macrothrombocytopenia with various other clinical conditions. The mechanisms giving rise to giant platelets remain poorly understood. OBJECTIVES/PATIENTS To study the proplatelet formation (PPF) derived from megakaryocytes (MKs) generated in vitro from 11 patients with MYH9-RD with different mutations, compared with controls. METHODS Proplatelet formation from cultured patients' MKs was evaluated with or without blebbistatin or the ROCK inhibitor Y27632. Myosin IIA and actin distribution were studied in spreading MKs on different surfaces by immunoconfocal analysis. Kinetic studies of contractility were performed on spreading MKs and the impact of blebbistatin on the maturation of the patients' MKs was evaluated by electron microscopy. RESULTS AND CONCLUSIONS We show that in vitro MKs of 11 patients formed significantly fewer proplatelets than controls. MKs from MYH9-RD displayed an abnormal spreading on polylysine, fibronectin and collagen, with a disorganized actin network and a marked increase in stress fiber formation. Traction force microscopy studies demonstrated an elevated level of contractile forces in adherent mutated MKs. The myosin II inhibitor blebbistatin and the ROCK inhibitor Y27632 both rescued the proplatelet formation defect and normalized the ultrastructural characteristics of MYH9-RD MKs. Altogether, our results show that in MYH9-RD, mutations modify the overall MYH9 function and provoke a proplatelet defect through an excess of actomyosin contractility in spreading MKs. These results may promote new therapeutic strategies aimed at reducing this actomyosin contractility.
Collapse
Affiliation(s)
- Y Chen
- INSERM, Gustave Roussy, UMR1009, Villejuif, France; Université Paris-Sud, UMR1009, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR1009, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A 2013; 110:E1361-70. [PMID: 23515331 PMCID: PMC3625291 DOI: 10.1073/pnas.1220723110] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.
Collapse
Affiliation(s)
- Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Physiological Sciences I, University of Barcelona, 08036 Barcelona, Spain
| | - Armando del Rio
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Center for Biophysical Studies, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | | | - Nils C. Gauthier
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411; and
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Michael P. Sheetz
- Department of Biological Sciences, Columbia University, New York, NY 10027
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411; and
| |
Collapse
|
30
|
Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility. J Muscle Res Cell Motil 2012; 33:385-94. [PMID: 22930330 DOI: 10.1007/s10974-012-9316-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
We examined the temperature dependence of muscle and non-muscle myosin (heavy meromyosin, HMM) with in vitro motility and actin-activated ATPase assays. Our results indicate that myosin V (MV) has a temperature dependence that is similar in both ATPase and motility assays. We demonstrate that skeletal muscle myosin (SK), smooth muscle myosin (SM), and non-muscle myosin IIA (NM) have different temperature dependence in ATPase compared to in vitro motility assays. In the class II myosins we examined (SK, SM, and NM) the rate-limiting step in ATPase assays is thought to be attachment to actin or phosphate release, while for in vitro motility assays it is controversial. In MV the rate-limiting step for both in vitro motility and ATPase assays is known to be ADP release. Consequently, in MV the temperature dependence of the ADP release rate constant is similar to the temperature dependence of in vitro motility. Interestingly, the temperature dependence of the ADP release rate constant of SM and NM was shifted toward the in vitro motility temperature dependence. Our results suggest that the rate-limiting step in SK, SM, and NM may shift from attachment-limited in solution to detachment limited in the in vitro motility assay. Internal strain within the myosin molecule or by neighboring myosin motors may slow ADP release which becomes rate-limiting in the in vitro motility assay. Within this small subset of myosins examined, the in vitro sliding velocity correlates reasonably well with actin-activated ATPase activity, which was suggested by the original study by Barany (J Gen Physiol 50:197-218, 1967).
Collapse
|
31
|
Kim JH, Wang A, Conti MA, Adelstein RS. Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. J Biol Chem 2012; 287:27345-58. [PMID: 22718763 DOI: 10.1074/jbc.m111.304824] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Platelet (PLT) production represents the final stage of megakaryocyte (MK) development. During differentiation, bone marrow MKs extend and release long, branched proPLTs into sinusoidal blood vessels, which undergo repeated abscissions to yield circulating PLTs. Circular-prePLTs are dynamic intermediate structures in this sequence that have the capacity to reversibly convert into barbell-proPLTs and may be related to "young PLTs" and "large PLTs" of both inherited and acquired macrothrombocytopenias. Conversion is regulated by the diameter and thickness of the peripheral microtubule coil, and PLTs are capable of enlarging in culture to generate barbell-proPLTs that divide to yield 2 smaller PLT products. Because PLT number and size are inversely proportional, this raises the question: do macrothrombocytopenias represent a failure in the intermediate stages of PLT production? This review aims to bring together and contextualize our current understanding of terminal PLT production against the backdrop of human macrothrombocytopenias to establish how "large PLTs" observed in both conditions are similar, how they are different, and what they can teach us about PLT formation. A better understanding of the cytoskeletal mechanisms that regulate PLT formation and determine PLT size offers the promise of improved therapies for clinical disorders of PLT production and an important source of PLTs for infusion.
Collapse
|
33
|
Wang Y, Melkani GC, Suggs JA, Melkani A, Kronert WA, Cammarato A, Bernstein SI. Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness. Mol Biol Cell 2012; 23:2057-65. [PMID: 22496423 PMCID: PMC3364171 DOI: 10.1091/mbc.e12-02-0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A Drosophila model of myosin-based inclusion body myopathy type 3 is presented. Muscle function, ATPase activity, and actin sliding velocity were dramatically reduced. The mutant myosin is prone to aggregate, likely accounting for the observed cytoplasmic inclusions and disorganized muscle filaments reminiscent of the human disease. Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Proteinuria is often accompanied by a pathological change in the glomerulus that is refereed as effacement of the podocyte foot processes. The highly dynamic podocyte foot processes contain an actin-based contractile apparatus comparable to that of pericytes, which needs to be precisely and temporally controlled to withstand high pressure in the capillaries and to maintain intact glomerular filtration properties. This review outlines the most recent concepts on the function of the podocyte contractile apparatus with a focus on the role of non-muscle myosins as they have been highlighted by studies in monogenic hereditary proteinuric diseases.
Collapse
Affiliation(s)
- Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Department of Molecular Medicine, Ranica, Italy
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Italy
| |
Collapse
|
35
|
Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis. Proc Natl Acad Sci U S A 2012; 109:4509-14. [PMID: 22393000 DOI: 10.1073/pnas.1116268109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During vertebrate cytokinesis it is thought that contractile ring constriction is driven by nonmuscle myosin II (NM II) translocation of antiparallel actin filaments. Here we report in situ, in vitro, and in vivo observations that challenge this hypothesis. Graded knockdown of NM II in cultured COS-7 cells reveals that the amount of NM II limits ring constriction. Restoration of the constriction rate with motor-impaired NM II mutants shows that the ability of NM II to translocate actin is not required for cytokinesis. Blebbistatin inhibition of cytokinesis indicates the importance of myosin strongly binding to actin and exerting tension during cytokinesis. This role is substantiated by transient kinetic experiments showing that the load-dependent mechanochemical properties of mutant NM II support efficient tension maintenance despite the inability to translocate actin. Under loaded conditions, mutant NM II exhibits a prolonged actin attachment in which a single mechanoenzymatic cycle spans most of the time of cytokinesis. This prolonged attachment promotes simultaneous binding of NM II heads to actin, thereby increasing tension and resisting expansion of the ring. The detachment of mutant NM II heads from actin is enhanced by assisting loads, which prevent mutant NM II from hampering furrow ingression during cytokinesis. In the 3D context of mouse hearts, mutant NM II-B R709C that cannot translocate actin filaments can rescue multinucleation in NM II-B ablated cardiomyocytes. We propose that the major roles of NM II in vertebrate cell cytokinesis are to bind and cross-link actin filaments and to exert tension on actin during contractile ring constriction.
Collapse
|
36
|
Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, Ye Y, Lau AW, Wang X, Oliveira AM. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. J Transl Med 2011; 91:1427-33. [PMID: 21826056 DOI: 10.1038/labinvest.2011.118] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nodular fasciitis (NF) is a relatively common mass-forming and self-limited subcutaneous pseudosarcomatous myofibroblastic proliferation of unknown pathogenesis. Due to its rapid growth and high mitotic activity, NF is often misdiagnosed as a sarcoma. While studying the USP6 biology in aneurysmal bone cyst and other mesenchymal tumors, we identified high expression levels of USP6 mRNA in two examples of NF. This finding led us to further examine the mechanisms underlying USP6 overexpression in these lesions. Upon subsequent investigation, genomic rearrangements of the USP6 locus were found in 92% (44 of 48) of NF. Rapid amplification of 5'-cDNA ends identified MYH9 as the translocation partner. RT-PCR and direct sequencing revealed the fusion of the MYH9 promoter region to the entire coding region of USP6. Control tumors and tissues were negative for this fusion. Xenografts of cells overexpressing USP6 in nude mice exhibited clinical and histological features similar to human NF. The identification of a sensitive and specific abnormality in NF holds the potential to be used diagnostically. Considering the self-limited nature of the lesion, NF may represent a model of 'transient neoplasia', as it is, to our knowledge, the first example of a self-limited human disease characterized by a recurrent somatic gene fusion event.
Collapse
|
37
|
Abstract
We have generated 3 mouse lines, each with a different mutation in the nonmuscle myosin II-A gene, Myh9 (R702C, D1424N, and E1841K). Each line develops MYH9-related disease similar to that found in human patients. R702C mutant human cDNA fused with green fluorescent protein was introduced into the first coding exon of Myh9, and D1424N and E1841K mutations were introduced directly into the corresponding exons. Homozygous R702C mice die at embryonic day 10.5-11.5, whereas homozygous D1424N and E1841K mice are viable. All heterozygous and homozygous mutant mice show macrothrombocytopenia with prolonged bleeding times, a defect in clot retraction, and increased extramedullary megakaryocytes. Studies of cultured megakaryocytes and live-cell imaging of megakaryocytes in the BM show that heterozygous R702C megakaryocytes form fewer and shorter proplatelets with less branching and larger buds. The results indicate that disrupted proplatelet formation contributes to the macrothrombocytopenia in mice and most probably in humans. We also observed premature cataract formation, kidney abnormalities, including albuminuria, focal segmental glomerulosclerosis and progressive kidney disease, and mild hearing loss. Our results show that heterozygous mice with mutations in the myosin motor or filament-forming domain manifest similar hematologic, eye, and kidney phenotypes to humans with MYH9-related disease.
Collapse
|
38
|
Piscione TD, Licht C. Genetics of proteinuria: an overview of gene mutations associated with nonsyndromic proteinuric glomerulopathies. Adv Chronic Kidney Dis 2011; 18:273-89. [PMID: 21782134 DOI: 10.1053/j.ackd.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/02/2011] [Accepted: 06/16/2011] [Indexed: 02/08/2023]
Abstract
Heritable causes of proteinuria are rare and account for a relatively small proportion of all cases of proteinuria affecting children and adults. Yet, significant contributions to understanding the mechanistic basis for proteinuria have been made through genetic and molecular analyses of a small group of syndromic and nonsyndromic proteinuric disorders which are caused by mutations encoding structural components of the glomerular filtration barrier. Technological advances in genomic analyses and improved accessibility to mutational screening at clinically approved laboratories have facilitated diagnosis of proteinuria in the clinical setting. From a clinical standpoint, it may be argued that a genetic diagnosis mitigates exposure to potentially ineffective and harmful treatments in instances where a clear genotype-phenotype correlation exists between a specific gene mutation and treatment nonresponsiveness. However, cautious interpretation of risk may be necessitated in cases with phenotypic heterogeneity (eg, variability in clinical or histological presentation). This review summarizes gene mutations which are known to be associated with proteinuric glomerulopathies in children and adults.
Collapse
|
39
|
Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011; 154:161-74. [PMID: 21542825 DOI: 10.1111/j.1365-2141.2011.08716.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MYH9-related disease (MYH9-RD) is one of the most frequent forms of inherited thrombocytopenia. It is transmitted in an autosomal dominant fashion and derives from mutations of MYH9, the gene for the heavy chain of non-muscle myosin IIA. Patients present with congenital macrothrombocytopenia with mild bleeding tendency and may develop kidney dysfunction, deafness and cataracts later in life. The term MYH9-RD encompasses four autosomal-dominant thrombocytopenias that were previously described as distinct disorders, namely May-Hegglin Anomaly, Sebastian, Fechtner and Epstein syndromes. Thrombocytopenia is usually mild and derives from complex defects of megakaryocyte maturation and platelet formation. It is easily diagnosed, in that the presence of giant platelets in peripheral blood raises the suspicion of MYH9-RD and a simple immunofluorescence test on blood films confirms the diagnostic hypothesis. However, genotype/phenotype correlations have been recognized and mutation screening is therefore required to define the risk of acquiring extra-haematological defects. Results of a small clinical study suggested that a non-peptide thrombopoietin mimetic might greatly benefit both thrombocytopenia and bleeding tendency of MYH9-RD patients.
Collapse
Affiliation(s)
- Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy.
| | | | | |
Collapse
|
40
|
|
41
|
Lee CS, Choi CK, Shin EY, Schwartz MA, Kim EG. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. ACTA ACUST UNITED AC 2010; 190:663-74. [PMID: 20713598 PMCID: PMC2928003 DOI: 10.1083/jcb.201003057] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The activity of Rho GTPases in migrating cells is regulated by binding of myosin II to GEFs. Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.
Collapse
Affiliation(s)
- Chan-Soo Lee
- Department of Biochemistry and Medical Research Center, Chungbuk National University College of Medicine, Cheongju, South Korea
| | | | | | | | | |
Collapse
|
42
|
Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, Hamilton NA, Parton RG, Adelstein RS, Yap AS. Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 2010; 12:696-702. [PMID: 20543839 PMCID: PMC3428211 DOI: 10.1038/ncb2072] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 05/18/2010] [Indexed: 12/15/2022]
Abstract
Classic cadherin receptors cooperate with regulators of the actin cytoskeleton to control tissue organization in health and disease. At the apical junctions of epithelial cells, the cadherin ring of the zonula adherens (ZA) couples with a contiguous ring of actin filaments to support morphogenetic processes such as tissue integration and cellular morphology. However, the molecular mechanisms that coordinate adhesion and cytoskeleton at these junctions are poorly understood. Previously we identified non-muscle myosin II as a target of Rho signalling that supports cadherin junctions in mammalian epithelial cells. Myosin II has various cellular functions, which are increasingly attributable to the specific biophysical properties and regulation of its different isoforms. Here we report that myosin II isoforms have distinct and necessary roles at cadherin junctions. Although two of the three mammalian myosin II isoforms are found at the ZA, their localization is regulated by different upstream signalling pathways. Junctional localization of myosin IIA required E-cadherin adhesion, Rho/ROCK and myosin light-chain kinase, whereas junctional myosin IIB depended on Rap1. Further, these myosin II isoforms support E-cadherin junction integrity by different mechanisms. Myosin IIA RNA-mediated interference (RNAi) selectively perturbed the accumulation of E-cadherin in the apical ZA, decreased cadherin homophilic adhesion and disrupted cadherin clustering. In contrast, myosin IIB RNAi decreased filament content, altered dynamics, and increased the lateral movement of the perijunctional actin ring. Myosin IIA and IIB therefore identify two distinct functional modules, with different upstream signals that control junctional localization, and distinct functional effects. We propose that these two isoform-based modules cooperate to coordinate adhesion receptor and F-actin organization to form apical cadherin junctions.
Collapse
Affiliation(s)
- Michael Smutny
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Hayley L. Cox
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Joanne M. Leerberg
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Eva M. Kovacs
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1583, USA
| | - Charles Ferguson
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Nicholas A. Hamilton
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1583, USA
| | - Alpha S. Yap
- Institute for Molecular Bioscience, Division of Molecular Cell Biology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
43
|
Chantler PD, Wylie SR, Wheeler-Jones CP, McGonnell IM. Conventional myosins - unconventional functions. Biophys Rev 2010; 2:67-82. [PMID: 28510009 PMCID: PMC5425674 DOI: 10.1007/s12551-010-0030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/22/2009] [Indexed: 10/24/2022] Open
Abstract
While the discovery of unconventional myosins raised expectations that their actions were responsible for most aspects of actin-based cell motility, few anticipated the wide range of cellular functions that would remain the purview of conventional two-headed myosins. The three nonsarcomeric, cellular myosins-M2A, M2B and M2C-participate in diverse roles including, but not limited to: neuronal dynamics, axon guidance and synaptic transmission; endothelial cell migration; cell adhesion, polarity, fusion and cytokinesis; vesicle trafficking and viral egress. These three conventional myosins each take on specific, differing functional roles during development and maturity, characteristic of each cell lineage; exact roles depend on the developmental stage of the cell, cellular location, upstream regulatory controls, relative isoform expression, orientation and associated state of the actin cytoscaffolds in which these myosins operate. Here, we discuss the separate yet related roles that characterise the actions of M2A, M2B and M2C in various cell types and show that these conventional myosins are responsible for functions as unconventional as any performed by unconventional myosins.
Collapse
Affiliation(s)
- Peter D Chantler
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK.
| | - Steven R Wylie
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| | - Caroline P Wheeler-Jones
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| | - Imelda M McGonnell
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
44
|
Kunishima S, Matsunaga T, Ito Y, Saito H. Mutations in MYH9 exons 1, 16, 26, and 30 are infrequently found in Japanese patients with nonsyndromic deafness. Genet Test Mol Biomarkers 2010; 13:705-7. [PMID: 19645626 DOI: 10.1089/gtmb.2009.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in MYH9 result in the autosomal dominant giant platelet disorders with leukocyte inclusion bodies with varying degrees of Alport manifestations, including nephritis, deafness, and cataracts. A specific MYH9 mutation in exon 16, R705H, causes nonsyndromic deafness DFNA17. We searched for mutations in MYH9 exons 1, 16, 26, and 30 in a total of 157 Japanese patients with nonsyndromic deafness without known cause of hearing loss, but no mutations were found. We conclude that mutations in MYH9 are infrequently found in patients with nonsyndromic deafness and suggest that MYH9 mutations infrequently cause isolated sensorineural hearing loss. Thus, MYH9 may not currently be a good candidate gene for efficient screening of genetic causes in nonsyndromic deafness.
Collapse
|
45
|
Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10:778-90. [PMID: 19851336 DOI: 10.1038/nrm2786] [Citation(s) in RCA: 1480] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.
Collapse
|
46
|
Mhatre AN, Janssens S, Nardi MA, Li Y, Lalwani AK. Clinical and molecular genetic analysis of a family with macrothrombocytopenia and early onset sensorineural hearing loss. Eur J Med Genet 2009; 52:185-90. [PMID: 19285578 DOI: 10.1016/j.ejmg.2009.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
A kindred with inherited macrothrombocytopenia (MTCP) and sensorineural hearing loss (SNHL) from Ghent, Belgium was identified. Currently, joint expression of MTCP and hearing loss are linked to mutations within MYH9 only. Thus, we tested the hypothesis that a mutation within MYH9 is responsible for the autosomal dominant inheritance of MTCP and hearing loss in the Ghent family. A mutation screen of MYH9 coding region including its intron-exon junctions, as well as common hearing loss genes GJB2, GJB3, and GJB6, was performed. However, no pathogenic sequence alteration was identified. Patients' leukocytes were determined to be normal for NMMHC-A distribution via immunofluorescence analysis and free of Döhle body-like inclusions, identified as aggregates of mutant NMHC-IIA in MYH9 disorders. Also, western blot analysis with anti-NMHC-IIA antibody identified a single 220 kDa immunoreactive band with normal expression level of NMHC-IIA within the platelets and leukocytes of the affected family members. The immunoblot analysis eliminates the possibility of a large deletion within MYH9 that can escape detection by direct sequencing. Collectively, these results suggest that molecular genetic etiology of the Ghent family disorder may be due to as yet unidentified gene whose mutation(s) yields a phenocopy of the MYH9-related disease.
Collapse
Affiliation(s)
- Anand N Mhatre
- Laboratory of Molecular Genetics, Department of Otolaryngology, New York University School of Medicine, 560 First Avenue, TCH 513, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
47
|
Arora PD, Conti MA, Ravid S, Sacks DB, Kapus A, Adelstein RS, Bresnick AR, McCulloch CA. Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin II-A. Mol Biol Cell 2008; 19:5032-46. [PMID: 18799623 DOI: 10.1091/mbc.e08-04-0430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or beta1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.
Collapse
Affiliation(s)
- Pamela D Arora
- CIHR Group in Matrix Dynamics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008; 10:1039-50. [PMID: 19160484 PMCID: PMC2827253 DOI: 10.1038/ncb1763] [Citation(s) in RCA: 619] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an alpha-actinin-actin template that elongates centripetally from nascent adhesions. Alpha-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.
Collapse
Affiliation(s)
- Colin K. Choi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | - Jessica Zareno
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Leanna A. Whitmore
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Alex Mogilner
- Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, California 95618, USA
| | - Alan Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
49
|
Li Y, Friedmann DR, Mhatre AN, Lalwani AK. MYH9-siRNA and MYH9 mutant alleles: expression in cultured cell lines and their effects upon cell structure and function. ACTA ACUST UNITED AC 2008; 65:393-405. [PMID: 18330899 DOI: 10.1002/cm.20268] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MYH9 encodes a class II nonmuscle myosin heavy chain-A (NMHC-IIA), a widely expressed 1960 amino acid polypeptide, with translated molecular weight of 220 kDa. From studies of type II myosin in invertebrates and analogy with the skeletal and smooth muscle myosin II, NMHC-IIA is considered to be involved in diverse cellular functions, including cell shape, motility and division. The current study assessed the consequences of two separate, naturally occurring MYH9 dominant mutant alleles, MYH9(R702C) and MYH9(R705H) linked to syndromic and nonsyndromic hearing loss, respectively, upon diverse NMHC-IIA related functions in two separate cultured cell lines. MYH9-siRNA-induced inhibition of NMHC-IIA in HeLa cells or HEK293 cells resulted in alterations in their shape, actin cytoskeleton and adhesion properties. However, HeLa or HEK293 cells transfected with naturally occurring MYH9 mutant alleles, MYH9(R702C) or MYH9(R705H), as well as in vitro generated deletion derivatives, MYH9(DeltaN592) or MYH9(DeltaC570), were unaffected. The effects of MYH9-siRNA-induced suppression underline the critical role of NMHC-IIA in maintenance of cell shape and adhesion. However, the results also indicate that the NMHC-IIA mutants, R702C and R705H do not inactivate or suppress the endogenous wild type NMHC-IIA within the HeLa or HEK293 cell assay system.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular Otology, Department of Otolaryngology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
50
|
Pecci A, Panza E, Pujol-Moix N, Klersy C, Di Bari F, Bozzi V, Gresele P, Lethagen S, Fabris F, Dufour C, Granata A, Doubek M, Pecoraro C, Koivisto PA, Heller PG, Iolascon A, Alvisi P, Schwabe D, De Candia E, Rocca B, Russo U, Ramenghi U, Noris P, Seri M, Balduini CL, Savoia A. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 2008; 29:409-17. [PMID: 18059020 DOI: 10.1002/humu.20661] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness, presenile cataracts, and/or progressive nephritis leading to end-stage renal failure. No consistent correlations have been identified between the 27 different MYH9 mutations identified so far and the variable clinical evolution of the disease. We have evaluated 108 consecutive MYH9-RD patients belonging to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC-IIA (responsible for 70% of MYH9-RD cases). We concluded that mutations at residue 1933 do not induce kidney damage or cataracts and cause deafness only in the elderly, those in position 702 result in severe thrombocytopenia and produce nephritis and deafness at a juvenile age, while alterations at residue 1424 or 1841 result in intermediate clinical pictures. These findings are relevant not only to patients' clinical management but also to the elucidation of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, University of Pavia and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|