1
|
Moreira P, Pocock R. Functions of nuclear factor Y in nervous system development, function and health. Neural Regen Res 2025; 20:2887-2894. [PMID: 39610092 PMCID: PMC11826454 DOI: 10.4103/nrr.nrr-d-24-00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024] Open
Abstract
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes, one of the most common motifs found in gene promoters and enhancers. Over the last 30 years, research has revealed that the nuclear factor Y complex controls many aspects of brain development, including differentiation, axon guidance, homeostasis, disease, and most recently regeneration. However, a complete understanding of transcriptional regulatory networks, including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive. In this review, we explore the nuclear factor Y complex's role and mode of action during brain development, as well as how genomic technologies may expand understanding of this key regulator of gene expression.
Collapse
Affiliation(s)
- Pedro Moreira
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Wang X, Wei H, Zhang N, Li S, Si H. StNF-YA8-YB20-YC5 module regulates potato tuber dormancy by modulating gibberellin and abscisic acid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70106. [PMID: 40121666 DOI: 10.1111/tpj.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
The molecular mechanisms involved in the regulation of potato tuber dormancy are complex, involving a variety of related genes and enzymes, which modulate multiple signaling pathways. Nuclear factor-Y (NF-Y) transcription factors (TFs) are widely found in eukaryotes and are involved in the regulation of plant embryonic development, seed germination, fruit ripening, and in response to biotic and abiotic stress. Previously, we found that StNF-YA8 gene expression was increasing with the release of potato tuber dormancy. In this study, it was found that StNF-YA8 overexpressed tubers broke dormancy earlier than non-transgenic (NT) and StNF-YA8 downregulated tubers. Changes in abscisic acid (ABA) and gibberellin (GA) content of different types of tubers at different dormancy periods confirmed that both GA and ABA hormones influenced the differences in dormancy time. This was confirmed by the expression of GA pathway genes StGA3ox1 and StGA20ox1 genes and ABA pathway genes StCYP707A2 and StPP2CA1 genes in different tubers. The four genes described above were further shown to be target genes of the StNF-YA8 TF, which transcriptionally activates the expression of these genes. In addition, we verified the involvement of StNF-YA8 in the tuber dormancy release process by the interacting proteins StNF-YB20 and StNF-YC5, which are able to bind to the StNF-YA8-B20-C5 module to activate the transcription of GA and ABA pathway genes. Our study reveals the StNF-YA8-C5 module activates the transcription of the StCYP707A2, StPP2CA1, StGA3ox1, and StGA20ox1 genes and alters GA and ABA content, accelerating the release of dormancy in potato tubers.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Torres-Martínez HH. Get two for the price of one: GmNF-YC4 factor mediates GmEXP7-induced root developmental changes and phosphorus starvation response in soybean. PLANT PHYSIOLOGY 2024; 197:kiae554. [PMID: 39422239 DOI: 10.1093/plphys/kiae554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Héctor H Torres-Martínez
- Plant Physiology, American Society of Plant Biologists
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Liu X, Cai Y, Yao W, Chen L, Hou W. The soybean NUCLEAR FACTOR-Y C4 and α-EXPANSIN 7 module influences phosphorus uptake by regulating root morphology. PLANT PHYSIOLOGY 2024; 197:kiae478. [PMID: 39250753 DOI: 10.1093/plphys/kiae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses other functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell-wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybeans.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Cai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Yao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Bai X, Goher F, Qu C, Guo J, Liu S, Pu L, Zhan G, Kang Z, Guo J. Soybean transcription factor GmNF-YB20 confers resistance to stripe rust in transgenic wheat by regulating nonspecific lipid transfer protein genes. PLANT, CELL & ENVIRONMENT 2024; 47:4932-4944. [PMID: 39115239 DOI: 10.1111/pce.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 11/06/2024]
Abstract
Worldwide food security is severely threatened by the devastating wheat stripe rust disease. The utilization of resistant wheat cultivars represents the most cost-effective and efficient strategy for combating this disease. However, the lack of resistant resources has been a major bottleneck in breeding for wheat disease resistance. Therefore, revealing novel gene resources for combating stripe rust and elucidating the underlying resistance mechanism is of utmost urgency. In this study, we identified that the soybean NF-YB transcription factor GmNF-YB20 in wheat provides resistance to the stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst). Wheat lines with stable overexpression of the GmNF-YB20 enhanced resistance against multiple Pst races. Transcriptome profiling of GmNF-YB20 transgenic wheat under Pst infection unveiled its involvement in the lipid signaling pathway. RT-qPCR assays suggested that GmNF-YB20 increased transcript levels of multiple nonspecific lipid transfer protein (LTP) genes during wheat-Pst interaction, luciferase reporter analysis illustrates that it activates the transcription of TaLTP1.50 in wheat protoplast, and GmNF-YB20 overexpressed wheat plants had higher total LTP content in vivo during Pst infection. Overexpression of TaLTP1.50 in wheat significantly increased resistance to Pst, whereas knockdown of TaLTP1.50 exhibited the opposite trends, indicating that TaLTP1.50 plays a positive role in wheat resistance. Taken together, our findings provide perspective regarding the molecular mechanism of GmNF-YB20 in wheat and highlight the potential use for wheat breeding.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Farhan Goher
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenfei Qu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jia Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lefan Pu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Zhao P, Liu Y, Deng Z, Liu L, Yu T, Ge G, Chen B, Wang T. Creating of novel Wx allelic variations significantly altering Wx expression and rice eating and cooking quality. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154384. [PMID: 39591698 DOI: 10.1016/j.jplph.2024.154384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Granule-bound starch synthase I (GBSSI) encoding gene Waxy (Wx), which largely regulates the amylose content of rice grains, is a master module determining rice eating and cooking quality (ECQ). Fine-tuning amylose level of grains is an ideal strategy to improve rice quality. Through fine editing of Wxa promoter and 5'UTR by CRISPR/Cas9 system, we created 14 types of novel Wx allelic variations, of which MT7 and MT13 were able to alter Wx expression and amylose content of grains. MT7 showed fragment deletion and base insertions in CAAT-boxes, hardly detectable expression levels of GBSSI mRNA and protein, and generated 5.87% amylose in grains. MT13 had fragment deletions in the A-box and the TATA-box, low expression levels of GBSSI mRNA and protein, and generated 9.61% amylose in grains. Besides of the amylose content, MT7 and MT13 significantly reduced protein content and increased lipid content of grains compared with Wxa. A comparison of MT7, MT13 and other allelic lines demonstrated the importance of base insertion around the second CAAT-box and 31bp-deletion following the second TATA-box in modulating Wx expression. Thus, our study generated two novel Wx allelic variations which significantly alter Wx expression and amylose content of rice grains, providing not only new germplasms for soft rice breeding, but also insights into candidate cis elements of Wx.
Collapse
Affiliation(s)
- Pei Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Yuxia Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuyun Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Tengwei Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Gege Ge
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Bingtang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China.
| |
Collapse
|
7
|
Rani V, Singh VK, Joshi D, Singh R, Yadav D. Genome-wide identification of nuclear factor -Y (NF-Y) transcription factor family in finger millet reveals structural and functional diversity. Heliyon 2024; 10:e36370. [PMID: 39315219 PMCID: PMC11417175 DOI: 10.1016/j.heliyon.2024.e36370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The Nuclear Factor Y (NF-Y) is one of the widely explored transcription factors (TFs) family for its potential role in regulating molecular mechanisms related to stress response and developmental processes. Finger millet (Eleusine coracana (L.) Gaertn) is a hardy and stress-tolerant crop where partial efforts have been made to characterize a few transcription factors. However, the NF-Y TF is still poorly explored and not well documented. The present study aims to identify and characterize NF-Y genes of finger millet using a bioinformatics approach. Genome mining revealed 57 EcNF-Y (Eleusine coracana Nuclear Factor-Y) genes in finger millet, comprising 18 NF-YA, 23 NF-YB, and 16 NF-YC genes. The gene organization, conserved motif, cis-regulatory elements, miRNA target sites, and three-dimensional structures of these NF-Ys were analyzed. The nucleotide substitution rate and gene duplication analysis showed the presence of 7 EcNF-YA, 10 EcNF-YB, and 8 EcNF-YC paralogous genes and revealed the possibilities of synonymous substitution and stabilizing selection during evolution. The role of NF-Ys of finger millet in abiotic stress tolerance was evident by the presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), MYB (myeloblastosis) or MYC (myelocytomatosis). Twenty-three isoforms of miR169, mainly targeting a single NF-Y gene, i.e., the EcNF-YA13 gene, were observed. This interaction could be targeted for finger millet improvement against Magnaporthe oryzae (blast fungus). Therefore, by this study, the putative functions related to biotic and abiotic stress tolerance for many of the EcNF-Y genes could be explored in finger millet.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - D.C. Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| |
Collapse
|
8
|
Plewka P, Szczesniak M, Stepien A, Pasieka R, Wanowska E, Makalowska I, Raczynska K. Novel function of U7 snRNA in the repression of HERV1/LTR12s and lincRNAs in human cells. Nucleic Acids Res 2024; 52:10504-10519. [PMID: 39189459 PMCID: PMC11417402 DOI: 10.1093/nar/gkae738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
U7 snRNA is part of the U7 snRNP complex, required for the 3' end processing of replication-dependent histone pre-mRNAs in S phase of the cell cycle. Here, we show that U7 snRNA plays another function in inhibiting the expression of a subset of long terminal repeats of human endogenous retroviruses (HERV1/LTR12s) and LTR12-containing long intergenic noncoding RNAs (lincRNAs), both bearing sequence motifs that perfectly match the 5' end of U7 snRNA. We demonstrate that U7 snRNA inhibits LTR12 and lincRNA transcription and propose a mechanism in which U7 snRNA hampers the binding/activity of the NF-Y transcription factor to CCAAT motifs within LTR12 elements. Thereby, U7 snRNA plays a protective role in maintaining the silencing of deleterious genetic elements in selected types of cells.
Collapse
Affiliation(s)
- Patrycja Plewka
- Department of Gene Expression, Laboratory of RNA Processing, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Michal W Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Agata Stepien
- Department of Gene Expression, Laboratory of RNA Processing, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Robert Pasieka
- Department of Gene Expression, Laboratory of RNA Processing, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Elzbieta Wanowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Izabela Makalowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Dorota Raczynska
- Department of Gene Expression, Laboratory of RNA Processing, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
le Roux J, Jacob R, Fischer R, van der Vyver C. Identification and expression analysis of nuclear factor Y transcription factor genes under drought, cold and Eldana infestation in sugarcane (Saccharum spp. hybrid). Genes Genomics 2024; 46:927-940. [PMID: 38877289 PMCID: PMC11329523 DOI: 10.1007/s13258-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The Nuclear Factor Y (NF-Y) transcription factor (TF) gene family plays a crucial role in plant development and response to stress. Limited information is available on this gene family in sugarcane. OBJECTIVES To identify sugarcane NF-Y genes through bioinformatic analysis and phylogenetic association and investigate the expression of these genes in response to abiotic and biotic stress. METHODS Sugarcane NF-Y genes were identified using comparative genomics from functionally annotated Poaceae and Arabidopsis species. Quantitative PCR and transcriptome analysis assigned preliminary functional roles to these genes in response to water deficit, cold and African sugarcane borer (Eldana saccharina) infestation. RESULTS We identify 21 NF-Y genes in sugarcane. Phylogenetic analysis revealed three main branches representing the subunits with potential discrepancies present in the assignment of numerical names of some NF-Y putative orthologs across the different species. Gene expression analysis indicated that three genes, ShNF-YA1, A3 and B3 were upregulated and two genes, NF-YA4 and A7 were downregulated, while three genes were upregulated, ShNF-YB2, B3 and C4, in the plants exposed to water deficit and cold stress, respectively. Functional involvement of NF-Y genes in the biotic stress response were also detected where three genes, ShNF-YA6, A3 and A7 were downregulated in the early resistant (cv. N33) response to Eldana infestation whilst only ShNF-YA6 was downregulated in the susceptible (cv. N11) early response. CONCLUSIONS Our research findings establish a foundation for investigating the function of ShNF-Ys and offer candidate genes for stress-resistant breeding and improvement in sugarcane.
Collapse
Affiliation(s)
- Jancke le Roux
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Robyn Jacob
- South African Sugarcane Research Institute (SASRI), KwaZulu-Natal, P/Bag X02, Mount Edgecombe, Durban, 4300, South Africa
| | - Riëtte Fischer
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| |
Collapse
|
10
|
Durukan C, Arbore F, Klintrot R, Bigiotti C, Ilie IM, Vreede J, Grossmann TN, Hennig S. Binding Dynamics of a Stapled Peptide Targeting the Transcription Factor NF-Y. Chembiochem 2024; 25:e202400020. [PMID: 38470946 DOI: 10.1002/cbic.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Transcription factors (TFs) play a central role in gene regulation, and their malfunction can result in a plethora of severe diseases. TFs are therefore interesting therapeutic targets, but their involvement in protein-protein interaction networks and the frequent lack of well-defined binding pockets render them challenging targets for classical small molecules. As an alternative, peptide-based scaffolds have proven useful, in particular with an α-helical active conformation. Peptide-based strategies often require extensive structural optimization efforts, which could benefit from a more detailed understanding of the dynamics in inhibitor/protein interactions. In this study, we investigate how truncated stapled α-helical peptides interact with the transcription factor Nuclear Factor-Y (NF-Y). We identified a 13-mer minimal binding core region, for which two crystal structures with an altered C-terminal peptide conformation when bound to NF-Y were obtained. Subsequent molecular dynamics simulations confirmed that the C-terminal part of the stapled peptide is indeed relatively flexible while still showing defined interactions with NF-Y. Our findings highlight the importance of flexibility in the bound state of peptides, which can contribute to overall binding affinity.
Collapse
Affiliation(s)
- Canan Durukan
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Federica Arbore
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Carlo Bigiotti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box, 94157, 1090 GD, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zhang D, Ji K, Wang J, Liu X, Zhou Z, Huang R, Ai G, Li Y, Wang X, Wang T, Lu Y, Hong Z, Ye Z, Zhang J. Nuclear factor Y-A3b binds to the SINGLE FLOWER TRUSS promoter and regulates flowering time in tomato. HORTICULTURE RESEARCH 2024; 11:uhae088. [PMID: 38799124 PMCID: PMC11116822 DOI: 10.1093/hr/uhae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified SlNF-YA3b, encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of NF-YA3b resulted in an early flowering phenotype in tomato, whereas overexpression of NF-YA3b delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT cis-elements of the SINGLE FLOWER TRUSS (SFT) promoter to suppress its gene expression. These findings uncovered a critical role of NF-YA3b in regulating flowering time in tomato and could be applied to the management of flowering time in crops.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Tan X, Wang G, Cao C, Yang Z, Zhang H, Li Y, Wei Z, Chen J, Sun Z. Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. PLANT PHYSIOLOGY 2024; 195:850-864. [PMID: 38330080 DOI: 10.1093/plphys/kiae070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.
Collapse
Affiliation(s)
- Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guoda Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
13
|
Liu P, Xing N, Xiahou Z, Yan J, Lin Z, Zhang J. Unraveling the intricacies of glioblastoma progression and recurrence: insights into the role of NFYB and oxidative phosphorylation at the single-cell level. Front Immunol 2024; 15:1368685. [PMID: 38510250 PMCID: PMC10950940 DOI: 10.3389/fimmu.2024.1368685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Background Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.
Collapse
Affiliation(s)
- Pulin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Naifei Xing
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Jingwei Yan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China
- National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
14
|
Yan X, Han M, Li S, Liang Z, Ouyang J, Wang X, Liao P. A member of NF-Y family, OsNF-YC5 negatively regulates salt tolerance in rice. Gene 2024; 892:147869. [PMID: 37797782 DOI: 10.1016/j.gene.2023.147869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
NF-Y, a critical transcription factor, binds to the CCAAT-box in target gene promoters, playing a pivotal role in plant development and abiotic stress response. OsNF-YC5, encodes a putative subunit of the NF-Y transcription factor in rice, had an undetermined function. Our research revealed that OsNF-YC5 is induced by high salinity and exogenous abscisic acid (ABA). Subcellular localization studies showed that OsNF-YC5 is nuclear- and cytoplasm-localized. Using CRISPR-Cas9 to disrupt OsNF-YC5, we observed significantly enhanced rice salinity tolerance and ABA-hypersensitivity. Compared to the wild-type, osnf-yc5 mutants exhibited reduced H2O2 and malondialdehyde (MDA) levels, increased catalase (CAT) activity, and elevated OsCATA transcripts under salt stress. Moreover, ABA-dependent (OsABI2 and OsLEA3) and ABA-independent (OsDREB1A, OsDREB1B, and OsDREB2A) marker genes were upregulated in mutant lines in response to salinity. These results indicate that disrupting OsNF-YC5 enhances rice salinity tolerance, potentially by boosting CAT enzyme activity and modulating gene expression in both ABA-dependent and ABA-independent pathways. Therefore, this study provides a valuable theoretical foundation and genetic resources for developing novel salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Xin Yan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Mengtian Han
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Shuai Li
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Zhiyan Liang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Jiexiu Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Xin Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Pengfei Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, PR China.
| |
Collapse
|
15
|
Jin X, Li X, Xie Z, Sun Y, Jin L, Hu T, Huang J. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. PLANT PHYSIOLOGY 2023; 193:2825-2847. [PMID: 37706533 DOI: 10.1093/plphys/kiad499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Regulation of seed dormancy/germination is of great importance for seedling establishment and crop production. Nuclear factor-Y (NF-Y) transcription factors regulate plant growth and development, as well as stress responses; however, their roles in seed germination remain largely unknown. In this study, we reported that NF-Y gene OsNF-YC5 knockout increased, while its overexpression reduced, the seed germination in rice (Oryza sativa L.). ABA-induced seed germination inhibition assays showed that the osnf-yc5 mutant was less sensitive but OsNF-YC5-overexpressing lines were more sensitive to exogenous ABA than the wild type. Meanwhile, MeJA treatment substantially enhanced the ABA sensitivity of OsNF-YC5-overexpressing lines during seed germination. Mechanistic investigations revealed that the interaction of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) with OsNF-YC5 enhanced the stability of OsNF-YC5 by protein phosphorylation, while the interaction between JASMONATE ZIM-domain protein 9 (OsJAZ9) and OsNF-YC5 repressed OsNF-YC5 transcriptional activity and promoted its degradation. Furthermore, OsNF-YC5 transcriptionally activated ABA catabolic gene OsABA8ox3, reducing ABA levels in germinating seeds. However, the transcriptional regulation of OsABA8ox3 by OsNF-YC5 was repressed by addition of OsJAZ9. Notably, OsNF-YC5 improved seed germination under salinity conditions. Further investigation showed that OsNF-YC5 activated the high-affinity K+ transporter gene (OsHAK21) expression, and addition of SAPK9 could increase the transcriptional regulation of OsHAK21 by OsNF-YC5, thus substantially reducing the ROS levels to enhance seed germination under salt stress. Our findings establish that OsNF-YC5 integrates ABA and JA signaling during rice seed germination, shedding light on the molecular networks of ABA-JA synergistic interaction.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Trieu LN, Bich TT, Van Ket N, Van Long N. Genetic diversity, variation, and structure of two populations of bigfin reef squid (Sepioteuthis lessoniana d'Orbigny) in Con Dao and Phu Quoc islands, Vietnam. J Genet Eng Biotechnol 2023; 21:116. [PMID: 37955754 PMCID: PMC10643773 DOI: 10.1186/s43141-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Bigfin squid is one of the economically important seafood resources in Vietnam's fisheries and the waters around Con Dao and Phu Quoc islands are two major fishing grounds where this species has been actively exploited. The start codon targeted polymorphism (SCoT) and CAAT box-derived polymorphism (CBDP) techniques were used to generate DNA fingerprinting data to analyze the genetic diversity, variation, and structure of the two populations in the waters surrounding Phu Quoc and Con Dao islands together with mitochondrial cytochrome C oxidase subunit I (COI) gene sequence data. RESULTS Con Dao population possessed a higher diversity [expected heterozygosity (He) = 0.2254, Shannon index (I) = 0.3459, percentage of polymorphic bands (PPB) = 80.14%, nucleotide diversity (π) = 0.0336, haplotype diversity (h) = 0.910 with 16 haplotypes] than Phu Quoc population (He = 0.1854, I = 0.2873, PPB = 70.38%, π = 0.0246, h = 0.838 with 14 haplotypes). The genetic diversity at species level in the investigated region was at level of He = 0.2169, I = 0.3399, PPB = 86.41, π = 0.0289, and h = 0.892 with 24 haplotypes. Based on DNA fingerprinting data, the pairwise genetic similarity coefficients among individuals of the Con Dao population were lower (average of 0.7977) than the Phu Quoc population (average of 0.8316). Based on mitochondrial COI data, the pairwise genetic distances among individuals of the Con Dao population were higher (average of 0.0361) than the Phu Quoc population (average of 0.0263). Gene differentiation (GST) between two investigated populations was 0.0316 and 0.0310 leading to the genetic distance was 0.0573 and 0.0213 and the gene flow between them was Nm = 8.2209 and 11.4700 migrants per generation among populations based on DNA fingerprinting and based on COI gene sequence data, respectively. Genetic variation within individuals of both populations (WP) played the key role in total genetic variation at species level in surveyed region. CONCLUSIONS For the bigfin reef squid species in the surveyed region, the Con Dao population had the higher genetic diversity than the Phu Quoc population, between them existed a low to moderate genetic differentiation and a genetic exchange via gene flow. The DNA fingerprinting data better revealed the genetic differentiation between the two surveyed populations while the mitochondrial COI gene sequence data could show the phylogenetic relationship among the surveyed individuals and the other from the sea regions in Southeast Asia. Based on the results obtained, fisheries management strategies are suggested toward the conservation and sustainable exploitation of this species.
Collapse
Affiliation(s)
- Le Ngoc Trieu
- The Faculty of Biology, Dalat University (DLU), Lam Dong, Vietnam.
| | - Thai Thach Bich
- The Faculty of Biology, Dalat University (DLU), Lam Dong, Vietnam
| | - Nguyen Van Ket
- The Faculty of Biology, Dalat University (DLU), Lam Dong, Vietnam
| | - Nguyen Van Long
- Institute of Oceanography, Vietnam Academy of Science and Technology (VAST), Khanh Hoa, Vietnam
- Graduated University of Science and Technology (GUST), VAST, Ha Noi, Vietnam
| |
Collapse
|
17
|
Wang T, Zou H, Ren S, Jin B, Lu Z. Genome-Wide Identification, Characterization, and Expression Analysis of NF-Y Gene Family in Ginkgo biloba Seedlings and GbNF-YA6 Involved in Heat-Stress Response and Tolerance. Int J Mol Sci 2023; 24:12284. [PMID: 37569658 PMCID: PMC10418864 DOI: 10.3390/ijms241512284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nuclear factor Y (NF-Y) transcription factors play an essential role in regulating plant growth, development, and stress responses. Despite extensive research on the NF-Y gene family across various species, the knowledge regarding the NF-Y family in Ginkgo biloba remains unknown. In this study, we identified a total of 25 NF-Y genes (seven GbNF-YAs, 12 GbNF-YBs, and six GbNF-YCs) in the G. biloba genome. We characterized the gene structure, conserved motifs, multiple sequence alignments, and phylogenetic relationships with other species (Populus and Arabidopsis). Additionally, we conducted a synteny analysis, which revealed the occurrence of segment duplicated NF-YAs and NF-YBs. The promoters of GbNF-Y genes contained cis-acting elements related to stress response, and miRNA-mRNA analysis showed that some GbNF-YAs with stress-related cis-elements could be targeted by the conserved miRNA169. The expression of GbNF-YA genes responded to drought, salt, and heat treatments, with GbNF-YA6 showing significant upregulation under heat and drought stress. Subcellular localization indicated that GbNF-YA6 was located in both the nucleus and the membrane. Overexpressing GbNF-YA6 in ginkgo callus significantly induced the expression of heat-shock factors (GbHSFs), and overexpressing GbNF-YA6 in transgenic Arabidopsis enhanced its heat tolerance. Additionally, Y2H assays demonstrated that GbNF-YA6 could interact with GbHSP at the protein level. Overall, our findings offer novel insights into the role of GbNF-YA in enhancing abiotic stress tolerance and warrant further functional research of GbNF-Y genes.
Collapse
Affiliation(s)
| | | | | | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| |
Collapse
|
18
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
19
|
Li L, Ren X, Shao L, Huang X, Zhang C, Wang X, Yang J, Li C. Comprehensive Analysis of the NF-YB Gene Family and Expression under Abiotic Stress and Hormone Treatment in Larix kaempferi. Int J Mol Sci 2023; 24:ijms24108910. [PMID: 37240255 DOI: 10.3390/ijms24108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
NF-YB, a subfamily of Nuclear Factor Y (NF-Y) transcription factor, play crucial role in many biological processes of plant growth and development and abiotic stress responses, and they can therefore be good candidate factors for breeding stress-resistant plants. However, the NF-YB proteins have not yet been explored in Larix kaempferi, a tree species with high economic and ecological values in northeast China and other regions, limiting the breeding of anti-stress L. kaempferi. In order to explore the roles of NF-YB transcription factors in L. kaempferi, we identified 20 LkNF-YB family genes from L. kaempferi full-length transcriptome data and carried out preliminary characterization of them through series of analyses on their phylogenetic relationships, conserved motif structure, subcellular localization prediction, GO annotation, promoter cis-acting elements as well as expression profiles under treatment of phytohormones (ABA, SA, MeJA) and abiotic stresses (salt and drought). The LkNF-YB genes were classified into three clades through phylogenetic analysis and belong to non-LEC1 type NF-YB transcription factors. They have 10 conserved motifs; all genes contain a common motif, and their promoters have various phytohormones and abiotic stress related cis-acting elements. Quantitative real time reverse transcription PCR (RT-qPCR) analysis showed that the sensitivity of the LkNF-YB genes to drought and salt stresses was higher in leaves than roots. The sensitivity of LKNF-YB genes to ABA, MeJA, SA stresses was much lower than that to abiotic stress. Among the LkNF-YBs, LkNF-YB3 showed the strongest responses to drought and ABA treatments. Further protein interaction prediction analysis for LkNF-YB3 revealed that LkNF-YB3 interacts with various factors associated with stress responses and epigenetic regulation as well as NF-YA/NF-YC factors. Taken together, these results unveiled novel L. kaempferi NF-YB family genes and their characteristics, providing the basic knowledge for further in-depth studies on their roles in abiotic stress responses of L. kaempferi.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xi Ren
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chunyan Zhang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xuhui Wang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
20
|
Jin X, Zhang Y, Li X, Huang J. OsNF-YA3 regulates plant growth and osmotic stress tolerance by interacting with SLR1 and SAPK9 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:914-933. [PMID: 36906910 DOI: 10.1111/tpj.16183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
The antagonism between gibberellin (GA) and abscisic acid (ABA) signaling pathways is vital to balance plant growth and stress response. Nevertheless, the mechanism by which plants determine the balance remains to be elucidated. Here, we report that rice NUCLEAR FACTOR-Y A3 (OsNF-YA3) modulates GA- and ABA-mediated balance between plant growth and osmotic stress tolerance. OsNF-YA3 loss-of-function mutants exhibit stunted growth, compromised GA biosynthetic gene expression, and decreased GA levels, while its overexpression lines have promoted growth and enhanced GA content. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis and transient transcriptional regulation assays demonstrate that OsNF-YA3 activates GA biosynthetic gene OsGA20ox1 expression. Furthermore, the DELLA protein SLENDER RICE1 (SLR1) physically interacts with OsNF-YA3 and thus inhibits its transcriptional activity. On the other side, OsNF-YA3 negatively regulates plant osmotic stress tolerance by repressing ABA response. OsNF-YA3 reduces ABA levels by transcriptionally regulating ABA catabolic genes OsABA8ox1 and OsABA8ox3 by binding to their promoters. Furthermore, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9), the positive component in ABA signaling, interacts with OsNF-YA3 and mediates OsNF-YA3 phosphorylation, resulting in its degradation in plants. Collectively, our findings establish OsNF-YA3 as an important transcription factor that positively modulates GA-regulated plant growth and negatively controls ABA-mediated water-deficit and salt tolerance. These findings shed light on the molecular mechanism underlying the balance between the growth and stress response of the plant.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yifan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
21
|
Andrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, et alAndrews G, Fan K, Pratt HE, Phalke N, Karlsson EK, Lindblad-Toh K, Gazal S, Moore JE, Weng Z, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Mammalian evolution of human cis-regulatory elements and transcription factor binding sites. Science 2023; 380:eabn7930. [PMID: 37104580 DOI: 10.1126/science.abn7930] [Show More Authors] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Understanding the regulatory landscape of the human genome is a long-standing objective of modern biology. Using the reference-free alignment across 241 mammalian genomes produced by the Zoonomia Consortium, we charted evolutionary trajectories for 0.92 million human candidate cis-regulatory elements (cCREs) and 15.6 million human transcription factor binding sites (TFBSs). We identified 439,461 cCREs and 2,024,062 TFBSs under evolutionary constraint. Genes near constrained elements perform fundamental cellular processes, whereas genes near primate-specific elements are involved in environmental interaction, including odor perception and immune response. About 20% of TFBSs are transposable element-derived and exhibit intricate patterns of gains and losses during primate evolution whereas sequence variants associated with complex traits are enriched in constrained TFBSs. Our annotations illuminate the regulatory functions of the human genome.
Collapse
Affiliation(s)
- Gregory Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nishigandha Phalke
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Q, Yang S, Fan M, Feng P, Zhu L, Chen H, Wang J. A natural variation in the promoter of GRA117 affects carbon assimilation in rice. PLANTA 2023; 257:77. [PMID: 36894728 DOI: 10.1007/s00425-023-04109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
GRA117 is crucial in the process of carbon assimilation in rice as it regulates the development of chloroplasts, which in turn facilitates the Calvin-Benson cycle. Carbon assimilation is a critical process for plant growth, and despite numerous relevant studies, there are still unknown constraints. In this study, we isolated a rice mutant, gra117, which exhibited seedling albinism, delayed chloroplast development, decreased chlorophyll content, reduced yield, and seedling stress susceptibility, as compared to WT. Our further investigations revealed that gra117 had a significantly lower net photosynthetic carbon assimilation rate, as well as reduced levels of Rubisco enzyme activity, RUBP, PGA, carbohydrate, protein content, and dry matter accumulation. These findings provide evidence for decreased carbon assimilation in gra117. By mapping cloning, we discovered a 665 bp insertion in the GRA117 promoter region that decreases GRA117 transcriptional activity and causes the gra117 phenotype. GRA117 encodes PfkB-type fructokinase-like 2, which is subcellularly localized in chloroplasts and is widely expressed in various rice tissues, particularly at high levels in leaf tissues. GRA117 transcription is regulated by the core region 1029 bp before the start codon. Our quantitative RT-PCR and Western blot assays showed that GRA117 promotes the expression and translation of photosynthetic genes. RNA-Seq analysis revealed that GRA117 plays a significant role in photosynthetic carbon fixation, carbon metabolism, and chloroplast ribosome-related pathways. Our study supports that GRA117 promotes the Calvin-Benson cycle by regulating chloroplast development, ultimately leading to enhanced carbon assimilation in rice.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Shenglong Yang
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Mingqian Fan
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Pulin Feng
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Lin Zhu
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hongwei Chen
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiayu Wang
- Key Laboratory of Rice Biology and Genetic Breeding in Northeast China (Ministry of Agriculture and Rural Areas), Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
23
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
24
|
The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance. Int J Mol Sci 2022; 23:ijms232415778. [PMID: 36555422 PMCID: PMC9778975 DOI: 10.3390/ijms232415778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.
Collapse
|
25
|
Liu H, Guo Y, Wang H, Yang W, Yang J, Zhang J, Liu D, El-Kassaby YA, Li W. Involvement of PtCOL5-PtNF-YC4 in reproductive cone development and gibberellin signaling in Chinese pine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111383. [PMID: 35850285 DOI: 10.1016/j.plantsci.2022.111383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
It is well documented that the CO/NF-YB/NF-YC trimer (NF-Y-CO) binds and regulates the FT promoter. However, the FT/TFL1-like (FLOWERING LOCUS T/TERMINALFLOWER1-like) genes in gymnosperms are all flowering suppressors, and the regulation model of NF-Y in gymnosperms is different from that in angiosperms. Here, using Chinese pine (Pinus tabuliformis), we identified a CONSTANS-LIKE gene, PtCOL5, the expression of which was strongly induced during cones development and it functioned as a repressor of flowering. PtNF-YC4, which interacted with PtCOL5, was highly correlated with PtCOL5 during growth and development, has been demonstrated. Moreover, PtNF-YC4 and PtCOL5 can bind to PtTFL2 promoter, and their interaction can enhance PtTFL2 expression. Interestingly, we found PtNF-YC4 and PtCOL5 were involved in gibberellin signaling and their interaction was inhibited by PtDELLA protein, thus affecting PtTFL2 expression. Collectively, PtCOL5-PtNF-YC4 was involved in reproductive cone development and gibberellin signaling in Chinese pine. Our findings uncovered reproductive cone development and signal transduction mechanism of COL-NF-Y in gymnosperms.
Collapse
Affiliation(s)
- Hongmei Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yingtian Guo
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Huili Wang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Wenbin Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Junhe Yang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Jingxing Zhang
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Dan Liu
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Wei Li
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
26
|
Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z. Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. PLANT PHYSIOLOGY 2022; 190:1506-1525. [PMID: 35861438 PMCID: PMC9516732 DOI: 10.1093/plphys/kiac340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 05/26/2023]
Abstract
The identification of drought stress regulatory genes is crucial for the genetic improvement of maize (Zea mays L.) yield. Nuclear factors Y (NF-Ys) are important transcription factors, but their roles in the drought stress tolerance of plants and underlying molecular mechanisms are largely unknown. In this work, we used yeast two-hybrid screening to identify potential interactors of ZmNF-YB16 and confirmed the interaction between ZmNF-YA1 and ZmNF-YB16-YC17 and between ZmNF-YA7 and ZmNF-YB16-YC17. ZmNF-YB16 interacted with ZmNF-YC17 via its histone fold domain to form a heterodimer in the cytoplasm and then entered the nucleus to form a heterotrimer with ZmNF-YA1 or ZmNF-YA7 under osmotic stress. Overexpression of ZmNF-YA1 improved drought and salt stress tolerance and root development of maize, whereas zmnf-ya1 mutants exhibited drought and salt stress sensitivity. ZmNF-YA1-mediated transcriptional regulation, especially in JA signaling, histone modification, and chromatin remodeling, could underlie the altered stress tolerance of zmnf-ya1 mutant plants. ZmNF-YA1 bound to promoter CCAAT motifs and directly regulated the expression of multiple genes that play important roles in stress responses and plant development. Comparison of ZmNF-YB16- and ZmNF-YA1-regulated genes showed that ZmNF-YA1 and ZmNF-YB16 have similar biological functions in stress responses but varied functions in other biological processes. Taken together, ZmNF-YA1 is a positive regulator of plant drought and salt stress responses and is involved in the root development of maize, and ZmNF-Y complexes with different subunits may have discrepant functions.
Collapse
Affiliation(s)
| | | | | | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Li
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Juren Zhang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | | |
Collapse
|
27
|
Deng C, Li CJ, Hsieh CY, Liu LY, Chen YA, Lin WY. MtNF-YC6 and MtNF-YC11 are involved in regulating the transcriptional program of arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:976280. [PMID: 36247647 PMCID: PMC9554486 DOI: 10.3389/fpls.2022.976280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi are obligate symbionts that transfer mineral nutrients to host plants through arbuscules, a fungal structure specialized for exchange for photosynthetic products. MtNF-YC6 and MtNF-YC11, which encode the C subunits of nuclear factor Y (NF-Y) family in Medicago truncatula are induced specifically by arbuscular mycorrhizal symbiosis (AMS). A previous study showed that MtNF-YC6 and MtNF-YC11 are activated in cortical cells of mycorrhizal roots, but the gene functions were unknown. Herein, we identified both MtNF-YB17 and MtNF-YB12 as the interacting partners of MtNF-YC6 and MtNF-YC11 in yeast and plants. MtNF-YB17 was highly induced by AMS and activated in cortical cells only in mycorrhizal roots but MtNF-YB12 was not affected. The formation of B/C heterodimers led the protein complexes to transfer from the cytoplasm to the nucleus. Silencing MtNF-YC6 and C11 by RNA interference (RNAi) resulted in decreased colonization efficiency and arbuscule richness. Coincidently, genes associated with arbuscule development and degeneration in RNAi roots were also downregulated. In silico analysis showed CCAAT-binding motifs in the promoter regions of downregulated genes, further supporting the involvement of NF-Y complexes in transcriptional regulation of symbiosis. Taken together, this study identifies MtNF-YC6- or MtNF-YC11-containing protein complexes as novel transcriptional regulators of symbiotic program and provides a list of potential downstream target genes. These data will help to further dissect the AMS regulatory network.
Collapse
Affiliation(s)
- Chen Deng
- Department of Horticulture and Landscape and Architecture, National Taiwan University, Taipei, Taiwan
| | - Chun-Jui Li
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Chen-Yun Hsieh
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yi-An Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Clúa J, Rípodas C, Roda C, Battaglia ME, Zanetti ME, Blanco FA. NIPK, a protein pseudokinase that interacts with the C subunit of the transcription factor NF-Y, is involved in rhizobial infection and nodule organogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:992543. [PMID: 36212340 PMCID: PMC9532615 DOI: 10.3389/fpls.2022.992543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Heterotrimeric Nuclear Factor Y (NF-Y) transcription factors are key regulators of the symbiotic program that controls rhizobial infection and nodule organogenesis. Using a yeast two-hybrid screening, we identified a putative protein kinase of Phaseolus vulgaris that interacts with the C subunit of the NF-Y complex. Physical interaction between NF-YC1 Interacting Protein Kinase (NIPK) and NF-YC1 occurs in the cytoplasm and the plasma membrane. Only one of the three canonical amino acids predicted to be required for catalytic activity is conserved in NIPK and its putative homologs from lycophytes to angiosperms, indicating that NIPK is an evolutionary conserved pseudokinase. Post-transcriptional silencing on NIPK affected infection and nodule organogenesis, suggesting NIPK is a positive regulator of the NF-Y transcriptional complex. In addition, NIPK is required for activation of cell cycle genes and early symbiotic genes in response to rhizobia, including NF-YA1 and NF-YC1. However, strain preference in co-inoculation experiments was not affected by NIPK silencing, suggesting that some functions of the NF-Y complex are independent of NIPK. Our work adds a new component associated with the NF-Y transcriptional regulators in the context of nitrogen-fixing symbiosis.
Collapse
|
29
|
Huang Y, Ma H, Wang X, Cui T, Han G, Zhang Y, Wang C. Expression patterns of the poplar NF-Y gene family in response to Alternaria alternata and hormone treatment and the role of PdbNF-YA11 in disease resistance. Front Bioeng Biotechnol 2022; 10:956271. [PMID: 36185440 PMCID: PMC9523018 DOI: 10.3389/fbioe.2022.956271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant nuclear factor-Y (NF-Y) transcription factors (TFs) are key regulators of growth and stress resistance. However, the role of NF-Y TFs in poplar in response to biotic stress is still unclear. In this study, we cloned 26 PdbNF-Y encoding genes in the hybrid poplar P. davidiana × P. bollena, including 12 PdbNF-YAs, six PdbNF-YBs, and eight PdbNF-YCs. Their physical and chemical parameters, conserved domains, and phylogeny were subsequently analyzed. The protein–protein interaction (PPI) network showed that the three PdbNF-Y subunits may interact with NF-Y proteins belonging to two other subfamilies and other TFs. Tissue expression analysis revealed that PdbNF-Ys exhibited three distinct expression patterns in three tissues. Cis-elements related to stress-responsiveness were found in the promoters of PdbNF-Ys, and most PdbNF-Ys were shown to be differentially expressed under Alternaria alternata and hormone treatments. Compared with the PdbNF-YB and PdbNF-YC subfamilies, more PdbNF-YAs were significantly induced under the two treatments. Moreover, loss- and gain-of-function analyses showed that PdbNF-YA11 plays a positive role in poplar resistance to A. alternata. Additionally, RT‒qPCR analyses showed that overexpression and silencing PdbNF-YA11 altered the transcript levels of JA-related genes, including LOX, AOS, AOC, COI, JAZ, ORCA, and MYC, suggesting that PdbNF-YA11-mediated disease resistance is related to activation of the JA pathway. Our findings will contribute to functional analysis of NF-Y genes in woody plants, especially their roles in response to biotic stress.
Collapse
|
30
|
Identification and Characterization of Abiotic Stress–Responsive NF-YB Family Genes in Medicago. Int J Mol Sci 2022; 23:ijms23136906. [PMID: 35805915 PMCID: PMC9266772 DOI: 10.3390/ijms23136906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor YB (NF-YB) are plant-specific transcription factors that play a critical regulatory role in plant growth and development as well as in plant resistance against various stresses. In this study, a total of 49 NF-YB genes were identified from the genomes of Medicago truncatula and Medicago sativa. Multiple sequence alignment analysis showed that all of these NF-YB members contain DNA binding domain, NF-YA interaction domain and NF-YC interaction domain. Phylogenetic analysis suggested that these NF-YB proteins could be classified into five distinct clusters. We also analyzed the exon–intron organizations and conserved motifs of these NF-YB genes and their deduced proteins. We also found many stress-related cis-acting elements in their promoter region. In addition, analyses on genechip for M. truncatula and transcriptome data for M. sativa indicated that these NF-YB genes exhibited a distinct expression pattern in various tissues; many of these could be induced by drought and/or salt treatments. In particular, RT-qPCR analysis revealed that the expression levels of gene pairs MsNF-YB27/MtNF-YB15 and MsNF-YB28/MtNF-YB16 were significantly up-regulated under NaCl and mannitol treatments, indicating that they are most likely involved in salt and drought stress response. Taken together, our study on NF-YB family genes in Medicago is valuable for their functional characterization, as well as for the application of NF-YB genes in genetic breeding for high-yield and high-resistance alfalfa.
Collapse
|
31
|
Yang M, Chen J, Li X, Huang J, Wang Q, Wang S, Wei S, Qin Q. The transcription factor NFYC positively regulates expression of MHCIa in the red-spotted grouper (Epinephelus akaara). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104272. [PMID: 34600022 DOI: 10.1016/j.dci.2021.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Mammalian studies have shown that the nuclear transcription factor Y (NFYC) regulates the expression of major histocompatibility complex (MHC) by binding to CCAAT-box on promoters. However, few studies have focused on the regulatory mechanisms of NFYC in MHC pathway in fish. To explore the transcriptional regulatory mechanism of MHCIa in fish, we characterized NFYC and MHCIa of red-spotted grouper (Epinephelus akaara) (named EaNFYC and EaMHCIa, respectively). The EaNFYC genome sequence is 13,796 bp and contains 1,065 bp open reading frame. It is composed of ten exons and nine introns and encode a 354 amino acid sequence. The putative EaNFYC protein sequence shared 67.2-99.4% identity to vertebrate NFYC and possesses a typically conserved domain (histone- or haem-associated protein 5 domain (HAP5)) at the N-terminus. Transcripts of both EaNFYC and EaMHCIa were ubiquitously expressed in all detect tissues, and higher mRNA levels were detected in immune-relevant tissues (middle-kidney). EaNFYC expression increased after treatment with polyinosinic: polycytidylic acid, lipopolysaccharide, nervous necrosis virus, zymosan A, and Singapore grouper iridovirus. Analysis of subcellular localization indicated that EaNFYC was localized at the cell nucleus only. Furthermore, overexpression of EaNFYC significantly stimulated the expression of EaMHCIa, interferon signalling molecules and inflammatory cytokine. The region -878 bp to +82 bp of EaMHCIa promoter was identified to be the core promoter which EaNFYC take effect on. Additionally, point mutations and electrophoretic mobility shift assays verified that NFYC activate MHCIa expression by binding at the M1 and M2 binding sites that do not contain CCAAT-box. These results contribute to elucidating the function of fish NFYC on MHC transcriptional mechanisms, and provide the first evidence of positive regulation of MHCIa expression by NFYC in fish.
Collapse
Affiliation(s)
- Min Yang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jinpeng Chen
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinshuai Li
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianling Huang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaowen Wang
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shina Wei
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- University JointLaboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
32
|
Genome-wide screening and identification of nuclear Factor-Y family genes and exploration their function on regulating abiotic and biotic stress in potato (Solanum tuberosum L.). Gene 2021; 812:146089. [PMID: 34896520 DOI: 10.1016/j.gene.2021.146089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.
Collapse
|
33
|
Yu T, Liu Y, Fu J, Ma J, Fang Z, Chen J, Zheng L, Lu Z, Zhou Y, Chen M, Xu Z, Ma Y. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2589-2605. [PMID: 34416065 PMCID: PMC8633499 DOI: 10.1111/pbi.13684] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 05/22/2023]
Abstract
Drought and salt stresses impose major constraints on soybean production worldwide. However, improving agronomically valuable soybean traits under drought conditions can be challenging due to trait complexity and multiple factors that influence yield. Here, we identified a nuclear factor Y C subunit (NF-YC) family transcription factor member, GmNF-YC14, which formed a heterotrimer with GmNF-YA16 and GmNF-YB2 to activate the GmPYR1-mediated abscisic acid (ABA) signalling pathway to regulate stress tolerance in soybean. Notably, we found that CRISPR/Cas9-generated GmNF-YC14 knockout mutants were more sensitive to drought than wild-type soybean plants. Furthermore, field trials showed that overexpression of GmNF-YC14 or GmPYR1 could increase yield per plant, grain plumpness, and stem base circumference, thus indicating improved adaptation of soybean plants to drought conditions. Taken together, our findings expand the known functional scope of the NF-Y transcription factor functions and raise important questions about the integration of ABA signalling pathways in plants. Moreover, GmNF-YC14 and GmPYR1 have potential for application in the improvement of drought tolerance in soybean plants.
Collapse
Affiliation(s)
- Tai‐Fei Yu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Ying Liu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jin‐Dong Fu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jian Ma
- College of AgronomyJilin Agricultural UniversityChangchunChina
| | - Zheng‐Wu Fang
- College of AgricultureYangtze University/Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of WetlandMinistry of EducationYangtze UniversityJingzhouChina
| | - Jun Chen
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Lei Zheng
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Zhi‐Wei Lu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
- South Subtropical Crops InstituteChinese Academy of Tropical Agricultural Sciences/Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiangChina
| | - Yong‐Bin Zhou
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Ming Chen
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Zhao‐Shi Xu
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - You‐Zhi Ma
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic ImprovementKey Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| |
Collapse
|
34
|
Ding L, Zhao X, Xiong Q, Jiang X, Liu X, Ding K, Zhou P. Cdc25B is transcriptionally inhibited by IER5 through the NF-YB transcription factor in irradiation-treated HeLa cells. Toxicol Res (Camb) 2021; 10:875-884. [PMID: 34484679 DOI: 10.1093/toxres/tfab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer (CC) is a type of pelvic malignant tumor that severely threatens women's health. Current evidence suggests that IER5, as a potential radiosensitizer, promotes irradiation-induced apoptosis in CC tissues in patients undergoing chemoradiotherapy. IER5 has been shown to be involved in the G2/M-phase transition. In the present study, we used Cdc25B as the breakthrough point to explore the underlying mechanism of IER5 in the cell cycle regulation of radiation-damaged HeLa cells. IER5 was evidently upregulated after irradiation, but Cdc25B was significantly downregulated. In monoclonal IER5-silenced HeLa cells, irradiation-induced downregulation of Cdc25B was attenuated. The effect of irradiation on Cdc25B promoter activity was determined by dual-luciferase reporter assays. The response elements on the Cdc25B promoter related to irradiation were predicted by JASPAR. These conserved sequences were mutated individually or in combination by splicing-by-overlap extension PCR, and their function was confirmed by dual-luciferase reporter assays. The enrichment efficiency of transcription factors after irradiation was determined by chromatin immunoprecipitation (ChIP) assay. Both Sp1/Sp3 and NF-YB binding sites were involved in irradiation-mediated regulation of Cdc25B. IER5 was involved in irradiation-mediated regulation of Cdc25B through the NF-YB binding site. Furthermore, ChIP assays showed that IER5 bound to the Cdc25B promoter, and the binding of IER5 to the Cdc25B promoter region in irradiation-induced HeLa cells induced the release of the coactivator p300 through interaction with NF-YB. Taken together, these findings indicate that IER5 is the transcriptional repressor that accelerates the downregulation of Cdc25B expression after irradiation.
Collapse
Affiliation(s)
- Lixin Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xianzhe Zhao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Qiang Xiong
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaoyan Jiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaodan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| | - Kuke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| |
Collapse
|
35
|
Kumar A, Yadav G. Shared ancestry of core-histone subunits and non-histone plant proteins containing the Histone Fold Motif (HFM). J Bioinform Comput Biol 2021; 19:2140001. [PMID: 33888032 DOI: 10.1142/s0219720021400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three helical Histone Fold Motif (HFM) of core histone proteins provides an evolutionarily favored site for the protein-DNA interface. Despite significant variation in sequence, the HFM retains a distinctive structural fold that has diversified into several non-histone protein families. In this work, we explore the ancestry of non-histone HFM containing families in the plant kingdom. A sequence search algorithm was developed using iterative profile Hidden Markov Models to identify remote homologs of core-histone proteins. The resulting hits were functionally annotated, classified into families, and subjected to comprehensive phylogenetic analyses via Maximum likelihood and Bayesian methods. We have identified 4390 HFM containing proteins in the plant kingdom that are not histones, mostly existing as diverse transcription factor families, distributed widely within and across taxonomic groups. Patterns of homology suggest that core histone subunit H2A has evolved into newer families like NF-YC and DRAP1, whereas the H2B subunit of core histones shares a common ancestry with NF-YB and DR1 class of TFs. Core histone subunits H3 and H4 were found to have evolved into DPE and TAF proteins, respectively. Taken together these results provide insights into diversification events during the evolution of the HFM, including sub-functionalization and neo-functionalization of the HFM.
Collapse
Affiliation(s)
- Amish Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Sciences, University of Cambridge, U.K
| |
Collapse
|
36
|
Liu R, Wu M, Liu HL, Gao YM, Chen J, Yan HW, Xiang Y. Genome-wide identification and expression analysis of the NF-Y transcription factor family in Populus. PHYSIOLOGIA PLANTARUM 2021; 171:309-327. [PMID: 32134494 DOI: 10.1111/ppl.13084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In the past few years, many studies have reported that the transcription factor Nuclear Factor Y (NF-Y) gene family plays important roles in embryonic development, photosynthesis, flowering time regulation and stress response, in various plants. Although the NF-Y gene family has been systematically studied in many species, little is known about NF-Y genes in Populus. In this study, the NF-Y gene family in the Populus genome was identified and its structural characteristics were described. Fifty-two NF-Y genes were authenticated in the Populus trichocarpa genome and categorized into three subfamilies (NF-YA/B/C) by phylogenetic analysis. Chromosomal localization of these genes revealed that they were distributed randomly across 17 of the 19 chromosomes. Segmental duplication played a vital role in the amplification of Populus NF-Y gene family. Moreover, microsynteny analysis indicated that, among Populus trichocarpa, Arabidopsis thaliana, Vitis vinifera and Carica papaya, NF-Y duplicated regions were more conserved between Populus trichocarpa and Vitis vinifera. Redundant stress-related cis-elements were also found in the promoters of most 13 NF-YA genes and their expression levels varied widely following drought, salt, ABA and cold treatments. Subcellular localization experiments in tobacco showed that PtNF-YA3 was localized in nucleus and cytomembrane, while PtNF-YA4 was only in the nucleus in tobacco. According to the transcriptional activity experiments, neither of them had transcriptional activity in yeast. In summary, a comprehensive analysis of the Populus NF-Y gene family was performed to establish a theoretical basis for further functional studies on this family.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan-Long Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ya-Meng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Han-Wei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
37
|
Chen J. NF-Y is critical for the proper growth of zebrafish embryonic heart and its cardiomyocyte proliferation. Genesis 2021; 59:e23408. [PMID: 33417743 DOI: 10.1002/dvg.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022]
Abstract
The ubiquitous NF-Y gene regulates the expression of different genes in various signaling pathways. However, the function of NF-Y in zebrafish heart development is largely unknown. Previously we identified a same group of cell cycle related gene cluster (CCRG) was downregulated in the embryonic hearts with impeded growth due to various stresses. The promoter regions of these CCRG genes shared a most common motif for NF-Y. Chromatin immunoprecipitation experiment demonstrated that the binding of NF-Y to its motif was real on the CCRG candidate gene promoters. Knockdown of embryonic NF-Y by morpholinos led to a small heart, mimicking the abnormal heart phenotype caused by other stresses. In parallel the expression of certain CCRG candidate genes was reduced in the NF-Y A morphant hearts exposed to malignant environments. Absence of NF-Y A also led to undermine cardiomyocyte proliferation and hence less total number of caridomyocytes per heart. Trans-AM Elisa experiment also found that in the presence of the stresses such as TCDD and TNNT2 MO, the binding capacity of NF-Y A subunit to its core motif was reduced. We conclude that NF-Y sustains proper cardiomyocyte proliferation in the heart, thus it plays a positive role in promoting early zebrafish heart growth.
Collapse
Affiliation(s)
- Jing Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
38
|
Guo Y, Niu S, El-Kassaby YA, Li W. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis. PHYSIOLOGIA PLANTARUM 2021; 171:34-47. [PMID: 32770551 DOI: 10.1111/ppl.13183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
It is known that nuclear factor Y (NF-Y) transcription factors play an important role in flowering time regulation and hormone response (ABA, GA) in angiosperms, but, little known in conifers. Moreover, the NF-Y gene family has not been comprehensively reported in conifers. Here, we identified 9 NF-YA, 9 NF-YB and 10 NF-YC genes in Pinus tabuliformis using Arabidopsis NF-Y protein sequences as queries. Additionally, by comparing conserved regions and phylogenetic relationships of the PtNF-Ys, we found that NF-Ys were both conserved and altered during evolution. PtTFL2, PtCO, PtNF-YC1 and PtNF-YC4 were exploited by expression profile in male cone development and correlation analysis. Furthermore, NF-YC1/4 and DPL (DELLA protein of P. tabuliformis) were interacted by yeast two-hybrid and BiFC assays, which suggested that NF-YC1/4 may be involved in gibberellins signaling pathway. Moreover, the multiple types of phytohormones-responsive cis-elements (ABA, JA, IAA, SA) have been found, and gene expression profile analysis showed that many NF-Y genes responded positively to SA and as opposed to IAA and JA, revealing the potential role of NF-Ys in conifers resistance. In summary, this study provided the basis for further investigation of the function of NF-Y genes in conifers.
Collapse
Affiliation(s)
- Yingtian Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shihui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Forest Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
39
|
Gao J, Ni X, Li H, Hayat F, Shi T, Gao Z. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT MOLECULAR BIOLOGY 2021; 105:83-97. [PMID: 32926248 DOI: 10.1007/s11103-020-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study is the first to demonstrate that GA4-induced dormancy release is associated with the NF-Y complex, which interacts with gibberellin inhibitor RGL2 in Japanese apricot. Seasonal dormancy is not only vital for the survival in cold winter but also affects flowering of temperate fruit trees and the dormancy release depends on the accumulation of the cold temperatures (Chilling requirement-CR). To understand the mechanism of dormancy release in deciduous fruit crops, we compared miRNA sequencing data during the transition stage from paradormancy to dormancy release in the Japanese apricot and found that the miR169 family showed significant differentially up-regulated expression during dormancy induction and was down-regulated during the dormancy release periods. The 5' RACE assay and RT-qPCR validated its target gene NUCLEAR FACTOR-Y subunit A (NF-YA), which exhibited the opposite expression pattern. Further study showed that exogenous GA4 could inhibit the expression of the gibberellic acid (GA) signal transduction suppressor PmRGL2 (RGA-LIKE 2) and promote the expression of NF-Y. Moreover, the interaction between the NF-Y family and GA inhibitor PmRGL2 was verified by the yeast-two-hybrid (Y2H) system and a bimolecular fluorescence complementarity (BiFC) experiment. These results suggest that synergistic regulation of the NF-Y and PmRGL2 complex leads to the activation of dormancy release induced by GA4. These findings will help to elucidate the functional and regulatory roles of miR169 and NF-Y complex in seasonal bud dormancy induced by GA in Japanese apricot and provide new insights for the discovery of dormancy release mechanisms in woody plants.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hantao Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faisal Hayat
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Chaves-Sanjuan A, Gnesutta N, Gobbini A, Martignago D, Bernardini A, Fornara F, Mantovani R, Nardini M. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:49-61. [PMID: 33098724 DOI: 10.1111/tpj.15038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
NF-Y transcription factor comprises three subunits: NF-YA, NF-YB and NF-YC. NF-YB and NF-YC dimerize through their histone fold domain (HFD), which can bind DNA in a non-sequence-specific fashion while serving as a scaffold for NF-YA trimerization. Upon trimerization, NF-YA specifically recognizes the CCAAT box sequence on promoters and enhancers. In plants, each NF-Y subunit is encoded by several genes giving rise to hundreds of potential heterotrimeric combinations. In addition, plant NF-YBs and NF-YCs interact with other protein partners to recognize a plethora of genomic motifs, as the CCT protein family that binds CORE sites. The NF-Y subunit organization and its DNA-binding properties, together with the NF-Y HFD capacity to adapt different protein modules, represent plant-specific features that play a key role in development, growth and reproduction. Despite their relevance, these features are still poorly understood at the molecular level. Here, we present the structures of Arabidopsis and rice NF-YB/NF-YC dimers, and of an Arabidopsis NF-Y trimer in complex with the FT CCAAT box, together with biochemical data on NF-Y mutants. The dimeric structures identify the key residues for NF-Y HFD stabilization. The NF-Y/DNA structure and the mutation experiments shed light on HFD trimerization interface properties and the NF-YA sequence appetite for the bases flanking the CCAAT motif. These data explain the logic of plant NF-Y gene expansion: the trimerization adaptability and the flexible DNA-binding rules serve the scopes of accommodating the large number of NF-YAs, CCTs and possibly other NF-Y HFD binding partners and a diverse audience of genomic motifs.
Collapse
Affiliation(s)
- Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Andrea Gobbini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Fabio Fornara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| |
Collapse
|
41
|
Zhu XF, Wu Q, Meng YT, Tao Y, Shen RF. AtHAP5A regulates iron translocation in iron-deficient Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1910-1925. [PMID: 33405355 DOI: 10.1111/jipb.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficient plants employ multiple strategies to increase root uptake and root-to-shoot translocation of Fe. The identification of genes that are responsible for these processes, and a comprehensive understanding of the regulatory effects of transcriptional networks on their expression, including transcription factors (TFs), is underway in Arabidopsis thaliana. Here, we show that a Histone- or heme-associated proteins (HAP) transcription factor (TF), HAP5A, is necessary for the response to Fe deficiency in Arabidopsis. Its expression was induced under Fe deficiency, and the lack of HAP5A significantly decreased Fe translocation from the root to the shoot, resulting in substantial chlorosis of the newly expanded leaves, compared with the wild-type (WT, Col-0). Further analysis found that the expression of a gene encoding nicotianamine (NA) synthase (NAS1) was dramatically decreased in the hap5a mutant, regardless of the Fe status. Yeast-one-hybrid and ChIP analyses suggested that HAP5A directly binds to the promoter region of NAS1. Moreover, overexpression of NAS1 could rescue the chlorosis phenotype of hap5a in Fe deficient conditions. In summary, a novel pathway was elucidated, showing that NAS1-dependent translocation of Fe from the root to the shoot is controlled by HAP5A in Fe-deficient Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Ting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Zotova L, Shamambaeva N, Lethola K, Alharthi B, Vavilova V, Smolenskaya SE, Goncharov NP, Kurishbayev A, Jatayev S, Gupta NK, Gupta S, Schramm C, Anderson PA, Jenkins CLD, Soole KL, Shavrukov Y. TaDrAp1 and TaDrAp2, Partner Genes of a Transcription Repressor, Coordinate Plant Development and Drought Tolerance in Spelt and Bread Wheat. Int J Mol Sci 2020; 21:E8296. [PMID: 33167455 PMCID: PMC7663959 DOI: 10.3390/ijms21218296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2β). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Nasgul Shamambaeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Katso Lethola
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Badr Alharthi
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Svetlana E. Smolenskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Peter A. Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
43
|
Shen C, Liu H, Guan Z, Yan J, Zheng T, Yan W, Wu C, Zhang Q, Yin P, Xing Y. Structural Insight into DNA Recognition by CCT/NF-YB/YC Complexes in Plant Photoperiodic Flowering. THE PLANT CELL 2020; 32:3469-3484. [PMID: 32843433 PMCID: PMC7610279 DOI: 10.1105/tpc.20.00067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.
Collapse
Affiliation(s)
- Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Nardone V, Chaves-Sanjuan A, Lapi M, Airoldi C, Saponaro A, Pasqualato S, Dolfini D, Camilloni C, Bernardini A, Gnesutta N, Mantovani R, Nardini M. Structural Basis of Inhibition of the Pioneer Transcription Factor NF-Y by Suramin. Cells 2020; 9:E2370. [PMID: 33138093 PMCID: PMC7692634 DOI: 10.3390/cells9112370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
NF-Y is a transcription factor (TF) comprising three subunits (NF-YA, NF-YB, NF-YC) that binds with high specificity to the CCAAT sequence, a widespread regulatory element in gene promoters of prosurvival, cell-cycle-promoting, and metabolic genes. Tumor cells undergo "metabolic rewiring" through overexpression of genes involved in such pathways, many of which are under NF-Y control. In addition, NF-YA appears to be overexpressed in many tumor types. Thus, limiting NF-Y activity may represent a desirable anti-cancer strategy, which is an ongoing field of research. With virtual-screening docking simulations on a library of pharmacologically active compounds, we identified suramin as a potential NF-Y inhibitor. We focused on suramin given its high water-solubility that is an important factor for in vitro testing, since NF-Y is sensitive to DMSO. By electrophoretic mobility shift assays (EMSA), isothermal titration calorimetry (ITC), STD NMR, X-ray crystallography, and molecular dynamics (MD) simulations, we showed that suramin binds to the histone fold domains (HFDs) of NF-Y, preventing DNA-binding. Our analyses, provide atomic-level detail on the interaction between suramin and NF-Y and reveal a region of the protein, nearby the suramin-binding site and poorly conserved in other HFD-containing TFs, that may represent a promising starting point for rational design of more specific and potent inhibitors with potential therapeutic applications.
Collapse
Affiliation(s)
- Valentina Nardone
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Michela Lapi
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy;
| | - Diletta Dolfini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Carlo Camilloni
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Andrea Bernardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Nerina Gnesutta
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Roberto Mantovani
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (V.N.); (A.C.-S.); (M.L.); (A.S.); (D.D.); (C.C.); (A.B.); (N.G.); (R.M.)
| |
Collapse
|
45
|
Peter SC, Murugan N, Mohanan MV, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, Shivalingamurthy SG, Chennappa M, Ramanathan V, Govindakurup H, Ram B, Chinnaswamy A. Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit ( NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus. 3 Biotech 2020; 10:304. [PMID: 32566442 DOI: 10.1007/s13205-020-02295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
Plant nuclear factor (NF-Y) is a transcription activating factor, consisting of three subunits, and plays a key regulatory role in many stress-responsive mechanisms including drought and salinity stresses. NF-Ys function both as complex and individual subunits. Considering the importance of sugarcane as a commercial crop with high socio-economic importance and the crop being affected mostly by water deficit stress and salinity stress causing significant yield loss, nuclear transcriptional factor NF-YB2 was focused in this study. Plant nuclear factor subunit B2 from Erianthus arundinaceus (EaNF-YB2), a wild relative of sugarcane which is known for its drought and salinity stress tolerance, and commercial Saccharum hybrid Co 86032 (ShNF-YB2) was isolated and characterized. Both EaNF-YB2 and ShNF-YB2 genes are 543 bp long that encodes for a polypeptide of 180 amino acid residues. Comparison of EaNF-YB2 and ShNF-YB2 gene sequences revealed nucleotide substitutions at nine positions corresponding to three synonymous and six nonsynonymous amino acid substitutions that resulted in variations in physiochemical properties. However, multiple sequence alignment (MSA) of NF-YB2 proteins showed conservation of functionally important amino acid residues. In silico analysis revealed NF-YB2 to be a hydrophilic and intracellular protein, and EaNF-YB2 is thermally more stable than that of ShNF-YB2. Phylogenetic analysis suggested the lower rate of evolution of NF-YB2. Subcellular localization in sugarcane callus revealed NF-YB2 localization at nucleus that further evidenced it to be a transcription activation factor. Comparative RT-qPCR experiments showed a significantly higher level of NF-YB2 expression in E. arundinaceus when compared to that in the commercial Saccharum hybrid Co 86032 under drought and salinity stresses. Hence, EaNF-YB2 could be an ideal candidate gene, and its overexpression in sugarcane through genetic engineering approach might enhance tolerance to drought and salinity stresses.
Collapse
Affiliation(s)
- Swathik Clarancia Peter
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Naveenarani Murugan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Mahadevaiah Chennappa
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Hemaprabha Govindakurup
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| |
Collapse
|
46
|
Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W, Xia X. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. THE NEW PHYTOLOGIST 2020; 227:407-426. [PMID: 32145071 DOI: 10.1111/nph.16524] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.
Collapse
Affiliation(s)
- Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shiwei Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - JiaLong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
47
|
Yang CY, Sun CW. Sequence analysis and protein interactions of Arabidopsis CIA2 and CIL proteins. BOTANICAL STUDIES 2020; 61:20. [PMID: 32556735 PMCID: PMC7303255 DOI: 10.1186/s40529-020-00297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND A previous screening of Arabidopsis thaliana for mutants exhibiting dysfunctional chloroplast protein transport identified the chloroplast import apparatus (cia) gene. The cia2 mutant has a pale green phenotype and reduced rate of protein import into chloroplasts, but leaf shape and size are similar to wild-type plants of the same developmental stage. Microarray analysis showed that nuclear CIA2 protein enhances expression of the Toc75, Toc33, CPN10 and cpRPs genes, thereby up-regulating protein import and synthesis efficiency in chloroplasts. CIA2-like (CIL) shares 65% sequence identity to CIA2, suggesting that CIL and CIA2 are homologous proteins in Arabidopsis. Here, we further assess the protein interactions and sequence features of CIA2 and CIL. RESULTS Subcellular localizations of truncated CIA2 protein fragments in our onion transient assay demonstrate that CIA2 contains two nuclear localization signals (NLS) located at amino acids (aa) 62-65 and 291-308, whereas CIL has only one NLS at aa 47-50. We screened a yeast two-hybrid (Y2H) Arabidopsis cDNA library to search for putative CIA2-interacting proteins and identified 12 nuclear proteins, including itself, CIL, and flowering-control proteins (such as CO, NF-YB1, NF-YC1, NF-YC9 and ABI3). Additional Y2H experiments demonstrate that CIA2 and CIL mainly interact with flowering-control proteins via their N-termini, but preferentially form homo- or hetero-dimers through their C-termini. Moreover, sequence alignment showed that the N-terminal sequences of CIA2, CIL and NF-YA are highly conserved. Therefore, NF-YA in the NF-Y complex could be substituted by CIA2 or CIL. CONCLUSIONS We show that Arabidopsis CIA2 and CIL can interact with CO and NF-Y complex, so not only may they contribute to regulate chloroplast function but also to modulate flower development.
Collapse
Affiliation(s)
- Chun-Yen Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chih-Wen Sun
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
48
|
Yamada TG, Hiki Y, Hiroi NF, Shagimardanova E, Gusev O, Cornette R, Kikawada T, Funahashi A. Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line Pv11. PLoS One 2020; 15:e0230218. [PMID: 32191739 PMCID: PMC7082025 DOI: 10.1371/journal.pone.0230218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Water is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation. Larvae of the African midge, Polypedilum vanderplanki, and its embryonic cell line Pv11 tolerate desiccation stress by entering an ametabolic state, anhydrobiosis, and return to active life after rehydration. The genes related to desiccation tolerance have been comprehensively analyzed, but transcriptional regulatory mechanisms to induce these genes after desiccation or rehydration remain unclear. Here, we comprehensively analyzed the gene regulatory network in Pv11 cells and compared it with that of Drosophila melanogaster, a desiccation sensitive species. We demonstrated that nuclear transcription factor Y subunit gamma-like, which is important for drought stress tolerance in plants, and its transcriptional regulation of downstream positive feedback loops have a pivotal role in regulating various anhydrobiosis-related genes. This study provides an initial insight into the systemic mechanism of desiccation tolerance.
Collapse
Affiliation(s)
- Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | | | - Oleg Gusev
- Kazan Federal University, Kazan, Russia
- RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail: (TK); (AF)
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
- * E-mail: (TK); (AF)
| |
Collapse
|
49
|
Kim JE, Nam H, Park J, Choi GJ, Lee YW, Son H. Characterization of the CCAAT-binding transcription factor complex in the plant pathogenic fungus Fusarium graminearum. Sci Rep 2020; 10:4898. [PMID: 32184445 PMCID: PMC7078317 DOI: 10.1038/s41598-020-61885-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
The CCAAT sequence is a ubiquitous cis-element of eukaryotic promoters, and genes containing CCAAT sequences have been shown to be activated by the CCAAT-binding transcription factor complex in several eukaryotic model organisms. In general, CCAAT-binding transcription factors form heterodimers or heterotrimeric complexes that bind to CCAAT sequences within the promoters of target genes and regulate various cellular processes. To date, except Hap complex, CCAAT-binding complex has been rarely reported in fungi. In this study, we characterized two CCAAT-binding transcription factors (Fct1 and Fct2) in the plant pathogenic fungus Fusarium graminearum. Previously, FCT1 and FCT2 were shown to be related to DNA damage response among eight CCAAT-binding transcription factors in F. graminearum. We demonstrate that the nuclear CCAAT-binding complex of F. graminearum has important functions in various fungal developmental processes, not just DNA damage response but virulence and mycotoxin production. Moreover, the results of biochemical and genetic analyses revealed that Fct1 and Fct2 may form a complex and play distinct roles among the eight CCAAT-binding transcription factors encoded by F. graminearum. To the best of our knowledge, the results of this study represent a substantial advancement in our understanding of the molecular mechanisms underlying the functions of CCAAT-binding factors in eukaryotes.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyejin Nam
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Jiyeun Park
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yin-Won Lee
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hokyoung Son
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|