1
|
Pu F, Zhang N, Pang J, Zeng N, Baloch FB, Li Z, Li B. Deciphering the Genetic Architecture of Staphylococcus warneri Prophage vB_G30_01: A Comprehensive Molecular Analysis. Viruses 2024; 16:1631. [PMID: 39459963 PMCID: PMC11512304 DOI: 10.3390/v16101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The current knowledge of Staphylococcus warneri phages is limited, with few genomes sequenced and characterized. In this study, a prophage, vB_G30_01, isolated from Staphylococcus warneri G30 was characterized and evaluated for its lysogenic host range. The phage was studied using transmission electron microscopy and a host range. The phage genome was sequenced and characterized in depth, including phylogenetic and taxonomic analyses. The linear dsDNA genome of vB_G30_01 contains 67 predicted open reading frames (ORFs), classifying it within Bronfenbrennervirinae. With a total of 10 ORFs involved in DNA replication-related and transcriptional regulator functions, vB_G30_01 may play a role in the genetics and transcription of a host. Additionally, vB_G30_01 possesses a complete set of genes related to host lysogeny and lysis, implying that vB_G30_01 may influence the survival and adaptation of its host. Furthermore, a comparative genomic analysis reveals that vB_G30_01 shares high genomic similarity with other Staphylococcus phages and is relatively closely related to those of Exiguobacterium and Bacillus, which, in combination with the cross-infection assay, suggests possible cross-species infection capabilities. This study enhances the understanding of Staphylococcus warneri prophages, providing insights into phage-host interactions and potential horizontal gene transfer.
Collapse
Affiliation(s)
- Fangxiong Pu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Jiahe Pang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| |
Collapse
|
2
|
Xiong Y, Ma K, Zou X, Liang Y, Zheng K, Wang T, Zhang H, Dong Y, Wang Z, Liu Y, Shao H, McMinn A, Wang M. Vibrio cyclitrophicus phage encoding gene transfer agent fragment, representing a novel viral family. Virus Res 2024; 339:199270. [PMID: 37972855 PMCID: PMC10694778 DOI: 10.1016/j.virusres.2023.199270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Vibrio is a prevalent bacterial genus in aquatic environments and exhibits diverse metabolic capabilities, playing a vital role in marine biogeochemical cycles. This study isolated a novel virus infecting Vibrio cyclitrophicus, vB_VviC_ZQ26, from coastal waters near Qingdao, China. The vB_VviC_ZQ26 comprises a linear double-stranded DNA genome with a length of 42,982 bp and a G + C content of 43.21 %, encoding 72 putative open reading frames (ORFs). Transmission electron microscope characterization indicates a siphoviral-morphology of vB_VviC_ZQ26. Nucleic-acids-wide analysis indicates a tetranucleotide frequency deviation for genomic segments encoding putative gene transfer agent protein (GTA) and coil-containing protein, implying divergent origins occurred in different parts of viral genomes. Phylogenetic and genome-content-based analysis suggest that vB_VviC_ZQ26 represents a novel vibriophage-specific family designated as Coheviridae. From the result of biogeographic analysis, Coheviridae is mainly colonized in the temperate and tropical epipelagic zones. This study describes a novel vibriophage infecting V. cyclitrophicus, shedding light on the evolutionary divergence of different parts of the viral genome and its ecological footprint in marine environments.
Collapse
Affiliation(s)
- Yao Xiong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Xiangdong Hospital, Hunan Normal University, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Tiancong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Hawkins DEDP, Godwin OC, Antson AA. Viral Genomic DNA Packaging Machinery. Subcell Biochem 2024; 104:181-205. [PMID: 38963488 PMCID: PMC7617512 DOI: 10.1007/978-3-031-58843-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
| | - Owen C Godwin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Structural Biology, The Francis Crick Institute, London, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
- Structural Biology, The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Rao VB, Fokine A, Fang Q, Shao Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 2023; 15:527. [PMID: 36851741 PMCID: PMC9958956 DOI: 10.3390/v15020527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.
Collapse
Affiliation(s)
- Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Lokareddy RK, Hou CFD, Doll SG, Li F, Gillilan RE, Forti F, Horner DS, Briani F, Cingolani G. Terminase Subunits from the Pseudomonas-Phage E217. J Mol Biol 2022; 434:167799. [PMID: 36007626 PMCID: PMC10026623 DOI: 10.1016/j.jmb.2022.167799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Pseudomonas phages are increasingly important biomedicines for phage therapy, but little is known about how these viruses package DNA. This paper explores the terminase subunits from the Myoviridae E217, a Pseudomonas-phage used in an experimental cocktail to eradicate P. aeruginosa in vitro and in animal models. We identified the large (TerL) and small (TerS) terminase subunits in two genes ∼58 kbs away from each other in the E217 genome. TerL presents a classical two-domain architecture, consisting of an N-terminal ATPase and C-terminal nuclease domain arranged into a bean-shaped tertiary structure. A 2.05 Å crystal structure of the C-terminal domain revealed an RNase H-like fold with two magnesium ions in the nuclease active site. Mutations in TerL residues involved in magnesium coordination had a dominant-negative effect on phage growth. However, the two ions identified in the active site were too far from each other to promote two-metal-ion catalysis, suggesting a conformational change is required for nuclease activity. We also determined a 3.38 Å cryo-EM reconstruction of E217 TerS that revealed a ring-like decamer, departing from the most common nonameric quaternary structure observed thus far. E217 TerS contains both N-terminal helix-turn-helix motifs enriched in basic residues and a central channel lined with basic residues large enough to accommodate double-stranded DNA. Overexpression of TerS caused a more than a 4-fold reduction of E217 burst size, suggesting a catalytic amount of the protein is required for packaging. Together, these data expand the molecular repertoire of viral terminase subunits to Pseudomonas-phages used for phage therapy.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Steven G Doll
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
7
|
Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916. Viruses 2022; 14:v14081709. [PMID: 36016331 PMCID: PMC9414467 DOI: 10.3390/v14081709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens poses a serious global health threat. While patient infections by the opportunistic human pathogen Pseudoxanthomonas spp. have been increasingly reported worldwide, no phage associated with this bacterial genus has yet been isolated and reported. In this study, we isolated and characterized the novel phage PW916 to subsequently be used to lyse the multidrug-resistant Pseudoxanthomonas kaohsiungensi which was isolated from soil samples obtained from Chongqing, China. We studied the morphological features, thermal stability, pH stability, optimal multiplicity of infection, and genomic sequence of phage PW916. Transmission electron microscopy revealed the morphology of PW916 and indicated it to belong to the Siphoviridae family, with the morphological characteristics of a rounded head and a long noncontractile tail. The optimal multiplicity of infection of PW916 was 0.1. Moreover, PW916 was found to be stable under a wide range of temperatures (4–60 °C), pH (4–11) as well as treatment with 1% (v/w) chloroform. The genome of PW916 was determined to be a circular double-stranded structure with a length of 47,760 bp, containing 64 open reading frames that encoded functional and structural proteins, while no antibiotic resistance nor virulence factor genes were detected. The genomic sequencing and phylogenetic tree analysis showed that PW916 was a novel phage belonging to the Siphoviridae family that was closely related to the Stenotrophomonas phage. This is the first study to identify a novel phage infecting the multidrug-resistant P. kaohsiungensi and the findings provide insight into the potential application of PW916 in future phage therapies.
Collapse
|
8
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
9
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
10
|
Niazi M, Florio TJ, Yang R, Lokareddy RK, Swanson NA, Gillilan RE, Cingolani G. Biophysical analysis of Pseudomonas-phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation. Nucleic Acids Res 2020; 48:11721-11736. [PMID: 33125059 PMCID: PMC7672466 DOI: 10.1093/nar/gkaa866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/19/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
The genome packaging motor of tailed bacteriophages and herpesviruses is a powerful nanomachine built by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal vertex of an empty precursor capsid (or procapsid) to power genome encapsidation. Terminase subunits have been studied in-depth, especially in classical bacteriophages that infect Escherichia coli or Salmonella, yet, less is known about the packaging motor of Pseudomonas-phages that have increasing biomedical relevance. Here, we investigated the small terminase subunit from three Podoviridae phages that infect Pseudomonas aeruginosa. We found TerS is polymorphic in solution but assembles into a nonamer in its high-affinity heparin-binding conformation. The atomic structure of Pseudomonas phage PaP3 TerS, the first complete structure for a TerS from a cos phage, reveals nine helix-turn-helix (HTH) motifs asymmetrically arranged around a β-stranded channel, too narrow to accommodate DNA. PaP3 TerS binds DNA in a sequence-specific manner in vitro. X-ray scattering and molecular modeling suggest TerS adopts an open conformation in solution, characterized by dynamic HTHs that move around an oligomerization core, generating discrete binding crevices for DNA. We propose a model for sequence-specific recognition of packaging initiation sites by lateral interdigitation of DNA.
Collapse
Affiliation(s)
- Marzia Niazi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Tyler J Florio
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Hayes JA, Hilbert BJ, Gaubitz C, Stone NP, Kelch BA. A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry. J Biol Chem 2020; 295:3783-3793. [PMID: 32014998 DOI: 10.1074/jbc.ra119.012224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Indexed: 11/06/2022] Open
Abstract
Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerSP76-26 revealed that it forms a ring with a wide central pore and radially arrayed helix-turn-helix domains. The structure further showed that these helix-turn-helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacked the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal β-barrel domain is not required for TerSP76-26 to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerSP76-26, revealing key differences between this thermophilic phage and its mesophilic counterparts.
Collapse
Affiliation(s)
- Janelle A Hayes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Brendan J Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Nicholas P Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
12
|
Dixit AB, Ray K, Black LW. A viral small terminase subunit (TerS) twin ring pac synapsis DNA packaging model is supported by fluorescent fusion proteins. Virology 2019; 536:39-48. [PMID: 31400548 PMCID: PMC6760839 DOI: 10.1016/j.virol.2019.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022]
Abstract
A bacteriophage T4 DNA "synapsis model" proposes that the bacteriophage T4 terminase small subunit (TerS) apposes two pac site containing dsDNA homologs to gauge concatemer maturation adequate for packaging initiation. N-terminus, C-terminus, or both ends modified fusion Ter S proteins retain function. Replacements of the TerS gene in the T4 genome with fusion genes encoding larger (18-45 kDa) TerS-eGFP and TerS-mCherry fluorescent fusion proteins function without significant change in phenotype. Co-infection and co-expression by T4 phages encoding TerS-eGFP and TerS-mCherry shows in vivo FRET in infected bacteria comparable to that of the purified, denatured and then renatured, mixed fusion proteins in vitro. FRET of purified, denatured-renatured, mixed temperature sensitive and native TerS fusion proteins at low and high temperature in vitro shows that TerS ring-like oligomer formation is essential for function in vivo. Super-resolution STORM and PALM microscopy of intercalating dye YOYO-1 DNA and photoactivatable TerS-PAmCherry-C1 fusions support accumulation of TerS dimeric or multiple ring-like oligomer structures containing DNA and gp16-mCherry in vivo as well as in vitro to regulate pac site cutting.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Yang L, Yang Q, Wang M, Jia R, Chen S, Zhu D, Liu M, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Cheng A. Terminase Large Subunit Provides a New Drug Target for Herpesvirus Treatment. Viruses 2019; 11:v11030219. [PMID: 30841485 PMCID: PMC6466031 DOI: 10.3390/v11030219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Herpesvirus infection is an orderly, regulated process. Among these viruses, the encapsidation of viral DNA is a noteworthy link; the entire process requires a powered motor that binds to viral DNA and carries it into the preformed capsid. Studies have shown that this power motor is a complex composed of a large subunit, a small subunit, and a third subunit, which are collectively known as terminase. The terminase large subunit is highly conserved in herpesvirus. It mainly includes two domains: the C-terminal nuclease domain, which cuts the viral concatemeric DNA into a monomeric genome, and the N-terminal ATPase domain, which hydrolyzes ATP to provide energy for the genome cutting and transfer activities. Because this process is not present in eukaryotic cells, it provides a reliable theoretical basis for the development of safe and effective anti-herpesvirus drugs. This article reviews the genetic characteristics, protein structure, and function of the herpesvirus terminase large subunit, as well as the antiviral drugs that target the terminase large subunit. We hope to provide a theoretical basis for the prevention and treatment of herpesvirus.
Collapse
Affiliation(s)
- Linlin Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Wangchuk J, Prakash P, Bhaumik P, Kondabagil K. Bacteriophage N4 large terminase: expression, purification and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:198-204. [PMID: 29633967 PMCID: PMC5894105 DOI: 10.1107/s2053230x18003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Genome packaging is a critical step in the assembly of dsDNA bacteriophages and is carried out by a powerful molecular motor known as the large terminase. To date, wild-type structures of only two large terminase proteins are available, and more structural information is needed to understand the genome-packaging mechanism. Towards this goal, the large and small terminase proteins from bacteriophage N4, which infects the Escherichia coli K12 strain, have been cloned, expressed and purified. The purified putative large terminase protein hydrolyzes ATP, and this is enhanced in the presence of the small terminase. The large terminase protein was crystallized using the sitting-drop vapour-diffusion method and the crystal diffracted to 2.8 Å resolution using a home X-ray source. Analysis of the X-ray diffraction data showed that the crystal belonged to space group P212121, with unit-cell parameters a = 53.7, b = 93.6, c = 124.9 Å, α = β = γ = 90°. The crystal had a solvent content of 50.2% and contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prem Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
15
|
Kornfeind EM, Visalli RJ. Human herpesvirus portal proteins: Structure, function, and antiviral prospects. Rev Med Virol 2018; 28:e1972. [PMID: 29573302 DOI: 10.1002/rmv.1972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/28/2023]
Abstract
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV-1, CMV, VZV, and HHV-8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus-encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV-1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal-specific DNA encapsidation inhibitors.
Collapse
Affiliation(s)
- Ellyn M Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
16
|
Gao S, Zhang L, Rao VB. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4. Nucleic Acids Res 2016; 44:4425-39. [PMID: 26984529 PMCID: PMC4872099 DOI: 10.1093/nar/gkw184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo. On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.
Collapse
Affiliation(s)
- Song Gao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Liang Zhang
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA
| |
Collapse
|
17
|
Sankhala RS, Lokareddy RK, Cingolani G. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. J Biol Chem 2016; 291:11420-33. [PMID: 27033706 DOI: 10.1074/jbc.m116.724393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ravi K Lokareddy
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
18
|
McNulty R, Lokareddy RK, Roy A, Yang Y, Lander GC, Heck AJR, Johnson JE, Cingolani G. Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J Mol Biol 2015; 427:3285-3299. [PMID: 26301600 DOI: 10.1016/j.jmb.2015.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022]
Abstract
Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid.
Collapse
Affiliation(s)
- Reginald McNulty
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ravi Kumar Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA
| | - Yang Yang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A 2015; 112:E3792-9. [PMID: 26150523 DOI: 10.1073/pnas.1506951112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.
Collapse
|
20
|
Kondabagil K, Dai L, Vafabakhsh R, Ha T, Draper B, Rao VB. Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into ATPase structure and function. Virology 2014; 468-470:660-668. [PMID: 25443668 DOI: 10.1016/j.virol.2014.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/31/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
Abstract
The packaging motor of bacteriophage T4 translocates DNA into the capsid at a rate of up to 2000 bp/s. Such a high rate would require coordination of motor movements at millisecond timescale. Designing a cysteine-less gp17 is essential to generate fluorescently labeled motors and measure distance changes between motor domains by FRET analyses. Here, by using sequence alignments, structural modeling, combinatorial mutagenesis, and recombinational rescue, we replaced all nine cysteines of gp17 and introduced single cysteines at defined positions. These mutant motors retained in vitro DNA packaging activity. Single mutant motors translocated DNA molecules in real time as imaged by total internal reflection fluorescence microscopy. We discovered, unexpectedly, that a hydrophobic or nonpolar amino acid next to Walker B motif is essential for motor function, probably for efficient generation of OH(-) nucleophile. The ATPase Walker B motif, thus, may be redefined as "β-strand (4-6 hydrophobic-rich amino acids)-DE-hydrophobic/nonpolar amino acid".
Collapse
Affiliation(s)
- Kiran Kondabagil
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA
| | - Li Dai
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taekjip Ha
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Howard Hughes Medical Institute, Urbana, IL, USA
| | - Bonnie Draper
- Department of Biology, St. Andrews University, NC, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, USA.
| |
Collapse
|
21
|
Revisiting the genome packaging in viruses with lessons from the "Giants". Virology 2014; 466-467:15-26. [PMID: 24998349 DOI: 10.1016/j.virol.2014.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Genome encapsidation is an essential step in the life cycle of viruses. Viruses either use some of the most powerful ATP-dependent motors to compel the genetic material into the preformed capsid or make use of the positively charged proteins to bind and condense the negatively charged genome in an energy-independent manner. While the former is a hallmark of large DNA viruses, the latter is commonly seen in small DNA and RNA viruses. Discoveries of many complex giant viruses such as mimivirus, megavirus, pandoravirus, etc., belonging to the nucleo-cytoplasmic large DNA virus (NCLDV) superfamily have changed the perception of genome packaging in viruses. From what little we have understood so far, it seems that the genome packaging mechanism in NCLDVs has nothing in common with other well-characterized viral packaging systems such as the portal-terminase system or the energy-independent system. Recent findings suggest that in giant viruses, the genome segregation and packaging processes are more intricately coupled than those of other viral systems. Interestingly, giant viral packaging systems also seem to possess features that are analogous to bacterial and archaeal chromosome segregation. Although there is a lot of diversity in terms of host range, type of genome, and genome size among viruses, they all seem to use three major types of independent innovations to accomplish genome encapsidation. Here, we have made an attempt to comprehensively review all the known viral genome packaging systems, including the one that is operative in giant viruses, by proposing a simple and expanded classification system that divides the viral packaging systems into three large groups (types I-III) on the basis of the mechanism employed and the relatedness of the major packaging proteins. Known variants within each group have been further classified into subgroups to reflect their unique adaptations.
Collapse
|
22
|
Abstract
Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids. The prohead receptacles for DNA packaging can also display peptides or full-length proteins from capsid display proteins HOC and SOC. Our laboratory has also developed a protein expression, packaging, and processing (PEPP) system which we have found to have advantages over mammalian and bacterial cell systems, including high yield, increased stability, and simplified downstream processing. Proteins that we have produced by the phage PEPP platform include human HIV-1 protease, micrococcal endonuclease from Staphylococcus aureus, restriction endonuclease EcoRI, luciferase, human granulocyte colony stimulating factor (GCSF), green fluorescent protein (GFP), and the 99 amino acid C-terminus of amyloid precursor protein (APP). Difficult to produce proteins that are toxic in mammalian protein expression systems are easily produced, packaged, and processed with the PEPP platform. APP is one example of such a highly refractory protein that has been produced successfully. The methods below describe the procedures for in vitro packaging of proheads with DNA and for producing recombinant T4 phage that carry a gene of interest in the phage genome and produce and internally package the corresponding protein of interest.
Collapse
|
23
|
Dixit AB, Ray K, Thomas JA, Black LW. The C-terminal domain of the bacteriophage T4 terminase docks on the prohead portal clip region during DNA packaging. Virology 2013; 446:293-302. [PMID: 24074593 DOI: 10.1016/j.virol.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022]
Abstract
Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal-terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279-316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase-portal orientation fits better to a proposed "DNA crunching" compression packaging motor and to portal determined DNA headful cutting.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108N. Greene St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
24
|
Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation. Proc Natl Acad Sci U S A 2012. [PMID: 23185020 DOI: 10.1073/pnas.1214318109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.
Collapse
|
25
|
Shen X, Li M, Zeng Y, Hu X, Tan Y, Rao X, Jin X, Li S, Zhu J, Zhang K, Hu F. Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Arch Virol 2012; 157:2133-41. [PMID: 23011306 PMCID: PMC3488191 DOI: 10.1007/s00705-012-1409-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Terminase proteins are responsible for DNA recognition and initiation of DNA packaging in phages. We previously reported the genomic sequence of a temperate Pseudomonas aeruginosa phage, PaP3, and determined its precise integration site in the host bacterial chromosome. In this study, we present a detailed functional identification of the DNA packaging terminase for phage PaP3. The purified large subunit p03 was demonstrated to possess ATPase and nuclease activities, as well as the ability to bind to specific DNA when it is unassembled. In addition, a small terminase subunit (p01) of a new type was found and shown to bind specifically to cos-containing DNA and stimulate the cos-cleavage and ATPase activities of p03. The results presented here suggest that PaP3 utilizes a typical cos site mechanism for DNA packaging and provide a first step towards understanding the molecular mechanism of the PaP3 DNA packaging reaction.
Collapse
Affiliation(s)
- Xiaodong Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Roy A, Bhardwaj A, Datta P, Lander GC, Cingolani G. Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 2012; 20:1403-13. [PMID: 22771211 DOI: 10.1016/j.str.2012.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 04/30/2012] [Accepted: 05/19/2012] [Indexed: 11/26/2022]
Abstract
Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.
Collapse
Affiliation(s)
- Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
27
|
Portal-large terminase interactions of the bacteriophage T4 DNA packaging machine implicate a molecular lever mechanism for coupling ATPase to DNA translocation. J Virol 2012; 86:4046-57. [PMID: 22345478 DOI: 10.1128/jvi.07197-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a complex series of reactions to produce a DNA-filled head containing one viral genome per head. Here, we analyzed the interactions between the portal and motor proteins using a direct binding assay, mutagenesis, and structural analyses. Our results show that a portal binding site is located in the ATP hydrolysis-controlling subdomain II of gp17. Mutations at key residues of this site lead to temperature-sensitive or null phenotypes. A conserved helix-turn-helix (HLH) that is part of this site interacts with the portal. A recombinant HLH peptide competes with gp17 for portal binding and blocks DNA translocation. The helices apparently provide specificity to capture the cognate prohead, whereas the loop residues communicate the portal interaction to the ATPase center. These observations lead to a hypothesis in which a unique HLH-portal interaction in the symmetrically mismatched complex acts as a lever to position the arginine finger and trigger ATP hydrolysis. Transiently connecting the critical parts of the motor; subdomain I (ATP binding), subdomain II (controlling ATP hydrolysis), and C-domain (DNA movement), the portal-motor interactions might ensure tight coupling between ATP hydrolysis and DNA translocation.
Collapse
|
28
|
The genome and proteome of a Campylobacter coli bacteriophage vB_CcoM-IBB_35 reveal unusual features. Virol J 2012; 9:35. [PMID: 22284308 PMCID: PMC3322345 DOI: 10.1186/1743-422x-9-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 01/27/2012] [Indexed: 12/22/2022] Open
Abstract
Background Campylobacter is the leading cause of foodborne diseases worldwide. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and thus considered an appealing option to control bacterial pathogens. Nevertheless for an effective use of phages as antimicrobial agents, it is important to understand phage biology which renders crucial the analysis of phage genomes and proteomes. The lack of sequence data from Campylobacter phages adds further importance to these studies. Methods vB_CcoM-IBB_35 is a broad lytic spectrum Myoviridae Campylobacter phage with high potential for therapeutic use. The genome of this phage was obtained by pyrosequencing and the sequence data was further analyzed. The proteomic analysis was performed by SDS-PAGE and Mass spectrometry. Results and conclusions The DNA sequence data of vB_CcoM-IBB_35 consists of five contigs for a total of 172,065 bp with an average GC content of 27%. Attempts to close the gaps between contigs were unsuccessful since the DNA preparations appear to contain substances that inhibited Taq and ϕ29 polymerases. From the 210 identified ORFs, around 60% represent proteins that were not functionally assigned. Homology exists with members of the Teequatrovirinae namely for T4 proteins involved in morphogenesis, nucleotide metabolism, transcription, DNA replication and recombination. Tandem mass spectrometric analysis revealed 38 structural proteins as part of the mature phage particle. Conclusions Genes encoding proteins involved in the carbohydrate metabolism along with several incidences of gene duplications, split genes with inteins and introns have been rarely found in other phage genomes yet are found in this phage. We identified the genes encoding for tail fibres and for the lytic cassette, this later, expressing enzymes for bacterial capsular polysaccharides (CPS) degradation, which has not been reported before for Campylobacter phages.
Collapse
|
29
|
Abstract
The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer-fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states.
Collapse
Affiliation(s)
- Lindsay W Black
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Chemla YR, Smith DE. Single-molecule studies of viral DNA packaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:549-84. [PMID: 22297530 DOI: 10.1007/978-1-4614-0980-9_24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches - and in particular, optical tweezers - have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.
Collapse
Affiliation(s)
- Yann R Chemla
- Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA.
| | | |
Collapse
|
31
|
Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc Natl Acad Sci U S A 2011; 109:817-22. [PMID: 22207623 DOI: 10.1073/pnas.1110224109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a "small terminase" and a "large terminase" component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.
Collapse
|
32
|
Dixit A, Ray K, Lakowicz JR, Black LW. Dynamics of the T4 bacteriophage DNA packasome motor: endonuclease VII resolvase release of arrested Y-DNA substrates. J Biol Chem 2011; 286:18878-89. [PMID: 21454482 DOI: 10.1074/jbc.m111.222828] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging. Here using dye-labeled packaging anchored 3.7-kb Y-DNAs or linear DNAs, we demonstrate FRET between the dye-labeled substrates and GFP portal-containing procapsids and between GFP portal and single dye-labeled terminases. We show using FRET-fluorescence correlation spectroscopy that purified T4 gp49 endonuclease VII resolvase can release DNA compression in vitro in prohead portal packaging motor anchored and arrested Y-DNA substrates. In addition, using active terminases labeled at the N- and C-terminal ends with a single dye molecule, we show by FRET distance of the N-terminal GFP-labeled portal protein containing prohead at 6.9 nm from the N terminus and at 5.7 nm from the C terminus of the terminase. Packaging with a C-terminal fluorescent terminase on a GFP portal prohead, FRET shows a reduction in distance to the GFP portal of 0.6 nm in the arrested Y-DNA as compared with linear DNA; the reduction is reversed by resolvase treatment. Conformational changes in both the motor proteins and the DNA substrate itself that are associated with the power stroke of the motor are consistent with a proposed linear motor employing a terminal-to-portal DNA grip-and-release mechanism.
Collapse
Affiliation(s)
- Aparna Dixit
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1503, USA
| | | | | | | |
Collapse
|
33
|
Zhang Z, Kottadiel VI, Vafabakhsh R, Dai L, Chemla YR, Ha T, Rao VB. A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biol 2011; 9:e1000592. [PMID: 21358801 PMCID: PMC3039672 DOI: 10.1371/journal.pbio.1000592] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 12/30/2010] [Indexed: 11/25/2022] Open
Abstract
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.
Collapse
Affiliation(s)
- Zhihong Zhang
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Vishal I. Kottadiel
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Li Dai
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Yann R. Chemla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Taekjip Ha
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institute, Urbana, Illinois, United States of America
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| |
Collapse
|
34
|
Rao VB, Black LW. Structure and assembly of bacteriophage T4 head. Virol J 2010; 7:356. [PMID: 21129201 PMCID: PMC3012670 DOI: 10.1186/1743-422x-7-356] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/03/2010] [Indexed: 12/20/2022] Open
Abstract
The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at a rate of up to 2000 bp/sec, the fastest reported to date of any packaging motor. FRET-FCS studies indicate that the DNA gets compressed during the translocation process. The current evidence suggests a mechanism in which electrostatic forces generated by ATP hydrolysis drive the DNA translocation by alternating the motor between tensed and relaxed states.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA.
| | | |
Collapse
|
35
|
Gao S, Rao VB. Specificity of interactions among the DNA-packaging machine components of T4-related bacteriophages. J Biol Chem 2010; 286:3944-56. [PMID: 21127059 DOI: 10.1074/jbc.m110.196907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ∼2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.
Collapse
Affiliation(s)
- Song Gao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
36
|
Ghosh-Kumar M, Alam TI, Draper B, Stack JD, Rao VB. Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4. Nucleic Acids Res 2010; 39:2742-55. [PMID: 21109524 PMCID: PMC3074133 DOI: 10.1093/nar/gkq1191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In genome packaging by tailed bacteriophages and herpesviruses, a concatemeric DNA is cut and inserted into an empty procapsid. A series of cuts follow the encapsidation of each unit-length 'headful' genome, but the mechanisms by which cutting is coupled to packaging are not understood. Here we report the first biochemical characterization of a headful nuclease from bacteriophage T4. Our results show that the T4 nuclease, which resides in the C-terminal domain of large 'terminase' gp17, is a weak endonuclease and regulated by a variety of factors; Mg, NaCl, ATP, small terminase gp16 and N-terminal ATPase domain. The small terminase, which stimulates gp17-ATPase, also stimulates nuclease in the presence of ATP but inhibits in the absence of ATP suggesting interdomain crosstalk. Comparison of the 'relaxed' and 'tensed' states of the motor show that a number of basic residues lining the nuclease groove are positioned to interact with DNA in the tensed state but change their positions in the relaxed state. These results suggest that conformational changes in the ATPase center remodel the nuclease center via an interdomain 'communication track'. This might be a common regulatory mechanism for coupling DNA cutting to DNA packaging among the headful packaging nucleases from dsDNA viruses.
Collapse
Affiliation(s)
- Manjira Ghosh-Kumar
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | |
Collapse
|
37
|
Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine. Proc Natl Acad Sci U S A 2010; 107:1971-6. [PMID: 20133842 DOI: 10.1073/pnas.0908569107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In herpesviruses and many bacterial viruses, genome-packaging is a precisely mediated process fulfilled by a virally encoded molecular machine called terminase that consists of two protein components: A DNA-recognition component that defines the specificity for packaged DNA, and a catalytic component that provides energy for the packaging reaction by hydrolyzing ATP. The terminase docks onto the portal protein complex embedded in a single vertex of a preformed viral protein shell called procapsid, and pumps the viral DNA into the procapsid through a conduit formed by the portal. Here we report the 1.65 A resolution structure of the DNA-recognition component gp1 of the Shigella bacteriophage Sf6 genome-packaging machine. The structure reveals a ring-like octamer formed by interweaved protein monomers with a highly extended fold, embracing a tunnel through which DNA may be translocated. The N-terminal DNA-binding domains form the peripheral appendages surrounding the octamer. The central domain contributes to oligomerization through interactions of bundled helices. The C-terminal domain forms a barrel with parallel beta-strands. The structure reveals a common scheme for oligomerization of terminase DNA-recognition components, and provides insights into the role of gp1 in formation of the packaging-competent terminase complex and assembly of the terminase with the portal, in which ring-like protein oligomers stack together to form a continuous channel for viral DNA translocation.
Collapse
|
38
|
Ray K, Sabanayagam CR, Lakowicz JR, Black LW. DNA crunching by a viral packaging motor: Compression of a procapsid-portal stalled Y-DNA substrate. Virology 2010; 398:224-32. [PMID: 20060554 DOI: 10.1016/j.virol.2009.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/04/2009] [Accepted: 11/25/2009] [Indexed: 11/28/2022]
Abstract
Many large double-stranded DNA viruses employ high force-generating ATP-driven molecular motors to package to high density their genomes into empty procapsids. Bacteriophage T4 DNA translocation is driven by a two-component motor consisting of the procapsid portal docked with a packaging terminase-ATPase. Fluorescence resonance energy transfer and fluorescence correlation spectroscopic (FRET-FCS) studies of a branched (Y-junction) DNA substrate with a procapsid-anchoring leader segment and a single dye molecule situated at the junction point reveal that the "Y-DNA" stalls in proximity to the procapsid portal fused to GFP. Comparable structure Y-DNA substrates containing energy transfer dye pairs in the Y-stem separated by 10 or 14 base pairs reveal that B-form DNA is locally compressed 22-24% by the linear force of the packaging motor. Torsional compression of duplex DNA is thus implicated in the mechanism of DNA translocation.
Collapse
Affiliation(s)
- Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
39
|
Al-Zahrani AS, Kondabagil K, Gao S, Kelly N, Ghosh-Kumar M, Rao VB. The small terminase, gp16, of bacteriophage T4 is a regulator of the DNA packaging motor. J Biol Chem 2009; 284:24490-500. [PMID: 19561086 DOI: 10.1074/jbc.m109.025007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful molecular motors to translocate DNA into a preassembled prohead and compact the DNA to near crystalline density. The phage T4 motor, a pentamer of 70-kDa large terminase, gp17, is the fastest and most powerful motor reported to date. gp17 has an ATPase activity that powers DNA translocation and a nuclease activity that cuts concatemeric DNA and generates the termini of viral genome. An 18-kDa small terminase, gp16, is also essential, but its role in DNA packaging is poorly understood. gp16 forms oligomers, most likely octamers, exhibits no enzymatic activities, but stimulates the gp17-ATPase activity, and inhibits the nuclease activity. Extensive mutational and biochemical analyses show that gp16 contains three domains, a central oligomerization domain, and N- and C-terminal domains that are essential for ATPase stimulation. Stimulation occurs not by nucleotide exchange or enhanced ATP binding but by triggering hydrolysis of gp17-bound ATP, a mechanism reminiscent of GTPase-activating proteins. gp16 does not have an arginine finger but its interaction with gp17 seems to position a gp17 arginine finger into the catalytic pocket. gp16 inhibits DNA translocation when gp17 is associated with the prohead. gp16 restricts gp17-nuclease such that the putative packaging initiation cut is made but random cutting is inhibited. These results suggest that the phage T4 packaging machine consists of a motor (gp17) and a regulator (gp16). The gp16 regulator is essential to coordinate the gp17 motor ATPase, translocase, and nuclease activities, otherwise it could be suicidal to the virus.
Collapse
|
40
|
Abstract
An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA.
| | | |
Collapse
|
41
|
Yu TY, Schaefer J. REDOR NMR characterization of DNA packaging in bacteriophage T4. J Mol Biol 2008; 382:1031-42. [PMID: 18703073 PMCID: PMC2633174 DOI: 10.1016/j.jmb.2008.07.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/20/2008] [Accepted: 07/26/2008] [Indexed: 11/25/2022]
Abstract
Bacteriophage T4 is a large-tailed Escherichia coli virus whose capsid is 120x86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 min during viral infection. We have isolated 50-mg quantities of uniform (15)N- and [epsilon-(15)N]lysine-labeled bacteriophage T4. We have also introduced (15)NH(4)(+) into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using (15)N{(31)P} and (31)P{(15)N} rotational-echo double resonance. The results of these experiments have shown that (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of -NH(2) groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging.
Collapse
Affiliation(s)
- Tsyr-Yan Yu
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
42
|
Strand and nucleotide-dependent ATPase activity of gp16 of bacterial virus phi29 DNA packaging motor. Virology 2008; 380:69-74. [PMID: 18701124 DOI: 10.1016/j.virol.2008.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/06/2008] [Accepted: 07/06/2008] [Indexed: 11/20/2022]
Abstract
Similar to the assembly of other dsDNA viruses, bacterial virus phi29 uses a motor to translocate its DNA into a procapsid, with the aid of protein gp16 that binds to pRNA 5'/3' helical region. To investigate the mechanism of the motor action, the kinetics of the ATPase activity of gp16 was evaluated as a function of DNA structure (ss- or ds-stranded) or chemistry (purine or pyrimidine). The k(cat) and K(m) in the absence of DNA was 0.016 s(-1) and 351.0 microM, respectively, suggesting that gp16 itself is a slow-ATPase with a low affinity for substrate. The affinity of gp16 for ATP was greatly boosted by the presence of DNA or pRNA, but the ATPase rate was strongly affected by DNA structure and chemistry. The order of ATPase stimulation is poly d(pyrimidine)>dsDNA>poly d(purine), which agreed with the order of the DNA binding to gp16, as revealed by single molecule fluorescence microscopy. Interestingly, the stimulation degree by phi29 pRNA was similar to that of poly d(pyrimidine). The results suggest that pRNA accelerates gp16 ATPase activity more significantly than genomic dsDNA, albeit both pRNA and genomic DNA are involved in the contact with gp16 during DNA packaging.
Collapse
|
43
|
Alam TI, Draper B, Kondabagil K, Rentas FJ, Ghosh-Kumar M, Sun S, Rossmann MG, Rao VB. The headful packaging nuclease of bacteriophage T4. Mol Microbiol 2008; 69:1180-90. [PMID: 18627466 DOI: 10.1111/j.1365-2958.2008.06344.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most tailed bacteriophages and herpes viruses replicate genome as a concatemer which is cut by a 'headful' nuclease upon completion of genome packaging. Here, the catalytic centre of phage T4 headful nuclease, present in the C-terminal domain of 'large terminase' gp17, has been defined by mutational, biochemical and structural analyses. The crystal structure shows that this nuclease has an RNase-H fold, suggesting that it cuts DNA by a two-metal ion mechanism. The active centre has a Mg ion co-ordinated by three acidic residues, D401, E458 and D542. Mutations at any of these residues resulted in loss of nuclease activity, but the mutants can package linear DNA. The gp17's nuclease activity is modulated by the 'small terminase', gp16, by the N-terminal ATPase domain of gp17, and by the assembled packaging motor. These results lead to hypotheses concerning how phage headful nucleases cut the viral genomes before and after, but not during, DNA packaging.
Collapse
Affiliation(s)
- Tanfis I Alam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oram M, Sabanayagam C, Black LW. Modulation of the packaging reaction of bacteriophage t4 terminase by DNA structure. J Mol Biol 2008; 381:61-72. [PMID: 18586272 DOI: 10.1016/j.jmb.2008.05.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
Bacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged. Dye and short, single-stranded end extensions were tolerated, whereas 20-base extensions, hairpin ends, 20-bp DNA-RNA hybrid, and 4-kb dsRNA substrates were not packaged. Molecules 60 bp long with 10 mismatched bases were translocated; substrates with 20 mismatched bases, a related D-loop structure, or ones with 20-base single-strand regions were not. A single nick in 100- or 200-bp duplexes, irrespective of location, reduced translocation efficiency, but a singly nicked 500-bp molecule was packaged as effectively as an unnicked control. A fluorescence-correlation-spectroscopy-based assay further showed that a 100-bp nicked substrate did not remain stably bound by the terminase-prohead. Taken together, two unbroken DNA strands seem important for packaging, consistent with a proposed torsional compression translocation mechanism.
Collapse
Affiliation(s)
- Mark Oram
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
45
|
Alam TI, Rao VB. The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: implications to the DNA packaging mechanism. J Mol Biol 2007; 376:1272-81. [PMID: 18234214 DOI: 10.1016/j.jmb.2007.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 11/26/2022]
Abstract
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg(2+) and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.
Collapse
Affiliation(s)
- Tanfis I Alam
- Department of Biology, The Catholic University of America, 103 McCort Ward Hall, 620 Michigan Avenue, N.E., Washington, DC 20064, USA
| | | |
Collapse
|
46
|
Nemecek D, Gilcrease EB, Kang S, Prevelige PE, Casjens S, Thomas GJ. Subunit conformations and assembly states of a DNA-translocating motor: the terminase of bacteriophage P22. J Mol Biol 2007; 374:817-36. [PMID: 17945256 PMCID: PMC2204089 DOI: 10.1016/j.jmb.2007.08.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an alpha/beta fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly alpha-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112-->Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.
Collapse
Affiliation(s)
- Daniel Nemecek
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci U S A 2007; 104:16868-73. [PMID: 17942694 DOI: 10.1073/pnas.0704008104] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terminase enzyme complexes, which facilitate ATP-driven DNA packaging in phages and in many eukaryotic viruses, constitute a wide and potentially diverse family of molecular motors about which little dynamic or mechanistic information is available. Here we report optical tweezers measurements of single DNA molecule packaging dynamics in phage T4, a large, tailed Escherichia coli virus that is an important model system in molecular biology. We show that a complex is formed between the empty prohead and the large terminase protein (gp17) that can capture and begin packaging a target DNA molecule within a few seconds, thus demonstrating a distinct viral assembly pathway. The motor generates forces >60 pN, similar to those measured with phage phi29, suggesting that high force generation is a common property of viral DNA packaging motors. However, the DNA translocation rate for T4 was strikingly higher than that for phi29, averaging approximately 700 bp/s and ranging up to approximately 2,000 bp/s, consistent with packaging by phage T4 of an enormous, 171-kb genome in <10 min during viral infection and implying high ATP turnover rates of >300 s(-1). The motor velocity decreased with applied load but averaged 320 bp/s at 45 pN, indicating very high power generation. Interestingly, the motor also exhibited large dynamic changes in velocity, suggesting that it can assume multiple active conformational states gearing different translocation rates. This capability, in addition to the reversible pausing and slipping capabilities that were observed, may allow phage T4 to coordinate DNA packaging with other ongoing processes, including viral DNA transcription, recombination, and repair.
Collapse
|
48
|
Draper B, Rao VB. An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. J Mol Biol 2007; 369:79-94. [PMID: 17428497 DOI: 10.1016/j.jmb.2007.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/04/2007] [Accepted: 03/05/2007] [Indexed: 12/01/2022]
Abstract
Tailed bacteriophages and large eukaryotic viruses employ powerful molecular motors to translocate dsDNA into a preassembled capsid shell. The phage T4 motor is composed of a dodecameric portal and small and large terminase subunits assembled at the special head-tail connector vertex of the prohead. The motor pumps DNA through the portal channel, utilizing ATP hydrolysis energy provided by an ATPase present in the large terminase subunit. We report that the ATPase motors of terminases, helicases, translocating restriction enzymes, and protein translocases possess a common coupling motif (C-motif). Mutations in the phage T4 terminase C-motif lead to loss of stimulated ATPase and DNA translocation activities. Surprisingly, the mutants can catalyze at least one ATP hydrolysis event but are unable to turn over and reset the motor. This is the first report of a catalytic block in translocating ATPase motor after ATP hydrolysis occurred. We suggest that the C-motif is an ATP hydrolysis sensor, linking product release to mechanical motion. A novel terminase-driven mechanism is proposed for translocation of dsDNA in viruses.
Collapse
Affiliation(s)
- Bonnie Draper
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
49
|
Baumann RG, Mullaney J, Black LW. Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol Microbiol 2006; 61:16-32. [PMID: 16824092 DOI: 10.1111/j.1365-2958.2006.05203.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.
Collapse
Affiliation(s)
- Richard G Baumann
- USNA, Department of Chemistry, Mailstop 9B, 572 Holloway Road, Annapolis, MD 21402-5070, USA
| | | | | |
Collapse
|
50
|
Kondabagil KR, Zhang Z, Rao VB. The DNA translocating ATPase of bacteriophage T4 packaging motor. J Mol Biol 2006; 363:786-99. [PMID: 16987527 DOI: 10.1016/j.jmb.2006.08.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/20/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.
Collapse
Affiliation(s)
- Kiran R Kondabagil
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | |
Collapse
|