1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
Meng Z, Yang Y, Li S, Huang L, Yao Z, Chen Y, Wang J, Shen Y, Liang P, Zhang H, Wang W, Wang F. GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression. Cell Biol Int 2024; 48:1490-1506. [PMID: 38886911 DOI: 10.1002/cbin.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.
Collapse
Affiliation(s)
- Ziyu Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yingqian Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Shupei Li
- College of Life Science, Anhui Medical University, Hefei, China
| | - Liguo Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Zhoujuan Yao
- College of Life Science, Anhui Medical University, Hefei, China
| | - Yixuan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Junkun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yiru Shen
- College of Life Science, Anhui Medical University, Hefei, China
| | - Pingping Liang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Hui Zhang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Fengsong Wang
- College of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.592075. [PMID: 38853901 PMCID: PMC11160595 DOI: 10.1101/2024.05.23.592075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule compounds. The molecular study of the extent of this heterogeneity often measures changes in a single cell line or using a small number of compounds. To more comprehensively profile the effects of small-molecule perturbations and their influence on these heterogeneous cellular responses, we present a molecular resource based on the quantification of chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitors (HDACi) in non-isogenic cell lines. Through quantitative molecular profiling of 10,621 proteins, these data reveal coordinated molecular remodeling of HDACi treated cancer cells. HDACi-regulated proteins differ greatly across cell lines with consistent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) cell-state effectors. Together these data provide valuable insight into cell-type driven and heterogeneous responses that must be taken into consideration when monitoring molecular perturbations in culture models.
Collapse
Affiliation(s)
- Chuwei Lin
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M. Giglio
- Biomedical Engineer, Columbia University, New York, NY 10027, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Devin K. Schweppe
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
5
|
Matsushima W, Planet E, Trono D. Ancestral genome reconstruction enhances transposable element annotation by identifying degenerate integrants. CELL GENOMICS 2024; 4:100497. [PMID: 38295789 PMCID: PMC10879028 DOI: 10.1016/j.xgen.2024.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.
Collapse
Affiliation(s)
- Wayo Matsushima
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Gao F, Han J, Jia L, He J, Wang Y, Chen M. Circ_0001982 aggravates breast cancer development through the circ_0001982-miR-144-3p-GSE1 axis. J Biochem Mol Toxicol 2024; 38:e23565. [PMID: 37867456 DOI: 10.1002/jbt.23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/29/2022] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
This study was designed to explore the role of circ_0001982 in breast cancer (BC) development. Quantitative real-time polymerase chain reaction and western blot analysis assays were used to determine circ_0001982, miR-144-3p, and gse1 coiled-coil protein (GSE1) expression. Functional assays were performed to evaluate cell proliferation, apoptosis, migration, and invasion. The glycolysis was analyzed with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assays were conducted to analyze the relationships among circ_0001982, miR-144-3p, and GSE1. A murine xenograft model assay was performed to determine circ_0001982-induced effects on BC cell tumor properties in vivo. Circ_0001982 expression was upregulated, but miR-144-3p was reduced in BC tissues and cells in comparison with normal breast tissues and normal human mammary epithelial cells. Circ_0001982 knockdown or miR-144-3p overexpression inhibited BC cell proliferation, glycolysis, migration and invasion, and promoted apoptosis. Circ_0001982 sponged miR-144-3p and negatively regulated miR-144-3p expression in BC cells. In addition, GSE1 was identified as a target mRNA of miR-144-3p. Ectopic GSE1 expression relieved circ_0001982 depletion-induced effects on BC cell tumor properties. Furthermore, circ_0001982 absence suppressed BC cell tumor properties in vivo. Circ_0001982 contributed to the BC cell tumor properties by regulating the miR-144-3p-GSE1 axis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Yun Wang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Mi Chen
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| |
Collapse
|
7
|
Sulzbach Denardin M, Bumiller-Bini Hoch V, Salviano-Silva A, Lobo-Alves SC, Adelman Cipolla G, Malheiros D, Augusto DG, Wittig M, Franke A, Pföhler C, Worm M, van Beek N, Goebeler M, Sárdy M, Ibrahim S, Busch H, Schmidt E, Hundt JE, Petzl-Erler ML, Beate Winter Boldt A. Genetic Association and Differential RNA Expression of Histone (De)Acetylation-Related Genes in Pemphigus Foliaceus-A Possible Epigenetic Effect in the Autoimmune Response. Life (Basel) 2023; 14:60. [PMID: 38255677 PMCID: PMC10821360 DOI: 10.3390/life14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune skin blistering disease characterized by antidesmoglein-1 IgG production, with an endemic form (EPF) in Brazil. Genetic and epigenetic factors have been associated with EPF, but its etiology is still not fully understood. To evaluate the genetic association of histone (de)acetylation-related genes with EPF susceptibility, we evaluated 785 polymorphisms from 144 genes, for 227 EPF patients and 194 controls. Carriers of HDAC4_rs4852054*A were more susceptible (OR = 1.79, p = 0.0038), whereas those with GSE1_rs13339618*A (OR = 0.57, p = 0.0011) and homozygotes for PHF21A_rs4756055*A (OR = 0.39, p = 0.0006) were less susceptible to EPF. These variants were not associated with sporadic PF (SPF) in German samples of 75 SPF patients and 150 controls, possibly reflecting differences in SPF and EPF pathophysiology. We further evaluated the expression of histone (de)acetylation-related genes in CD4+ T lymphocytes, using RNAseq. In these cells, we found a higher expression of KAT2B, PHF20, and ZEB2 and lower expression of KAT14 and JAD1 in patients with active EPF without treatment compared to controls from endemic regions. The encoded proteins cause epigenetic modifications related to immune cell differentiation and cell death, possibly affecting the immune response in patients with PF.
Collapse
Affiliation(s)
- Maiara Sulzbach Denardin
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
| | - Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Amanda Salviano-Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sara Cristina Lobo-Alves
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Research Institut Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Gabriel Adelman Cipolla
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
| | - Danielle Malheiros
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Danillo G. Augusto
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Michael Wittig
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (M.W.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (M.W.); (A.F.)
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nina van Beek
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany; (N.v.B.); (E.S.)
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Saleh Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany; (H.B.); (J.E.H.)
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany; (H.B.); (J.E.H.)
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany; (N.v.B.); (E.S.)
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany; (H.B.); (J.E.H.)
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany; (H.B.); (J.E.H.)
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (M.S.D.); (V.B.-B.H.); (S.C.L.-A.); (G.A.C.); (D.M.); (D.G.A.); (M.L.P.-E.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| |
Collapse
|
8
|
Vcelkova T, Reiter W, Zylka M, Hollenstein D, Schuckert S, Hartl M, Seiser C. GSE1 links the HDAC1/CoREST co-repressor complex to DNA damage. Nucleic Acids Res 2023; 51:11748-11769. [PMID: 37878419 PMCID: PMC10681733 DOI: 10.1093/nar/gkad911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.
Collapse
Affiliation(s)
- Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martha Zylka
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - David M Hollenstein
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schuckert
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Owen DJ, Aguilar-Martinez E, Ji Z, Li Y, Sharrocks AD. ZMYM2 controls human transposable element transcription through distinct co-regulatory complexes. eLife 2023; 12:RP86669. [PMID: 37934570 PMCID: PMC10629813 DOI: 10.7554/elife.86669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
ZMYM2 is a zinc finger transcriptional regulator that plays a key role in promoting and maintaining cell identity. It has been implicated in several diseases such as congenital anomalies of the kidney where its activity is diminished and cancer where it participates in oncogenic fusion protein events. ZMYM2 is thought to function through promoting transcriptional repression and here we provide more evidence to support this designation. Here we studied ZMYM2 function in human cells and demonstrate that ZMYM2 is part of distinct chromatin-bound complexes including the established LSD1-CoREST-HDAC1 corepressor complex. We also identify new functional and physical interactions with ADNP and TRIM28/KAP1. The ZMYM2-TRIM28 complex forms in a SUMO-dependent manner and is associated with repressive chromatin. ZMYM2 and TRIM28 show strong functional similarity and co-regulate a large number of genes. However, there are no strong links between ZMYM2-TRIM28 binding events and nearby individual gene regulation. Instead, ZMYM2-TRIM28 appears to regulate genes in a more regionally defined manner within TADs where it can directly regulate co-associated retrotransposon expression. We find that different types of ZMYM2 binding complex associate with and regulate distinct subclasses of retrotransposons, with ZMYM2-ADNP complexes at SINEs and ZMYM2-TRIM28 complexes at LTR elements. We propose a model whereby ZMYM2 acts directly through retrotransposon regulation, which may then potentially affect the local chromatin environment and associated coding gene expression.
Collapse
Affiliation(s)
- Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Zongling Ji
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| |
Collapse
|
10
|
Strong E, Mervis CB, Tam E, Morris CA, Klein-Tasman BP, Velleman SL, Osborne LR. DNA methylation profiles in individuals with rare, atypical 7q11.23 CNVs correlate with GTF2I and GTF2IRD1 copy number. NPJ Genom Med 2023; 8:25. [PMID: 37709781 PMCID: PMC10502022 DOI: 10.1038/s41525-023-00368-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level.
Collapse
Affiliation(s)
- Emma Strong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colleen A Morris
- Department of Pediatrics, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Shelley L Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT, USA
| | - Lucy R Osborne
- Departments of Medicine and Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, Zhuang QKW, Kwon SY, Yamanaka Y, Bourque G, Bouchard M, Pastor WA. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Res 2023; 51:7314-7329. [PMID: 37395395 PMCID: PMC10415128 DOI: 10.1093/nar/gkad540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.
Collapse
Affiliation(s)
- Adda-Lee Graham-Paquin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Megan S Katz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
- Canadian Center for Computational Genomics,McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Hiver S, Shimizu-Mizuno N, Ikawa Y, Kajikawa E, Sai X, Nishimura H, Takaoka K, Nishimura O, Kuraku S, Tanaka S, Hamada H. Gse1, a component of the CoREST complex, is required for placenta development in the mouse. Dev Biol 2023; 498:97-105. [PMID: 37019373 DOI: 10.1016/j.ydbio.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
Gse1 is a component of the CoREST complex that acts as an H3K4 and H3K9 demethylase and regulates gene expression. Here, we examined the expression and role of Gse1 in mouse development. Gse1 is expressed in male and female germ cells and plays both maternal and zygotic roles. Thus, maternal deletion of Gse1 results in a high incidence of prenatal death, and zygotic deletion leads to embryonic lethality from embryonic day 12.5 (E12.5) and perinatal death. Gse1 is expressed in the junctional zone and the labyrinth of the developing placenta. Cultured trophoblast stem cells lacking Gse1 showed impaired in vitro cell differentiation into spongiotrophoblasts. Gse1 mutant (Gse1Δex3/Δex3) placenta begins to exhibit histological defects from E14.5, being deficient in MCT4+ syncytiotrophoblast II. The number of various cell types was largely maintained in the mutant placenta at E10.5, but several genes were upregulated in giant trophoblasts at E10.5. Placenta-specific deletion of Gse1 with Tat-Cre suggested that defects in Gse1Δex3/Δex3 embryos are due to placental function deficiency. These results suggest that Gse1 is required for placental development in mice, and in turn, is essential for embryonic development.
Collapse
Affiliation(s)
- Sylvain Hiver
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Natsumi Shimizu-Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Katsuyoshi Takaoka
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Tanaka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
13
|
Carpenter BS, Scott A, Goldin R, Chavez SR, Rodriguez JD, Myrick DA, Curlee M, Schmeichel KL, Katz DJ. SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1. Genetics 2023; 223:6992629. [PMID: 36655746 PMCID: PMC9991509 DOI: 10.1093/genetics/iyad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.
Collapse
Affiliation(s)
- Brandon S Carpenter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Alyssa Scott
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert Goldin
- Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Sindy R Chavez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan D Rodriguez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dexter A Myrick
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marcus Curlee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karen L Schmeichel
- Natural Sciences Division, Oglethorpe University, Atlanta, GA 30319, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
15
|
Hiatt SM, Trajkova S, Sebastiano MR, Partridge EC, Abidi FE, Anderson A, Ansar M, Antonarakis SE, Azadi A, Bachmann-Gagescu R, Bartuli A, Benech C, Berkowitz JL, Betti MJ, Brusco A, Cannon A, Caron G, Chen Y, Cochran ME, Coleman TF, Crenshaw MM, Cuisset L, Curry CJ, Darvish H, Demirdas S, Descartes M, Douglas J, Dyment DA, Elloumi HZ, Ermondi G, Faoucher M, Farrow EG, Felker SA, Fisher H, Hurst ACE, Joset P, Kelly MA, Kmoch S, Leadem BR, Lyons MJ, Macchiaiolo M, Magner M, Mandrile G, Mattioli F, McEown M, Meadows SK, Medne L, Meeks NJL, Montgomery S, Napier MP, Natowicz M, Newberry KM, Niceta M, Noskova L, Nowak CB, Noyes AG, Osmond M, Prijoles EJ, Pugh J, Pullano V, Quélin C, Rahimi-Aliabadi S, Rauch A, Redon S, Reymond A, Schwager CR, Sellars EA, Scheuerle AE, Shukarova-Angelovska E, Skraban C, Stolerman E, Sullivan BR, Tartaglia M, Thiffault I, Uguen K, Umaña LA, van Bever Y, van der Crabben SN, van Slegtenhorst MA, Waisfisz Q, Washington C, Rodan LH, Myers RM, Cooper GM. Deleterious, protein-altering variants in the transcriptional coregulator ZMYM3 in 27 individuals with a neurodevelopmental delay phenotype. Am J Hum Genet 2023; 110:215-227. [PMID: 36586412 PMCID: PMC9943726 DOI: 10.1016/j.ajhg.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
Collapse
Affiliation(s)
- Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Department, Università degli Studi di Torino, via Quarello 15, 10135 Torino, Italy
| | | | | | - Ashlyn Anderson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Azadeh Azadi
- Obestetrics and Gynecology Department, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Andrea Bartuli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | | | - Michael J Betti
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Department, Università degli Studi di Torino, via Quarello 15, 10135 Torino, Italy
| | | | - Meagan E Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tanner F Coleman
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Molly M Crenshaw
- Pediatrics and Medical Genetics, University of Colorado, Aurora CO, USA
| | - Laurence Cuisset
- Service de Médecine Génomique des Maladies de Système et d'Organe, Département Médico-Universitaire BioPhyGen, Hôpital Cochin, APHP, Université Paris Cité, Paris, France
| | | | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Nikagene Genetic Diagnostic Laboratory, Gorgan, Golestan, Iran
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, Università degli Studi di Torino, via Quarello 15, 10135 Torino, Italy
| | - Marie Faoucher
- Service de Génétique Moléculaire et Génomique, CHU, Rennes 35033, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes 35000, France
| | - Emily G Farrow
- Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, KS, USA
| | | | | | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Melissa A Kelly
- HudsonAlpha Clinical Services Lab, LLC, Huntsville, AL 35806, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | - Marina Macchiaiolo
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martin Magner
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital and First faculty of Medicine, Charles University, Prague, Czech Republic
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, Italy
| | - Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Megan McEown
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Livija Medne
- Childrens Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naomi J L Meeks
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Montgomery
- Division of Genetics and Metabolism, Children's Health, Dallas, TX, USA
| | | | - Marvin Natowicz
- Pathology & Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, USA
| | | | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jada Pugh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Chloé Quélin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Simin Rahimi-Aliabadi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren 8952, Switzerland; University Children's Hospital Zurich, University of Zurich, Zurich 8032, Switzerland
| | - Sylvia Redon
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France; Centre de Référence Déficiences Intellectuelles de causes rares, Brest, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Caitlin R Schwager
- Division of Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Elizabeth A Sellars
- Genetics and Metabolism, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Angela E Scheuerle
- Department of Pediatrics, Division of Genetics and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Shukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, Republic of Macedonia
| | - Cara Skraban
- Childrens Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Bonnie R Sullivan
- Division of Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, KS, USA
| | - Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200 Brest, France; Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France; Centre de Référence Déficiences Intellectuelles de causes rares, Brest, France
| | - Luis A Umaña
- Department of Pediatrics, Division of Genetics and Metabolism, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Saskia N van der Crabben
- Amsterdam University Medical Centers, Department of Clinical Genetics, Amsterdam, the Netherlands
| | | | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Lance H Rodan
- Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
16
|
Gahan JM, Leclère L, Hernandez-Valladares M, Rentzsch F. A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biol 2022; 20:184. [PMID: 35999597 PMCID: PMC9400249 DOI: 10.1186/s12915-022-01385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin-modifying proteins are key players in the regulation of development and cell differentiation in animals. Most chromatin modifiers, however, predate the evolution of animal multicellularity, and how they gained new functions and became integrated into the regulatory networks underlying development is unclear. One way this may occur is the evolution of new scaffolding proteins that integrate multiple chromatin regulators into larger complexes that facilitate coordinated deposition or removal of different chromatin modifications. We test this hypothesis by analyzing the evolution of the CoREST-Lsd1-HDAC complex. RESULTS Using phylogenetic analyses, we show that a bona fide CoREST homolog is found only in choanoflagellates and animals. We then use the sea anemone Nematostella vectensis as a model for early branching metazoans and identify a conserved CoREST complex by immunoprecipitation and mass spectrometry of an endogenously tagged Lsd1 allele. In addition to CoREST, Lsd1 and HDAC1/2 this complex contains homologs of HMG20A/B and PHF21A, two subunits that have previously only been identified in mammalian CoREST complexes. NvCoREST expression overlaps fully with that of NvLsd1 throughout development, with higher levels in differentiated neural cells. NvCoREST mutants, generated using CRISPR-Cas9, fail to develop beyond the primary polyp stage, thereby revealing essential roles during development and for the differentiation of cnidocytes that phenocopy NvLsd1 mutants. We also show that this requirement is cell autonomous using a cell-type-specific rescue approach. CONCLUSIONS The identification of a Nematostella CoREST-Lsd1-HDAC1/2 complex, its similarity in composition with the vertebrate complex, and the near-identical expression patterns and mutant phenotypes of NvCoREST and NvLsd1 suggest that the complex was present before the last common cnidarian-bilaterian ancestor and thus represents an ancient component of the animal developmental toolkit.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-Sur-Mer (LBDV), 06230, Villefranche-sur-Mer, France
| | - Maria Hernandez-Valladares
- Department of Physical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, 5006, Bergen, Norway.
| |
Collapse
|
17
|
Wang D, Kuang Y, Zhang G, Xiao K, Liu Y. Lysine-Specific Demethylase 1 in Energy Metabolism: A Novel Target for Obesity. J Nutr 2022; 152:1611-1620. [PMID: 35380692 DOI: 10.1093/jn/nxac080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/19/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity develops from an imbalance of energy homeostasis and is associated with the development of metabolic disorders, including insulin resistance and type 2 diabetes. Identification of the underlying molecular mechanisms and effective therapeutic approaches is highly needed. Lysine-specific demethylase 1 (LSD1), an flavin adenine dinucletide-dependent amine oxidase, is implicated in a wide variety of biological processes, including tumorigenesis, stem cell fate decisions, and embryonic development. Recent studies have suggested a vital role of LSD1 in regulating adaptive thermogenesis, mitochondrial biogenesis, glucose, and lipid metabolism. More recently, LSD1 activity was found to be regulated by nutrients, energy status, and hormonal signals, suggesting that it may act as a novel sensor for nutritional regulation of metabolic health. Here, we first discuss the effects of LSD1 on physiological phenotypes, including body weight, fat mass, body temperature, and glucose homeostasis. We also summarize recent understanding of the physiological roles and underlying mechanisms of LSD1 in controlling metabolic functions of adipose and other tissues. Hopefully, a better understanding of the roles of LSD1 in metabolic regulation may provide new perspectives for the nutritional prevention and treatment of obesity.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guolong Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China.,Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller K. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res 2022; 50:3922-3943. [PMID: 35253893 PMCID: PMC9023290 DOI: 10.1093/nar/gkac160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Seong-Ok Lee
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Nicosia L, Boffo FL, Ceccacci E, Conforti F, Pallavicini I, Bedin F, Ravasio R, Massignani E, Somervaille TCP, Minucci S, Bonaldi T. Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML. Oncogene 2022; 41:878-894. [PMID: 34862459 PMCID: PMC8830420 DOI: 10.1038/s41388-021-02123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
The histone demethylase LSD1 is over-expressed in hematological tumors and has emerged as a promising target for anticancer treatment, so that several LSD1 inhibitors are under development and testing, in preclinical and clinical settings. However, the complete understanding of their complex mechanism of action is still unreached. Here, we unraveled a novel mode of action of the LSD1 inhibitors MC2580 and DDP-38003, showing that they can induce differentiation of AML cells through the downregulation of the chromatin protein GSE1. Analysis of the phenotypic effects of GSE1 depletion in NB4 cells showed a strong decrease of cell viability in vitro and of tumor growth in vivo. Mechanistically, we found that a set of genes associated with immune response and cytokine-signaling pathways are upregulated by LSD1 inhibitors through GSE1-protein reduction and that LSD1 and GSE1 colocalize at promoters of a subset of these genes at the basal state, enforcing their transcriptional silencing. Moreover, we show that LSD1 inhibitors lead to the reduced binding of GSE1 to these promoters, activating transcriptional programs that trigger myeloid differentiation. Our study offers new insights into GSE1 as a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Francesca Ludovica Boffo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Conforti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, 20133, Italy.
| |
Collapse
|
20
|
Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochem J 2021; 479:91-109. [PMID: 34935912 DOI: 10.1042/bcj20210642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.
Collapse
|
21
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
22
|
LSD1: Expanding Functions in Stem Cells and Differentiation. Cells 2021; 10:cells10113252. [PMID: 34831474 PMCID: PMC8624367 DOI: 10.3390/cells10113252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.
Collapse
|
23
|
Kudo N, Kudoh S, Matsuo A, Motooka Y, Ito T. ZMYM3 May Promote Cell Proliferation in Small Cell Lung Carcinoma. Acta Histochem Cytochem 2021; 54:143-153. [PMID: 34764523 PMCID: PMC8569135 DOI: 10.1267/ahc.21-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Zinc finger, myeloproliferative, and mental retardation-type containing 3 (ZMYM3) is a highly conserved protein among vertebrates. Although it promotes DNA repair and moderate histone acetylation, the other functions of ZMYM3 remain unclear. We herein examined the physiological functions of ZMYM3 in human lung cancer using a ZMYM3-knockdown small cell lung cancer (SCLC) cell line. ZMYM3-knockdown SCLC cells grew slowly and the Ki-67 labeling index was lower in ZMYM3-knockdown cells than in mock cells. The subcutaneous tumors that formed after xenotransplantation into immunodeficient mice were slightly smaller in the ZMYM3-knockdown group than in the mock group. Furthermore, public RNA-sequencing data analyses showed similar RNA profiles between ZMYM3 and some cell proliferation markers. These results indicate that ZMYM3 promotes cell proliferation in human lung carcinomas, particularly SCLC.
Collapse
Affiliation(s)
- Noritaka Kudo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan
- Department of Pathology, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan
| | - Yamato Motooka
- Department of Thoracic Surgery, Kumamoto University Graduate School of Medical Sciences, 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, 1–1–1 Honjo, Chuo-ku, Kumamoto 860–8556, Japan
- Department of Medical Technology, Kumamoto Health Science University Faculty of Health Science, Izumi 325, Kita-ku, Kumamoto 861–5598, Japan
| |
Collapse
|
24
|
Gong Z, Li A, Ding J, Li Q, Zhang L, Li Y, Meng Z, Chen F, Huang J, Zhou D, Hu R, Ye J, Liu W, You H. OTUD7B Deubiquitinates LSD1 to Govern Its Binding Partner Specificity, Homeostasis, and Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004504. [PMID: 34050636 PMCID: PMC8336515 DOI: 10.1002/advs.202004504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/03/2021] [Indexed: 05/26/2023]
Abstract
Genomic amplification of OTUD7B is frequently found across human cancers. But its role in tumorigenesis is poorly understood. Lysine-specific demethylase 1 (LSD1) is known to execute epigenetic regulation by forming corepressor complex with CoREST/histone deacetylases (HDACs). However, the molecular mechanisms by which cells maintain LSD1/CoREST complex integrity are unknown. Here, it is reported that LSD1 protein undergoes K63-linked polyubiquitination. OTUD7B is responsible for LSD1 deubiquitination at K226/277 residues, resulting in dynamic control of LSD1 binding partner specificity and cellular homeostasis. OTUD7B deficiency increases K63-linked ubiquitination of LSD1, which disrupts LSD1/CoREST complex formation and targets LSD1 for p62-mediated proteolysis. Consequently, OTUD7B deficiency impairs genome-wide LSD1 occupancy and enhances the methylation of H3K4/H3K9, therefore profoundly impacting global gene expression and abrogating breast cancer metastasis. Moreover, physiological fluctuation of OTUD7B modulates cell cycle-dependent LSD1 oscillation, ensuring the G1/S transition. Both OTUD7B and LSD1 proteins are overpresented in high-grade or metastatic human breast cancer, while dysregulation of either protein is associated with poor survival and metastasis. Thus, OTUD7B plays a unique partner-switching role in maintaining the integrity of LSD1/CoREST corepressor complex, LSD1 turnover, and breast cancer metastasis.
Collapse
Affiliation(s)
- Zhicheng Gong
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Aicun Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jiancheng Ding
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Qing Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhe Meng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Fei Chen
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Ronggui Hu
- State Key Laboratory of Molecular BiologyShanghai Science Research CenterCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Ye
- Department of PathologyXijing HospitalFourth Military Medical UniversityXi'anShanxi710032China
| | - Wen Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Han You
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
25
|
Genome wide study of tardive dyskinesia in schizophrenia. Transl Psychiatry 2021; 11:351. [PMID: 34103471 PMCID: PMC8187404 DOI: 10.1038/s41398-021-01471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Tardive dyskinesia (TD) is a severe condition characterized by repetitive involuntary movement of orofacial regions and extremities. Patients treated with antipsychotics typically present with TD symptomatology. Here, we conducted the largest GWAS of TD to date, by meta-analyzing samples of East-Asian, European, and African American ancestry, followed by analyses of biological pathways and polygenic risk with related phenotypes. We identified a novel locus and three suggestive loci, implicating immune-related pathways. Through integrating trans-ethnic fine mapping, we identified putative credible causal variants for three of the loci. Post-hoc analysis revealed that SNPs harbored in TNFRSF1B and CALCOCO1 independently conferred three-fold increase in TD risk, beyond clinical risk factors like Age of onset and Duration of illness to schizophrenia. Further work is necessary to replicate loci that are reported in the study and evaluate the polygenic architecture underlying TD.
Collapse
|
26
|
DeLaurier A, Howe DG, Ruzicka L, Carte AN, Mishoe Hernandez L, Wiggins KJ, Gallati MM, Vanpelt K, Loyo Rosado F, Pugh KG, Shabdue CJ, Jihad K, Thyme SB, Talbot JC. ZebraShare: a new venue for rapid dissemination of zebrafish mutant data. PeerJ 2021; 9:e11007. [PMID: 33954026 PMCID: PMC8051354 DOI: 10.7717/peerj.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background In the past decade, the zebrafish community has widely embraced targeted mutagenesis technologies, resulting in an abundance of mutant lines. While many lines have proven to be useful for investigating gene function, many have also shown no apparent phenotype, or phenotypes not of interest to the originating lab. In order for labs to document and share information about these lines, we have created ZebraShare as a new resource offered within ZFIN. Methods ZebraShare involves a form-based submission process generated by ZFIN. The ZebraShare interface (https://zfin.org/action/zebrashare) can be accessed on ZFIN under "Submit Data". Users download the Submission Workbook and complete the required fields, then submit the completed workbook with associated images and captions, generating a new ZFIN publication record. ZFIN curators add the submitted phenotype and mutant information to the ZFIN database, provide mapping information about mutations, and cross reference this information across the appropriate ZFIN databases. We present here examples of ZebraShare submissions, including phf21aa, kdm1a, ctnnd1, snu13a, and snu13b mutant lines. Results Users can find ZebraShare submissions by searching ZFIN for specific alleles or line designations, just as for alleles submitted through the normal process. We present several potential examples of submission types to ZebraShare including a phenotypic mutants, mildly phenotypic, and early lethal mutants. Mutants for kdm1a show no apparent skeletal phenotype, and phf21aa mutants show only a mild skeletal phenotype, yet these genes have specific human disease relevance and therefore may be useful for further studies. The p120-catenin encoding gene, ctnnd1, was knocked out to investigate a potential role in brain development or function. The homozygous ctnnd1 mutant disintegrates during early somitogenesis and the heterozygote has localized defects, revealing vital roles in early development. Two snu13 genes were knocked out to investigate a role in muscle formation. The snu13a;snu13b double mutant has an early embryonic lethal phenotype, potentially related to a proposed role in the core splicing complex. In each example, the mutants submitted to ZebraShare display phenotypes that are not ideally suited to their originating lab's project directions but may be of great relevance to other researchers. Conclusion ZebraShare provides an opportunity for researchers to directly share information about mutant lines within ZFIN, which is widely used by the community as a central database of information about zebrafish lines. Submissions of alleles with a phenotypic or unexpected phenotypes is encouraged to promote collaborations, disseminate lines, reduce redundancy of effort and to promote efficient use of time and resources. We anticipate that as submissions to ZebraShare increase, they will help build an ultimately more complete picture of zebrafish genetics and development.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States of America.,Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, United States of America.,Biozentrum, Universität Basel, Basel, Switzerland
| | - Lacie Mishoe Hernandez
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Kali J Wiggins
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Mika M Gallati
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kayce Vanpelt
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Frances Loyo Rosado
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Katlin G Pugh
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Chasey J Shabdue
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Khadijah Jihad
- Department of Biology and Geology, University of South Carolina -Aiken, Aiken, SC, United States of America
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama -Birmingham, Birmingham, AL, United States of America
| | - Jared C Talbot
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| |
Collapse
|
27
|
LSD1 as a Biomarker and the Outcome of Its Inhibitors in the Clinical Trial: The Therapy Opportunity in Tumor. JOURNAL OF ONCOLOGY 2021; 2021:5512524. [PMID: 33833800 PMCID: PMC8018836 DOI: 10.1155/2021/5512524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Tumors are the foremost cause of death worldwide. As a result of that, there has been a significant enhancement in the investigation, treatment methods, and good maintenance practices on cancer. However, the sensitivity and specificity of a lot of tumor biomarkers are not adequate. Hence, it is of inordinate significance to ascertain novel biomarkers to forecast the prognosis and therapy targets for tumors. This review characterized LSD1 as a biomarker in different tumors. LSD1 inhibitors in clinical trials were also discussed. The recent pattern advocates that LSD1 is engaged at sauce chromatin zones linking with complexes of multi-protein having an exact DNA-binding transcription factor, establishing LSD1 as a favorable epigenetic target, and also gives a large selection of therapeutic targets to treat different tumors. This review sturdily backing the oncogenic probable of LSD1 in different tumors indicated that LSD1 levels can be used to monitor and identify different tumors and can be a useful biomarker of progression and fair diagnosis in tumor patients. The clinical trials showed that inhibitors of LSD1 have growing evidence of clinical efficacy which is very encouraging and promising. However, for some of the inhibitors such as GSK2879552, though selective, potent, and effective, its disease control was poor as the rate of adverse events (AEs) was high in tumor patients causing clinical trial termination, and continuation could not be supported by the risk-benefit profile. Therefore, we propose that, to attain excellent clinical results of inhibitors of LSD1, much attention is required in designing appropriate dosing regimens, developing in-depth in vitro/in vivo mechanistic works of LSD1 inhibitors, and developing inhibitors of LSD1 that are reversible, safe, potent, and selective which may offer safer profiles.
Collapse
|
28
|
Wang W, Wang S, Xu AM, Yuan X, Huang L, Li J. Overexpression of GSE1 Related to Trastuzumab Resistance in Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8834923. [PMID: 33623790 PMCID: PMC7875631 DOI: 10.1155/2021/8834923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the most prevalent human cancers with poor prognosis. Trastuzumab is a well-used targeted drug for gastric cancer with HER2 amplification. Trastuzumab resistance restrains the clinical use of trastuzumab. In this study, we reported human Gse1 coiled-coil protein (GSE1) promoted trastuzumab resistance in HER2-positive gastric cancer cells. Acquired trastuzumab-resistant gastric cancer cells overexpressed GSE1, and depletion of GSE1 decreased the trastuzumab resistance of trastuzumab-resistant gastric cancer cells. BCL-2 was a downstream gene positively regulated by GSE1 and also performed promoting the role of trastuzumab resistance in HER2-positive gastric cancer cells. A high level of GSE1 was associated with a high risk of tumor lymph node metastasis and higher clinical stage in HER2-positive gastric cancer patients. GSE1 was a potential target that could be used for HER2-positive gastric cancer therapy.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Hainan Weikang Pharmaceutical, Co., Ltd. Qianshan, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - A. man Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liguo Huang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
29
|
Jiang H, Patil K, Vashi A, Wang Y, Strickland E, Pai SB. Cellular molecular and proteomic profiling deciphers the SIRT1 controlled cell death pathways in esophageal adenocarcinoma cells. Cancer Treat Res Commun 2020; 26:100271. [PMID: 33341453 DOI: 10.1016/j.ctarc.2020.100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Worldwide prevalence of esophageal adenocarcinomas with high rates of mortality coupled with increased mutations in esophageal cells warrants investigation to understand deregulation of cell signaling pathways leading to cancer. To this end, the current study was undertaken to unravel the cell death signatures using the model human esophageal adenocarcinoma cell line-OE33. The strategy involved targeting the key epigenetic modulator SIRT1, a histone deacetylase by a small molecule inhibitor - sirtinol. Sirtinol induced a dose-dependent inhibition of cell viability under both normoxic and hypoxic conditions with long term impact on proliferation as shown by clonogenic assays. Signature apoptotic signaling pathways including caspase activation and decreased Bcl-2 were observed. Proteomic analysis highlighted an array of entities affected including molecules involved in replication, transcription, protein synthesis, cell division control, stress-related proteins, spliceosome components, protein processing and cell detoxification/degradation systems. Importantly, the stoichiometry of the fold changes of the affected proteins per se could govern the cell death phenotype by sirtinol. Sirtinol could also potentially curb resistant and recurrent tumors that reside in hypoxic environments. Overall, in addition to unraveling the cellular, molecular and proteomics basis of SIRT1 inhibition, the findings open up avenues for designing novel strategies against esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Huige Jiang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Aksal Vashi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yuyan Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Emily Strickland
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
30
|
Russo R, Russo V, Cecere F, Valletta M, Gentile MT, Colucci-D'Amato L, Angelini C, Riccio A, Pedone PV, Chambery A, Baglivo I. ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex. Int J Biol Macromol 2020; 168:67-76. [PMID: 33301849 DOI: 10.1016/j.ijbiomac.2020.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
ZBTB2 is a protein belonging to the BTB/POZ zinc-finger family whose members typically contain a BTB/POZ domain at the N-terminus and several zinc-finger domains at the C-terminus. Studies have been carried out to disclose the role of ZBTB2 in cell proliferation, in human cancers and in regulating DNA methylation. Moreover, ZBTB2 has been also described as an ARF, p53 and p21 gene repressor as well as an activator of genes modulating pluripotency. In this scenario, ZBTB2 seems to play many functions likely associated with other proteins. Here we report a picture of the ZBTB2 protein partners in U87MG cell line, identified by high-resolution mass spectrometry (MS) that highlights the interplay between ZBTB2 and chromatin remodeling multiprotein complexes. In particular, our analysis reveals the presence, as ZBTB2 candidate interactors, of SMARCA5 and BAZ1B components of the chromatin remodeling complex WICH and PBRM1, a subunit of the SWI/SNF complex. Intriguingly, we identified all the subunits of the NuRD complex among the ZBTB2 interactors. By co-immunoprecipitation experiments and ChIP-seq analysis we definitely identify ZBTB2 as a new partner of the NuRD complex.
Collapse
Affiliation(s)
- Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Francesco Cecere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Luca Colucci-D'Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone" (IAC), National Research Council, 80131 Naples, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy.
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy.
| |
Collapse
|
31
|
Tsusaka T, Fukuda K, Shimura C, Kato M, Shinkai Y. The fibronectin type-III (FNIII) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex. Epigenetics Chromatin 2020; 13:52. [PMID: 33256805 PMCID: PMC7706265 DOI: 10.1186/s13072-020-00374-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The histone methyltransferase SETDB1 (also known as ESET) represses genes and various types of transposable elements, such as endogenous retroviruses (ERVs) and integrated exogenous retroviruses, through a deposition of trimethylation on lysine 9 of histone H3 (H3K9me3) in mouse embryonic stem cells (mESCs). ATF7IP (also known as MCAF1 or AM), a binding partner of SETDB1, regulates the nuclear localization and enzymatic activities of SETDB1 and plays a crucial role in SETDB1-mediated transcriptional silencing. In this study, we further dissected the ATF7IP function with its truncated mutants in Atf7ip knockout (KO) mESCs. RESULTS We demonstrated that the SETDB1-interaction region within ATF7IP is essential for ATF7IP-dependent SETDB1 nuclear localization and silencing of both ERVs and integrated retroviral transgenes, whereas its C-terminal fibronectin type-III (FNIII) domain is dispensable for both these functions; rather, it has a role in efficient silencing mediated by the SETDB1 complex. Proteomic analysis identified a number of FNIII domain-interacting proteins, some of which have a consensus binding motif. We showed that one of the FNIII domain-binding proteins, ZMYM2, was involved in the efficient silencing of a transgene by ATF7IP. RNA-seq analysis of Atf7ip KO and WT or the FNIII domain mutant of ATF7IP-rescued Atf7ip KO mESCs showed that the FNIII domain mutant re-silenced most de-repressed SETDB1/ATF7IP-targeted ERVs compared to the WT. However, the silencing activity of the FNIII domain mutant was weaker than that of the ATF7IP WT, and some of the de-repressed germ cell-related genes in Atf7ip KO mESCs were not silenced by the FNIII domain mutant. Such germ cell-related genes are targeted and silenced by the MAX/MGA complex, and MGA was also identified as another potential binding molecule of the ATF7IP FNIII domain in the proteomic analysis. This suggests that the FNIII domain of ATF7IP acts as a binding hub of ATF7IP-interacting molecules possessing a specific interacting motif we named FAM and contributes to one layer of the SETDB1/ATF7IP complex-mediated silencing mechanisms. CONCLUSIONS Our findings contributed to further understanding the function of ATF7IP in the SETDB1 complex, revealed the role of the FNIII domain of ATF7IP in transcriptional silencing, and suggested a potential underlying molecular mechanism for it.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Masaki Kato
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan. .,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan.
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan.
| |
Collapse
|
32
|
Evolving evidence on a link between the ZMYM3 exceptionally long GA-STR and human cognition. Sci Rep 2020; 10:19454. [PMID: 33173136 PMCID: PMC7655811 DOI: 10.1038/s41598-020-76461-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The human X-linked zinc finger MYM-type protein 3 (ZMYM3) contains the longest GA-STR identified across protein-coding gene 5′ UTR sequences, at 32-repeats. This exceptionally long GA-STR is located at a complex string of GA-STRs with a human-specific formula across the complex as follows: (GA)8-(GA)4-(GA)6-(GA)32 (ZMYM3-207 ENST00000373998.5). ZMYM3 was previously reported among the top three genes involved in the progression of late-onset Alzheimer’s disease. Here we sequenced the ZMYM3 GA-STR complex in 750 human male subjects, consisting of late-onset neurocognitive disorder (NCD) as a clinical entity (n = 268) and matched controls (n = 482). We detected strict monomorphism of the GA-STR complex, except of the exceptionally long STR, which was architecturally skewed in respect of allele distribution between the NCD cases and controls [F (1, 50) = 12.283; p = 0.001]. Moreover, extreme alleles of this STR at 17, 20, 42, and 43 repeats were detected in seven NCD patients and not in the control group (Mid-P exact = 0.0003). A number of these alleles overlapped with alleles previously found in schizophrenia and bipolar disorder patients. In conclusion, we propose selective advantage for the exceptional length of the ZMYM3 GA-STR in human, and its link to a spectrum of diseases in which major cognition impairment is a predominant phenotype.
Collapse
|
33
|
McCleary-Wheeler AL, Paradise BD, Almada LL, Carlson AJ, Marks DL, Vrabel A, Vera RE, Sigafoos AN, Olson RL, Fernandez-Zapico ME. TFII-I-mediated polymerase pausing antagonizes GLI2 induction by TGFβ. Nucleic Acids Res 2020; 48:7169-7181. [PMID: 32544250 PMCID: PMC7367210 DOI: 10.1093/nar/gkaa476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter–proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFβ, a known activator of GLI2 in cancer cells. TGFβ reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFβ-induced genes CCR7, TGFβ1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFβ treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFβ-responsive genes through the regulation of RNAPII pausing.
Collapse
Affiliation(s)
- Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Annika J Carlson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Anne Vrabel
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ashley N Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel L Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Mehndiratta S, Liou JP. Histone lysine specific demethylase 1 inhibitors. RSC Med Chem 2020; 11:969-981. [PMID: 33479691 PMCID: PMC7513387 DOI: 10.1039/d0md00141d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
LSD1 plays a pivotal role in numerous biological functions. The overexpression of LSD1 is reported to be associated with different malignancies. Over the last decade, LSD1 has emerged as an interesting target for the treatment of acute myeloid leukaemia (AML). Numerous researchers have designed, synthesized, and evaluated various LSD1 inhibitors with diverse chemical architectures. Some of these inhibitors have entered clinical trials and are currently at different phases of clinical evaluation. This comprehensive review enlists recent research developments in LSD1 targeting pharmacophores reported over the last few years.
Collapse
Affiliation(s)
- Samir Mehndiratta
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , California , USA
| | - Jing-Ping Liou
- School of Pharmacy , College of Pharmacy , Taipei Medical University , Taiwan . ; Tel: +886 2 2736 1661 ext 6130
| |
Collapse
|
35
|
Abstract
Supplemental Digital Content is available in the text Background: Fusion genes may play an important role in tumorigenesis, prognosis, and drug resistance; however, studies on fusion genes in endometrial cancer (EC) are rare. This study aimed to identify new fusion genes and to explore their clinical significance in EC. Methods: A total of 28 patients diagnosed with EC were enrolled in this study. RNA sequencing was used to obtain entire genomes and transcriptomes. STAR-comparison and STAR-fusion prediction were applied to predict the fusion genes. Chi-square tests and Student t tests were used to verify the clinical significance with SPSS 13.0 software. Results: New fusion genes were found, and the number of fusion genes varied from 3 to 110 among all patients with EC. The type of fusion genes varied and included messenger RNA (mRNA)-mRNA, long non-coding RNA (lncRNA)-lncRNA, and lncRNA-mRNA. There were six fusion genes with high fusion rates, namely, RP11–123O10.4–GRIP1, RP11–444D3.1–SOX5, RP11–680G10.1–GSE1, NRIP1–AF127936.7, RP11–96H19.1–RP11–446N19.1, and DPH7–PTP4A3. Further studies showed that these fusion genes are related to stage, grade, and recurrence, in which NRIP1–AF127936.7 and DPH7–PTP4A3 were found only in stage III patients with EC. DPH7–PTP4A3 was found in grades 2 and 3, and recurrent patients with EC. Conclusion: Fusion genes play an essential role in EC. Six genes that are overexpressed with high fusion rates are identified. NRIP1–AF127936.7 and DPH7–PTP4A3 might be related to stage, and DPH7–PTP4A3 be related to grade and recurrence.
Collapse
|
36
|
Anastas JN, Zee BM, Kalin JH, Kim M, Guo R, Alexandrescu S, Blanco MA, Giera S, Gillespie SM, Das J, Wu M, Nocco S, Bonal DM, Nguyen QD, Suva ML, Bernstein BE, Alani R, Golub TR, Cole PA, Filbin MG, Shi Y. Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell 2019; 36:528-544.e10. [PMID: 31631026 DOI: 10.1016/j.ccell.2019.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
Abstract
H3K27M mutations resulting in epigenetic dysfunction are frequently observed in diffuse intrinsic pontine glioma (DIPGs), an incurable pediatric cancer. We conduct a CRISPR screen revealing that knockout of KDM1A encoding lysine-specific demethylase 1 (LSD1) sensitizes DIPG cells to histone deacetylase (HDAC) inhibitors. Consistently, Corin, a bifunctional inhibitor of HDACs and LSD1, potently inhibits DIPG growth in vitro and in xenografts. Mechanistically, Corin increases H3K27me3 levels suppressed by H3K27M histones, and simultaneously increases HDAC-targeted H3K27ac and LSD1-targeted H3K4me1 at differentiation-associated genes. Corin treatment induces cell death, cell-cycle arrest, and a cellular differentiation phenotype and drives transcriptional changes correlating with increased survival time in DIPG patients. These data suggest a strategy for treating DIPG by simultaneously inhibiting LSD1 and HDACs.
Collapse
Affiliation(s)
- Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barry M Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jay H Kalin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Mirhee Kim
- NYU Medical School, New York, NY 10016, USA
| | - Robyn Guo
- Duke University, Durham, NC 27708, USA
| | - Sanda Alexandrescu
- Department of Pathology Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA
| | - Mario Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Shawn M Gillespie
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jayanta Das
- Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rhoda Alani
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815 MD, USA
| | - Philip A Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Wingelhofer B, Somervaille TCP. Emerging Epigenetic Therapeutic Targets in Acute Myeloid Leukemia. Front Oncol 2019; 9:850. [PMID: 31552175 PMCID: PMC6743337 DOI: 10.3389/fonc.2019.00850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy for which treatment options have been largely limited to cytotoxic chemotherapy for the past four decades. Next-generation sequencing and other approaches have identified a spectrum of genomic and epigenomic alterations that contribute to AML initiation and maintenance. The key role of epigenetic modifiers and the reversibility of epigenetic changes have paved the way for evaluation of a new set of drug targets, and facilitated the design of novel candidate treatment strategies. More recently, seven new targeted therapies have been FDA-approved demonstrating successful implementation of the past decades' research. In this review, we will summarize the most recent advances in targeted therapeutics designed for a focused group of key epigenetic regulators in AML, outline their mechanism of action and their current status in clinical development. Furthermore, we will discuss promising new approaches for epigenetic targeted treatment in AML which are currently being tested in pre-clinical trials.
Collapse
Affiliation(s)
| | - Tim C. P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Zhang X, Tan Z, Kang T, Zhu C, Chen S. Arsenic sulfide induces miR-4665-3p to inhibit gastric cancer cell invasion and migration. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3037-3049. [PMID: 31692505 PMCID: PMC6717396 DOI: 10.2147/dddt.s209219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Purpose Gastric carcinogenesis is a multistep process and is the second-highest cause of cancer death worldwide with a high incidence of invasion and metastasis. MicroRNAs (miRNAs) engage in complex interactions with the machinery that controls the transcriptome and concurrently target multiple mRNAs. Recent evidence has shown that miRNAs are involved in the cancer progression, including promoting cell-cycle, conferring resistance to apoptosis, and enhancing invasiveness and metastasis. Here, we aim to elucidate the roles of miRNAs, especially microRNA-4665-3p (miR-4665-3p), in the inhibitory effect of arsenic sulfide in gastric cancer (GC). Methods The arsenic sulfide-induced miRNA expression alterations in AGS cells was determined by miRNA microarray. RT-PCR was used to further verify the arsenic sulfide-regulated miRNAs in GC tissues. The inhibition of miR-4665-3p on the migration and invasion of GC cells were determined by wound healing assay and transwell assay. Western blot analysis was used to detect the expression of EMT related proteins and the putative target of miR-4665-3p. Results The miR-4665-3p was up-regulated by arsenic sulfide and showed inhibition upon the migration and invasion of GC cells. MiRBase and Western blotting indicated that miR-4665-3p directly down-regulated the oncoprotein GSE1. Morphological observation also indicated that the up-regulation of miR-4665-3p inhibits the EMT in GC cells. Conclusion Our data demonstrates that the increased expression of miR-4665-3p induced by arsenic sulfide suppresses the cell invasion, metastasis and EMT of GC cells, and has the potential to be a novel therapeutic target in GC.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen Tan
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chuanying Zhu
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Yan W, Li J, Zhang Y, Yin Y, Cheng Z, Wang J, Hu G, Liu S, Wang Y, Xu Y, Peng H, Zhang G. RNF8 is responsible for ATRA resistance in variant acute promyelocytic leukemia with GTF2I/RARA fusion, and inhibition of the ubiquitin-proteasome pathway contributes to the reversion of ATRA resistance. Cancer Cell Int 2019; 19:84. [PMID: 30992691 PMCID: PMC6449960 DOI: 10.1186/s12935-019-0803-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/23/2019] [Indexed: 01/20/2023] Open
Abstract
Background GTF2I-RARA is a newly identified RARA fusion gene in variant acute promyelocytic leukemia (APL) patients with t(7;17)(q11;q21). Clinical manifestation in the patient showed that it is a sort of ATRA-insensitive oncogene and is different from the classic PML-RARA in terms of therapeutic reaction. Methods To reveal the functional characteristics and regulating mechanism of the GTF2I-RARA fusion gene, we established a GTF2I-RARA-transfected HL60 cell model and examined its sensitivity to ATRA by western blot, MTT assay, flow cytometry, and Wright-Giemsa staining. Coimmunoprecipitation and confocal microscopy were used to examine the binding of GTF2I-RARA and transcriptional corepressors. We also performed ChIP-seq to search for potential target genes. Immunoprecipitation, ubiquitination assay, western blot, luciferase assay, and real-time PCR were used to analyze the effects of RNF8 on RARA. Flow cytometry and Wright-Giemsa staining were used to study the effect of MG132 and ATRA on the GTF2I-RARA-transfected HL60 cell model. Result We confirmed resistance of GTF2I-RARA to ATRA. Compared with PML-RARA, GTF2I-RARA has a higher affinity to HDAC3 under ATRA treatment. Using the ChIP-sequencing approach, we identified 221 GTF2I-RARA binding sites in model cells and found that the RING finger protein 8 (RNF8) is a target gene of GTF2I-RARA. RNF8 participates in disease progression and therapy resistance in APL with the GTF2I-RARA transcript. Elevated RNF8 expression promotes the interaction between RARA and RNF8 and induces RARA Lys-48 linkage ubiquitylation and degradation, resulting in attenuated transcriptional activation of RARA. Conclusion Our results suggest that RNF8 is a key GTF2I-RARA downstream event. Using the combination of MG132 and ATRA to treat GTF2I-RARA-HL60 cells, a synergistic effect leading to GTF2I-RARA-HL60 cell differentiation was confirmed. Taken together, the targeting of RNF8 may be an alternative choice for treatment in variant APL with GTF2I-RARA fusion. Electronic supplementary material The online version of this article (10.1186/s12935-019-0803-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenzhe Yan
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Ji Li
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yang Zhang
- 2Department of Oncology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yafei Yin
- Department of Hematology, Xiangtan Central Hospital, Changsha, 410011 Hunan China
| | - Zhao Cheng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Jiayi Wang
- 4Department of Nephrology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guoyu Hu
- 5Department of Hematology, Zhuzhou No.1 Hospital, Zhuzhou, 410011 Hunan China
| | - Sufang Liu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yewei Wang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yunxiao Xu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Hongling Peng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guangsen Zhang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
40
|
Shapson-Coe A, Valeiras B, Wall C, Rada C. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. PLoS One 2019; 14:e0213553. [PMID: 30889214 PMCID: PMC6424451 DOI: 10.1371/journal.pone.0213553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/24/2019] [Indexed: 11/18/2022] Open
Abstract
DNA-RNA hybrids arise in all cell types, and are removed by multiple enzymes, including the trimeric ribonuclease, RNase H2. Mutations in human RNase H2 result in Aicardi–Goutières syndrome (AGS), an inflammatory brain disorder notable for being a Mendelian mimic of congenital viral infection. Previous studies have shown that several AGS-associated mutations of the RNase H2B subunit do not affect trimer stability or catalytic activity and are clustered on the surface of the complex, leading us to speculate that these mutations might impair important interactions of RNase H2 with so far unidentified proteins. In this study, we show that AGS mutations in this cluster impair the interaction of RNase H2 with several members of the CoREST chromatin-silencing complex that include the histone deacetylase HDAC2 and the demethylase KDM1A, the transcriptional regulators RCOR1 and GTFII-I as well as ZMYM3, an MYM-type zinc finger protein. We also show that the interaction is mediated by the zinc finger protein ZMYM3, suggesting that ZMYM3 acts as a novel type of scaffold protein coordinating interactions between deacetylase, demethylase and RNase H type enzymes, raising the question of whether coordination between histone modifications and the degradation of RNA-DNA hybrids may be required to prevent inflammation in humans.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| | - Brenda Valeiras
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Christopher Wall
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| |
Collapse
|
41
|
Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT, Rudin CM, Milletti F, Cheng WY, Mack F, MacPherson D. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal 2019; 12:12/567/eaau2922. [PMID: 30723171 DOI: 10.1126/scisignal.aau2922] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant, aggressive neuroendocrine-type cancer for which little change to first-line standard-of-care treatment has occurred within the last few decades. Unlike nonsmall cell lung cancer (NSCLC), SCLC harbors few actionable mutations for therapeutic intervention. Lysine-specific histone demethylase 1A (LSD1 also known as KDM1A) inhibitors were previously shown to have selective activity in SCLC models, but the underlying mechanism was elusive. Here, we found that exposure to the selective LSD1 inhibitor ORY-1001 activated the NOTCH pathway, resulting in the suppression of the transcription factor ASCL1 and the repression of SCLC tumorigenesis. Our analyses revealed that LSD1 bound to the NOTCH1 locus, thereby suppressing NOTCH1 expression and downstream signaling. Reactivation of NOTCH signaling with the LSD1 inhibitor reduced the expression of ASCL1 and neuroendocrine cell lineage genes. Knockdown studies confirmed the pharmacological inhibitor-based results. In vivo, sensitivity to LSD1 inhibition in SCLC patient-derived xenograft (PDX) models correlated with the extent of consequential NOTCH pathway activation and repression of a neuroendocrine phenotype. Complete and durable tumor regression occurred with ORY-1001-induced NOTCH activation in a chemoresistant PDX model. Our findings reveal how LSD1 inhibitors function in this tumor and support their potential as a new and targeted therapy for SCLC.
Collapse
Affiliation(s)
- Arnaud Augert
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Emily Eastwood
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Ali H Ibrahim
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Nan Wu
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Eli Grunblatt
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Keith D Eaton
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francesca Milletti
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - Wei-Yi Cheng
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - Fiona Mack
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - David MacPherson
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
42
|
Sun X, Ding L, Liu HM. Probing the binding mode and unbinding mechanism of LSD1 inhibitors by combined computational methods. Phys Chem Chem Phys 2018; 20:29833-29846. [PMID: 30468219 DOI: 10.1039/c8cp03090a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine specific demethylase 1 (LSD1) has emerged as a potential drug target in cancer therapy and a variety of inhibitors have been reported. We have recently reported the discovery of a series of triazole-dithiocarbamate based compounds, which were basically confirmed as cofactor flavin adenine dinucleotide (FAD)-competing inhibitors by experiments. However, the binding modes of the inhibitors to the binding site were undetermined. Here, we employed computational methods including molecular docking, classical molecular dynamics (MD) and steered molecular dynamics (SMD) simulations to investigate the potential binding modes of these inhibitors to LSD1. Based on the high correlation between the mean non-equilibrium pulling work W and experimental binding affinity, we identified the optimal binding modes of this class of compounds with LSD1. Using the optimal inhibitor binding conformation, we then performed SMD to study the ligand unbinding mechanism with a lower pulling velocity at 0.0005 nm ps-1. We found that residue Arg316 plays a crucial role in the binding/unbinding process. Furthermore, a gatekeeper residue Trp756 influences the ligand unbinding process by acting like a switch via steric hindrance but can enhance the hydrophobic interaction with the inhibitor. Hydrophobic interaction also dominated the interaction between LSD1 and the inhibitors. The pivotal residues and interactions between LSD1 and inhibitors determined from this study can be used to improve the inhibition activity of this series of inhibitors in development and to discover new scaffolds as FAD-competing inhibitors in compound screening.
Collapse
Affiliation(s)
- Xudong Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | |
Collapse
|
43
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
44
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
45
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
46
|
Ding K, Tan S, Huang X, Wang X, Li X, Fan R, Zhu Y, Lobie PE, Wang W, Wu Z. GSE1 predicts poor survival outcome in gastric cancer patients by SLC7A5 enhancement of tumor growth and metastasis. J Biol Chem 2018; 293:3949-3964. [PMID: 29367342 DOI: 10.1074/jbc.ra117.001103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer remains a malignancy with poor survival outcome. We herein report that GSE1, a proline-rich protein, possesses a role in the progression of human gastric cancer. The expression of GSE1 was observed to be much higher in human gastric cancer tissues compared with normal gastric tissues, and GSE1 expression correlated positively with lymph node metastasis, histological grade, depth of invasion, and clinical stage in gastric cancer patients. Moreover, GSE1 expression was also associated with decreased post-operative relapse-free survival and overall survival in the cohort. The forced expression of GSE1 in gastric cancer cell lines resulted in increased cell proliferation, increased colony formation, enhanced cell migration, and invasion. Furthermore, forced expression of GSE1 also increased tumor size and enhanced lung metastasis in xenograft models. The depletion of endogenous GSE1 with shRNAs decreased the oncogenicity and invasiveness of gastric cancer cells both in vitro and in vivo In addition, GSE1 was determined to be a direct target of miR-200b and miR-200c. Furthermore, GSE1 positively regulated the downstream gene SLC7A5 (also known as LAT-1), which was scanned and verified from mRNA sequencing. GSE1 therefore possesses an oncogenic role in human gastric cancer, and targeted therapeutic approaches to inhibit GSE1 function in gastric cancer warrant further consideration.
Collapse
Affiliation(s)
- Keshuo Ding
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China.,the Department of Pathology and
| | - Sheng Tan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xing Huang
- the Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.,the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaonan Wang
- the Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | | | - Rong Fan
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Zhu
- the Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peter E Lobie
- the Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China, and.,the Cancer Science Institute of Singapore and Department of Pharmacology, National University Health System, National University of Singapore, Singapore 117599
| | - Wenbin Wang
- From the Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, Anhui 230022, China,
| | | |
Collapse
|
47
|
Castelli G, Pelosi E, Testa U. Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. Onco Targets Ther 2017; 11:131-155. [PMID: 29343972 PMCID: PMC5749389 DOI: 10.2147/ott.s145971] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of myeloid progenitors characterized by the acquisition of chromosomal abnormalities, somatic mutations, and epigenetic changes that determine a consistent degree of biological and clinical heterogeneity. Advances in genomic technologies have increasingly shown the complexity and heterogeneity of genetic and epigenetic alterations in AML. Among the genetic alterations occurring in AML, frequent are the genetic alterations at the level of various genes involved in the epigenetic control of the DNA methylome and histone methylome. In fact, genes involved in DNA demethylation (such as DNMT3A, TET2, IDH1, and IDH2) or histone methylation and demethylation (EZH2, MLL, DOT1L) are frequently mutated in primary and secondary AML. Furthermore, some histone demethylases, such as LSD1, are frequently overexpressed in AML. These observations have strongly supported a major role of dysregulated epigenetic regulatory processes in leukemia onset and development. This conclusion was further supported by the observation that mutations in genes encoding epigenetic modifiers, such as DMT3A, ASXL1, TET2, IDH1, and IDH2, are usually acquired early and are present in the founding leukemic clone. These observations have contributed to development of the idea that targeting epigenetic abnormalities could represent a potentially promising strategy for the development of innovative treatments of AML. In this review, we analyze those proteins and their inhibitors that have already reached the first stages of clinical trials in AML, namely the histone methyltransferase DOT1L, the demethylase LSD1, and the MLL-interacting protein menin.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
48
|
Huang J, Liu F, Tang H, Wu H, Li L, Wu R, Zhao J, Wu Y, Liu Z, Chen J. Tranylcypromine Causes Neurotoxicity and Represses BHC110/LSD1 in Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids Model. Front Neurol 2017; 8:626. [PMID: 29270148 PMCID: PMC5725435 DOI: 10.3389/fneur.2017.00626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Recent breakthroughs in human pluripotent stem cell-derived cerebral organoids provide a valuable platform for investigating the human brain after different drugs treatments and for understanding the complex genetic background to human pathology. Here, we identified tranylcypromine, which is used to treat refractory depression, caused human-induced pluripotent stem cell-derived brain organoids neurotoxicity, leading to decreased proliferation activity and apoptosis induction. Moreover, tranylcypromine treatment affects neurons and astrocytes, which impairs cell density and arrangement. Finally, staining of histone demethylation-related genes revealed that tranylcypromine suppresses the transcriptional activity of BHC110/LSD1-targeted genes and increases the expression of histone di-methylated K4. These results show that human brain organoids can be applied as an in vitro model for CNS drug screening to evaluate structural, cellular, and molecular changes in the normal brains or brains of patients with neuropsychiatric disorders after drug treatments.
Collapse
Affiliation(s)
- Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lehua Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ying Wu
- Intensive Care Unit, The Second Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University (CSU), Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Chinese National Technology Institute on Mental Disorders, Central South University (CSU), Chinese National Clinical Research Center on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
49
|
Zheng YS, Lu YQ, Meng YY, Zhang RZ, Zhang H, Sun JM, Wang MM, Li LH, Li RY. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat. Proteomics 2017; 17. [PMID: 28225203 DOI: 10.1002/pmic.201600331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation.
Collapse
Affiliation(s)
- Yong-Sheng Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Yu-Qing Lu
- Institute of Crop Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ying-Ying Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rong-Zhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Han Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Jia-Mei Sun
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Mu-Mu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li-Hui Li
- Institute of Crop Sciences, National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ru-Yu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| |
Collapse
|
50
|
Hu X, Shen B, Liao S, Ning Y, Ma L, Chen J, Lin X, Zhang D, Li Z, Zheng C, Feng Y, Huang X, Han C. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death Dis 2017; 8:e2910. [PMID: 28661483 PMCID: PMC5520888 DOI: 10.1038/cddis.2017.228] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Collapse
Affiliation(s)
- Xiangjing Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Shangying Liao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|