1
|
Liu Y, Luo Z, Chen X, Yang X, Qi Q, Alifu M, Tao C, Cui W, Liu M, Wang W. Determinants of the interaction between the 5'-leader of HIV-1 genome and human lysyl-tRNA synthetase in reverse transcription primer release process. Biochem Biophys Res Commun 2024; 725:150252. [PMID: 38878758 DOI: 10.1016/j.bbrc.2024.150252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Reverse transcription of human immunodeficiency virus type 1 (HIV-1) initiates from the 3' end of human tRNALys3. The primer tRNALys3 is selectively packaged into the virus in the form of a complex with human lysyl-tRNA synthetase (LysRS). To facilitate reverse transcription initiation, part of the 5' leader (5'L) of HIV-1 genomic RNA (gRNA) evolves a tRNA anticodon-like element (TLE), which binds LysRS and releases tRNALys3 for primer annealing and reverse transcription initiation. Although TLE has been identified as a key element in 5'L responsible for LysRS binding, how the conformations and various hairpin structures of 5'L regulate 5'L-LysRS interaction is not fully understood. Here, these factors have been individually investigated using direct and competitive fluorescence anisotropy binding experiments. Our data showed that the conformation of 5'L significantly influences its binding affinity with LysRS. The 5'L conformation favoring gRNA dimerization and packaging exhibits much weaker binding affinity with LysRS compared to the alternative 5'L conformation that is not selected for packaging. Additionally, dimerization of 5'L impairs LysRS-5'L interaction. Furthermore, among various regions of 5'L, both the primer binding site/TLE domain and the stem-loop 3 are important for LysRS interaction, whereas the dimerization initiation site and the splicing donor plays a minor role. In contrast, the presence of the transacting responsive and the polyadenylation signal hairpins slightly inhibit LysRS binding. These findings reveal that the conformation and various regions of the 5'L of HIV-1 genome regulate its interaction with human LysRS and the reverse transcription primer release process.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhi Luo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qi Qi
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mailikezhati Alifu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chengcheng Tao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mengmeng Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Syu YC, Hatterschide J, Budding CR, Tang Y, Musier-Forsyth K. Human T-cell leukemia virus type 1 uses a specific tRNA Pro isodecoder to prime reverse transcription. RNA (NEW YORK, N.Y.) 2024; 30:967-976. [PMID: 38684316 PMCID: PMC11251516 DOI: 10.1261/rna.080006.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the only oncogenic human retrovirus discovered to date. All retroviruses are believed to use a host cell tRNA to prime reverse transcription (RT). In HTLV-1, the primer-binding site (PBS) in the genomic RNA is complementary to the 3' 18 nucleotides (nt) of human tRNAPro The human genome encodes 20 cytoplasmic tRNAPro genes representing seven isodecoders, all of which share the same 3' 18 nt sequence but vary elsewhere. Whether all tRNAPro isodecoders are used to prime RT in cells is unknown. A previous study showed that a 3' 18 nt tRNAPro-derived fragment (tRFPro) is packaged into HTLV-1 particles and can serve as an RT primer in vitro. The role of this tRNA fragment in the viral life cycle is unclear. In retroviruses, N1-methylation of the tRNA primer at position A58 (m1A) is essential for successful plus-strand transfer. Using primer-extension assays performed in chronically HTLV-1-infected cells, we found that A58 of tRNAPro is m1A-modified, implying that full-length tRNAPro is capable of facilitating successful plus-strand transfer. Analysis of HTLV-1 RT primer extension products indicated that full-length tRNAPro is likely to be the primer. To determine which tRNAPro isodecoder is used as the RT primer, we sequenced the minus-strand strong-stop RT product containing the intact tRNA primer and established that HTLV-1 primes RT using a specific tRNAPro UGG isodecoder. Further studies are required to understand how this primer is annealed to the highly structured HTLV-1 PBS and to investigate the role of tRFPro in the viral life cycle.
Collapse
Affiliation(s)
- Yu-Ci Syu
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christina R Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yingke Tang
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Uppuladinne MVN, Achalere A, Sonavane U, Joshi R. Probing the structure of human tRNA 3Lys in the presence of ligands using docking, MD simulations and MSM analysis. RSC Adv 2023; 13:25778-25796. [PMID: 37655355 PMCID: PMC10467029 DOI: 10.1039/d3ra03694d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
The tRNA3Lys, which acts as a primer for human immunodeficiency virus type 1 (HIV-1) reverse transcription, undergoes structural changes required for the formation of a primer-template complex. Small molecules have been targeted against tRNA3Lys to inhibit the primer-template complex formation. The present study aims to understand the kinetics of the conformational landscape spanned by tRNA3Lys in apo form using molecular dynamics simulations and Markov state modeling. The study is taken further to investigate the effect of small molecules like 1,4T and 1,5T on structural conformations and kinetics of tRNA3Lys, and comparative analysis is presented. Markov state modeling of tRNA3Lys apo resulted in three metastable states where the conformations have shown the non-canonical structures of the anticodon loop. Based on analyses of ligand-tRNA3Lys interactions, crucial ion and water mediated H-bonds and free energy calculations, it was observed that the 1,4-triazole more strongly binds to the tRNA3Lys compared to 1,5-triazole. However, the MSM analysis suggest that the 1,5-triazole binding to tRNA3Lys has brought rigidity not only in the binding pocket (TΨC arm, D-TΨC loop) but also in the whole structure of tRNA3Lys. This may affect the easy opening of primer tRNA3Lys required for HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Mallikarjunachari V N Uppuladinne
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Archana Achalere
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
4
|
High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs. Nat Commun 2021; 12:2500. [PMID: 33947853 PMCID: PMC8096811 DOI: 10.1038/s41467-021-22628-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
Reverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC-nevirapine, and RTIC-efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA-tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.
Collapse
|
5
|
Krupkin M, Jackson LN, Ha B, Puglisi EV. Advances in understanding the initiation of HIV-1 reverse transcription. Curr Opin Struct Biol 2020; 65:175-183. [PMID: 32916568 PMCID: PMC9973426 DOI: 10.1016/j.sbi.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 01/18/2023]
Abstract
Many viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Human Immunodeficiency Virus (HIV), use RNA as their genetic material. How viruses harness RNA structure and RNA-protein interactions to control their replication remains obscure. Recent advances in the characterization of HIV-1 reverse transcriptase, the enzyme that converts its single-stranded RNA genome into a double-stranded DNA copy, reveal how the reverse transcription complex evolves during initiation. Here we highlight these advances in HIV-1 structural biology and discuss how they are furthering our understanding of HIV and related ribonucleoprotein complexes implicated in viral disease.
Collapse
Affiliation(s)
- Miri Krupkin
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lynnette Nthenya Jackson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Betty Ha
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Larsen KP, Choi J, Jackson LN, Kappel K, Zhang J, Ha B, Chen DH, Puglisi EV. Distinct Conformational States Underlie Pausing during Initiation of HIV-1 Reverse Transcription. J Mol Biol 2020; 432:4499-4522. [PMID: 32512005 DOI: 10.1016/j.jmb.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
A hallmark of the initiation step of HIV-1 reverse transcription, in which viral RNA genome is converted into double-stranded DNA, is that it is slow and non-processive. Biochemical studies have identified specific sites along the viral RNA genomic template in which reverse transcriptase (RT) stalls. These stalling points, which occur after the addition of three and five template dNTPs, may serve as checkpoints to regulate the precise timing of HIV-1 reverse transcription following viral entry. Structural studies of reverse transcriptase initiation complexes (RTICs) have revealed unique conformations that may explain the slow rate of incorporation; however, questions remain about the temporal evolution of the complex and features that contribute to strong pausing during initiation. Here we present cryo-electron microscopy and single-molecule characterization of an RTIC after three rounds of dNTP incorporation (+3), the first major pausing point during reverse transcription initiation. Cryo-electron microscopy structures of a +3 extended RTIC reveal conformational heterogeneity within the RTIC core. Three distinct conformations were identified, two of which adopt unique, likely off-pathway, intermediates in the canonical polymerization cycle. Single-molecule Förster resonance energy transfer experiments confirm that the +3 RTIC is more structurally dynamic than earlier-stage RTICs. These alternative conformations were selectively disrupted through structure-guided point mutations to shift single-molecule Förster resonance energy transfer populations back toward the on-pathway conformation. Our results support the hypothesis that conformational heterogeneity within the HIV-1 RTIC during pausing serves as an additional means of regulating HIV-1 replication.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Lynnette N Jackson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Betty Ha
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Butovskaya E, Soldà P, Scalabrin M, Nadai M, Richter SN. HIV-1 Nucleocapsid Protein Unfolds Stable RNA G-Quadruplexes in the Viral Genome and Is Inhibited by G-Quadruplex Ligands. ACS Infect Dis 2019; 5:2127-2135. [PMID: 31646863 PMCID: PMC6909241 DOI: 10.1021/acsinfecdis.9b00272] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The G-quadruplexes that form in the
HIV-1 RNA genome hinder progression
of reverse transcriptase
in vitro, but not in infected cells. We investigated the possibility
that the HIV-1 nucleocapsid protein NCp7, which remains associated
with the viral RNA during reverse transcription, modulated HIV-1 RNA
G-quadruplex stability. By electrophoresis, circular dichroism, mass
spectrometry, and reverse transcriptase stop assays, we demonstrated
that NCp7 binds and unfolds the HIV-1 RNA G-quadruplexes and promotes
DNA/RNA duplex formation, allowing reverse transcription to proceed.
The G-quadruplex ligand BRACO-19 was able to partially counteract
this effect. These results indicate NCp7 as the first known viral
protein able to unfold RNA G-quadruplexes, and they explain how the
extra-stable HIV-1 RNA G-quadruplexes are processed; they also point
out that the reverse transcription process is hindered by G-quadruplex
ligands at both reverse transcriptase and NCp7 level. This information
can lead to the development of more effective anti-HIV-1 drugs with
a new mechanism of action.
Collapse
Affiliation(s)
- Elena Butovskaya
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, via Aristide Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
8
|
Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD. Relating Structure and Dynamics in RNA Biology. Cold Spring Harb Perspect Biol 2019; 11:11/7/a032474. [PMID: 31262948 DOI: 10.1101/cshperspect.a032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
9
|
Larsen KP, Mathiharan YK, Kappel K, Coey AT, Chen DH, Barrero D, Madigan L, Puglisi JD, Skiniotis G, Puglisi EV. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 2018; 557:118-122. [PMID: 29695867 PMCID: PMC5934294 DOI: 10.1038/s41586-018-0055-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022]
Abstract
Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in infection1 and a common target of antiretrovirals2. The reaction is catalyzed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion along with 2 copies of dimeric viral genomic RNA5 and host tRNALys3, which acts as a primer for initiation of reverse transcription6,7. Upon viral entry, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis for RT function during initiation has remained a mystery. Here we apply cryo-electron microscopy (cryo-EM) to determine a three-dimensional structure of the HIV-1 RT initiation complex. RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5′ end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.
Collapse
Affiliation(s)
- Kevin P Larsen
- Program in Biophysics, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yamuna Kalyani Mathiharan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kalli Kappel
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Aaron T Coey
- Program in Biophysics, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Barrero
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Madigan
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
10
|
Pollpeter D, Parsons M, Sobala AE, Coxhead S, Lang RD, Bruns AM, Papaioannou S, McDonnell JM, Apolonia L, Chowdhury JA, Horvath CM, Malim MH. Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nat Microbiol 2018; 3:220-233. [PMID: 29158605 PMCID: PMC6014619 DOI: 10.1038/s41564-017-0063-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Following cell entry, the RNA genome of HIV-1 is reverse transcribed into double-stranded DNA that ultimately integrates into the host-cell genome to establish the provirus. These early phases of infection are notably vulnerable to suppression by a collection of cellular antiviral effectors, called restriction or resistance factors. The host antiviral protein APOBEC3G (A3G) antagonizes the early steps of HIV-1 infection through the combined effects of inhibiting viral cDNA production and cytidine-to-uridine-driven hypermutation of this cDNA. In seeking to address the underlying molecular mechanism for inhibited cDNA synthesis, we developed a deep sequencing strategy to characterize nascent reverse transcription products and their precise 3'-termini in HIV-1 infected T cells. Our results demonstrate site- and sequence-independent interference with reverse transcription, which requires the specific interaction of A3G with reverse transcriptase itself. This approach also established, contrary to current ideas, that cellular uracil base excision repair (UBER) enzymes target and cleave A3G-edited uridine-containing viral cDNA. Together, these findings yield further insights into the regulatory interplay between reverse transcriptase, A3G and cellular DNA repair machinery, and identify the suppression of HIV-1 reverse transcriptase by a directly interacting host protein as a new cell-mediated antiviral mechanism.
Collapse
Affiliation(s)
- Darja Pollpeter
- Department of Infectious Diseases, King's College London, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Andrew E Sobala
- Department of Infectious Diseases, King's College London, London, UK
| | - Sashika Coxhead
- Department of Infectious Diseases, King's College London, London, UK
| | - Rupert D Lang
- Department of Infectious Diseases, King's College London, London, UK
| | - Annie M Bruns
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - James M McDonnell
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Luis Apolonia
- Department of Infectious Diseases, King's College London, London, UK
| | - Jamil A Chowdhury
- Department of Infectious Diseases, King's College London, London, UK
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Michael H Malim
- Department of Infectious Diseases, King's College London, London, UK.
| |
Collapse
|
11
|
Coey A, Larsen K, Puglisi JD, Viani Puglisi E. Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA (NEW YORK, N.Y.) 2016; 22:1689-1698. [PMID: 27613581 PMCID: PMC5066621 DOI: 10.1261/rna.056804.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Reverse transcription is a key process in the early steps of HIV infection. This process initiates within a specific complex formed by the 5' UTR of the HIV genomic RNA (vRNA) and a host primer tRNALys3 Using nuclear magnetic resonance (NMR) spectroscopy and single-molecule fluorescence spectroscopy, we detect two distinct conformers adopted by the tRNA/vRNA initiation complex. We directly show that an interaction between the conserved 8-nucleotide viral RNA primer activation signal (PAS) and the primer tRNA occurs in one of these conformers. This intermolecular PAS interaction likely induces strain on a vRNA intramolecular helix, which must be broken for reverse transcription to initiate. We propose a mechanism by which this vRNA/tRNA conformer relieves the kinetic block formed by the vRNA intramolecular helix to initiate reverse transcription.
Collapse
Affiliation(s)
- Aaron Coey
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Kevin Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| |
Collapse
|
12
|
Wu T, Gorelick RJ, Levin JG. Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Res 2014; 193:52-64. [PMID: 24954787 PMCID: PMC4252486 DOI: 10.1016/j.virusres.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/14/2022]
Abstract
The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.
Collapse
Affiliation(s)
- Tiyun Wu
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Judith G Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA.
| |
Collapse
|
13
|
Kolomiets IN, Zarudnaya MI, Potyahaylo AL, Hovorun DM. Structural insight into HIV-1 reverse transcription initiation in MAL-like templates (CRF01_AE, subtype G and CRF02_AG). J Biomol Struct Dyn 2014; 33:418-33. [DOI: 10.1080/07391102.2014.884938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sleiman D, Barraud P, Brachet F, Tisne C. The Interaction between tRNA(Lys) 3 and the primer activation signal deciphered by NMR spectroscopy. PLoS One 2013; 8:e64700. [PMID: 23762248 PMCID: PMC3675109 DOI: 10.1371/journal.pone.0064700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022] Open
Abstract
The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, Paris, France
| | | | | | | |
Collapse
|
15
|
Jones CP, Saadatmand J, Kleiman L, Musier-Forsyth K. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing. RNA (NEW YORK, N.Y.) 2013; 19:219-29. [PMID: 23264568 PMCID: PMC3543088 DOI: 10.1261/rna.036681.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/14/2012] [Indexed: 05/18/2023]
Abstract
The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.
Collapse
MESH Headings
- Base Pairing
- Electrophoretic Mobility Shift Assay
- Genome, Viral/genetics
- HIV Enhancer/genetics
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Lysine-tRNA Ligase/genetics
- Lysine-tRNA Ligase/metabolism
- Molecular Mimicry
- Mutation
- Protein Structure, Tertiary
- RNA
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Virus Assembly/genetics
- Virus Replication/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Christopher P. Jones
- Department of Chemistry and Biochemistry, Center for Retroviral Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jenan Saadatmand
- Lady Davis Institute for Medical Research, McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada, H3T1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research, McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada, H3T1E2
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retroviral Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Corresponding authorE-mail
| |
Collapse
|
16
|
Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2012. [PMID: 23178850 DOI: 10.1007/s00018-012-1212-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | |
Collapse
|
17
|
Uppuladinne MVN, Sonavane UB, Joshi RR. MD simulations of HIV-1 RT primer-template complex: effect of modified nucleosides and antisense PNA oligomer. J Biomol Struct Dyn 2012; 31:539-60. [PMID: 22888964 DOI: 10.1080/07391102.2012.706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.
Collapse
|
18
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
19
|
Sleiman D, Goldschmidt V, Barraud P, Marquet R, Paillart JC, Tisné C. Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Res 2012; 169:324-39. [PMID: 22721779 DOI: 10.1016/j.virusres.2012.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris-Descartes, CNRS UMR 8015, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Nucleocapsid protein annealing of a primer-template enhances (+)-strand DNA synthesis and fidelity by HIV-1 reverse transcriptase. J Mol Biol 2011; 415:866-80. [PMID: 22210155 DOI: 10.1016/j.jmb.2011.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires reverse transcriptase (RT) and HIV-1 nucleocapsid protein (NCp7) for proper viral replication. HIV-1 NCp7 has been shown to enhance various steps in reverse transcription including tRNA initiation and strand transfer, which may be mediated through interactions with RT as well as RNA and DNA oligonucleotides. With the use of DNA oligonucleotides, we have examined the interaction of NCp7 with RT and the kinetics of reverse transcription during (+)-strand synthesis with an NCp7-facilitated annealed primer-template. Through the use of a pre-steady-state kinetics approach, the NCp7-annealed primer-template has a substantial increase (3- to 7-fold) in the rate of incorporation (k(pol)) by RT as compared to heat-annealed primer-template with single-nucleotide incorporation. There was also a 2-fold increase in the binding affinity constant (K(d)) of the nucleotide. These differences in k(pol) and K(d) were not through direct interactions between HIV-1 RT and NCp7. When extension by RT was examined, the data suggest that the NCp7-annealed primer-template facilitates the formation of a longer product more quickly compared to the heat-annealed primer-template. This enhancement in rate is mediated through interactions with NCp7's zinc fingers and N-terminal domain and nucleic acids. The NCp7-annealed primer-template also enhances the fidelity of RT (3-fold) by slowing the rate of incorporation of an incorrect nucleotide. Taken together, this study elucidates a new role of NCp7 by facilitating DNA-directed DNA synthesis during reverse transcription by HIV-1 RT that may translate into enhanced viral fitness and offers an avenue to exploit for targeted therapeutic intervention against HIV.
Collapse
|
21
|
Rein A, Datta SAK, Jones CP, Musier-Forsyth K. Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 2011; 36:373-80. [PMID: 21550256 PMCID: PMC3130074 DOI: 10.1016/j.tibs.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Retrovirus particles are constructed from a single virus-encoded protein, termed Gag. Given that assembly is an essential step in the viral replication cycle, it is a potential target for antiviral therapy. However, such an approach has not yet been exploited because of the lack of fundamental knowledge concerning the structures and interactions responsible for assembly. Assembling an infectious particle entails a remarkably diverse array of interactions, both specific and nonspecific, between Gag proteins and RNAs. These interactions are essential for the construction of the particle, for packaging of the viral RNA into the particle, and for placement of the primer for viral DNA synthesis. Recent results have provided some new insights into each of these interactions. In the case of HIV-1 Gag, it is clear that more than one domain of the protein contributes to Gag-RNA interaction.
Collapse
Affiliation(s)
- Alan Rein
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
22
|
Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 2010; 17:1453-60. [PMID: 21102446 PMCID: PMC3058889 DOI: 10.1038/nsmb.1937] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNALys,3 primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA:vRNA complexes, and the prominent pausing events are caused by RT binding in an flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role played by the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.
Collapse
|
23
|
The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol 2010; 85:1298-309. [PMID: 21084467 DOI: 10.1128/jvi.01957-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
Collapse
|
24
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
25
|
Warrilow D, Tachedjian G, Harrich D. Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev Med Virol 2010; 19:324-37. [PMID: 19750561 DOI: 10.1002/rmv.627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon HIV attachment, fusion and entry into the host cell cytoplasm, the viral core undergoes rearrangement to become the mature reverse transcription complex (RTC). Reduced infectivity of viral deletion mutants of the core proteins, capsid and negative factor (Nef), can be complemented by vesicular stomatitis virus (VSV) pseudotyping suggesting a role for these viral proteins in a common event immediately post-entry. This event may be necessary for correct trafficking of the early complex. Enzymatic activation of the complex occurs either before or during RTC maturation, and may be dependent on the presence of deoxynucleotides in the host cell. The RTC initially becomes enlarged immediately after entry, which is followed by a decrease in its sedimentation rate consistent with core uncoating. Several HIV proteins associated with the RTC and recently identified host-cell proteins are important for reverse transcription while genome-wide siRNA knockdown studies have identified additional host cell factors that may be required for reverse transcription. Determining precisely how these proteins assist the RTC function needs to be addressed.
Collapse
Affiliation(s)
- David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia.
| | | | | |
Collapse
|
26
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
27
|
A sequence similar to tRNA 3 Lys gene is embedded in HIV-1 U3-R and promotes minus-strand transfer. Nat Struct Mol Biol 2009; 17:83-9. [PMID: 19966801 PMCID: PMC2802660 DOI: 10.1038/nsmb.1687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/04/2009] [Indexed: 11/21/2022]
Abstract
We identified a sequence embedded in the U3/R region of HIV-1 RNA that is highly complementary to human tRNA3Lys. The free energy of annealing to tRNA3Lys is significantly lower for this sequence and the primer-binding site than for other similar length viral sequences. The only interruption in complementarity is a 29-nucleotide segment inserted where a tRNA intron would be expected. The insert contains the TATA box for viral RNA transcription. The embedded sequence includes a nine-nucleotide segment previously reported to aid minus strand transfer by binding the primer tRNA3Lys. Reconstituting transfer in vitro, we show that including segments from the embedded sequence in the acceptor template, beyond the nine nucleotides, further increases transfer efficiency. We propose that a tRNA3Lys gene was incorporated during HIV-1 evolution and retained largely intact because of its roles in transcription and strand transfer.
Collapse
|
28
|
Warren K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 2009; 1:873-94. [PMID: 21994574 PMCID: PMC3185528 DOI: 10.3390/v1030873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the cellular proteins HuR, AKAP149, and DNA topoisomerase I in reverse transcription through an interaction with RT. In this review we will consider interactions of reverse transcription complex with viral and cellular factors and how they affect the reverse transcription process.
Collapse
Affiliation(s)
- Kylie Warren
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- School of Natural Sciences, University of Western Sydney, Hawkesbury, NSW, Australia
| | - David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
| | - Luke Meredith
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
| | - David Harrich
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3845-36791; Fax: +61-7-3362-0107
| |
Collapse
|
29
|
Post K, Kankia B, Gopalakrishnan S, Yang V, Cramer E, Saladores P, Gorelick RJ, Guo J, Musier-Forsyth K, Levin JG. Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:1755-66. [PMID: 19158189 PMCID: PMC2665208 DOI: 10.1093/nar/gkn1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.
Collapse
Affiliation(s)
- Klara Post
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Iwatani Y, Chan DSB, Wang F, Stewart-Maynard K, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 2007; 35:7096-108. [PMID: 17942420 PMCID: PMC2175344 DOI: 10.1093/nar/gkm750] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay between A3G, NC and reverse transcriptase (RT) and the effect of highly purified A3G on individual reactions that occur during reverse transcription. We find that A3G did not affect the kinetics of NC-mediated annealing reactions, nor did it inhibit RNase H cleavage. In sharp contrast, A3G significantly inhibited all RT-catalyzed DNA elongation reactions with or without NC. In the case of (−) strong-stop DNA synthesis, the inhibition was independent of A3G's catalytic activity. Fluorescence anisotropy and single molecule DNA stretching analyses indicated that NC has a higher nucleic acid binding affinity than A3G, but more importantly, displays faster association/disassociation kinetics. RT binds to ssDNA with a much lower affinity than either NC or A3G. These data support a novel mechanism for deaminase-independent inhibition of reverse transcription that is determined by critical differences in the nucleic acid binding properties of A3G, NC and RT.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. ADVANCES IN PHARMACOLOGY 2007; 55:99-135. [PMID: 17586313 DOI: 10.1016/s1054-3589(07)55003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Abstract
Genomic RNA circularization has been proposed for several RNA viruses. In this study, we examined if the 5′ and 3′ ends of the 9-kb HIV-1 RNA genome can interact. In vitro assays demonstrated a specific interaction between transcripts encompassing the 5′ and 3′ terminal 1 kb, suggesting that the HIV-1 RNA genome can circularize. Truncation of the transcripts indicated that the 5′–3′ interaction is formed by 600–700 nt in the gag open reading frame and the terminal 123 nt of the genomic RNA. Detailed RNA structure probing indicates that sequences flanking the 3′ TAR hairpin interact with complementary sequences in the gag gene. Phylogenetic analysis indicates that all HIV-1 subtypes can form the 5′/3′ interaction despite considerable sequence divergence, suggesting an important role of RNA circularization in the HIV-1 replication cycle.
Collapse
Affiliation(s)
| | | | | | - Ben Berkhout
- *To whom correspondence should be addressed.+31 205 664 822+31 206 916 531
| |
Collapse
|
33
|
Ooms M, Cupac D, Abbink TEM, Huthoff H, Berkhout B. The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation. Nucleic Acids Res 2007; 35:1649-59. [PMID: 17308346 PMCID: PMC1865047 DOI: 10.1093/nar/gkm046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Initiation of reverse transcription of a retroviral RNA genome is strictly regulated. The tRNA primer binds to the primer binding site (PBS), and subsequent priming is triggered by the primer activation signal (PAS) that also pairs with the tRNA. We observed that in vitro reverse transcription initiation of the HIV-1 leader RNA varies in efficiency among 3′-end truncated transcripts, despite the presence of both PBS and PAS motifs. As the HIV-1 leader RNA can adopt two different foldings, we investigated if the conformational state of the transcripts did influence the efficiency of reverse transcription initiation. However, mutant transcripts that exclusively fold one or the other structure were similarly active, thereby excluding the possibility of regulation of reverse transcription initiation by the structure riboswitch. We next set out to determine the availability of the PAS element. This sequence motif enhances the efficiency of reverse transcription initiation, but its activity is regulated because the PAS motif is initially base paired within the wild-type template. We measured that the initiation efficiency on different templates correlates directly with accessibility of the PAS motif. Furthermore, changes in PAS are critical to facilitate a primer-switch to a new tRNA species, demonstrating the importance of this enhancer element.
Collapse
Affiliation(s)
| | | | | | | | - Ben Berkhout
- *To whom correspondence should be addressed. +31 205 664 822+31 206 916 531
| |
Collapse
|
34
|
Hanson MN, Balakrishnan M, Roques BP, Bambara RA. Evidence that creation of invasion sites determines the rate of strand transfer mediated by HIV-1 reverse transcriptase. J Mol Biol 2006; 363:878-90. [PMID: 16997325 DOI: 10.1016/j.jmb.2006.08.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Strand transfer during reverse transcription can produce genetic recombination in human immunodeficiency virus type 1 (HIV-1) when two genomic RNAs, that are not identical, are co-packaged in the virus. Strand transfer was measured in vitro, in reactions involving primer switching from a donor to acceptor RNA template. The transfer product appeared with much slower kinetics than full-length synthesis on the donor template. The goal of this study was to learn more about the transfer mechanism by defining the steps that limit its rate. We previously proposed transfer to include the steps of acceptor invasion, hybrid propagation, terminus transfer, and re-initiation of synthesis on the acceptor template. Unexpectedly, with our templates increasing acceptor concentration increased the transfer efficiency but had no effect on the rate of transfer. Templates with a short region of homology limiting hybrid propagation exhibited a slow accumulation of transfer products, suggesting that for tested long homology templates hybrid propagation was not rate limiting. Substituting a DNA acceptor and adding Klenow polymerase accelerated re-initiation and extension exclusively on the DNA acceptor. This lead to a small rate increase due to faster extension on the acceptor, suggesting re-initiation of synthesis on the tested RNA acceptors was not rate limiting. A substrate was designed in which the 5' end of the primer was single stranded, and complimentary to the acceptor, i.e. having a pre-made invasion site. With this substrate, increasing concentrations of acceptor increased the rate of transfer. Together these data suggest that RNase H cleavage, and dissociation of RNA fragments creating an invasion site was rate limiting on most tested templates. When an accessible invasion site was present, acceptor interaction at that site influence the rate.
Collapse
Affiliation(s)
- Mark Nils Hanson
- Department of Biochemistry and Biophysics, Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
35
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
36
|
Heath MJ, Destefano JJ. A complementary single-stranded docking site is required for enhancement of strand exchange by human immunodeficiency virus nucleocapsid protein on substrates that model viral recombination. Biochemistry 2005; 44:3915-25. [PMID: 15751967 DOI: 10.1021/bi0477945] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhancement of strand exchange by nucleocapsid protein (NC) is proposed to occur during retroviral recombination. The mechanism was examined using an RNA (donor)-DNA hybrid that mimicked a retrovirus replication intermediate. This consisted of a 25 base pair hybrid region flanked on each side by single-stranded RNA or DNA. A second set of acceptor RNAs that could bind to the 25-base hybrid region and to various lengths of additional bases on the DNA was used to displace the donor by hybridizing with the DNA. Displacement required a complementary single-stranded DNA region outside the donor-DNA 25-nucleotide hybrid region. NC enhanced displacement slightly when the acceptor could bind 10 nucleotides and significantly when binding 22 or more nucleotides in the single-stranded region. Two mutated acceptors that bound over 47 total nucleotides on the DNA (22 in the single-stranded region plus 25 in the hybrid region) were constructed. One had three mismatches in the hybrid region; the other, three in the single-stranded region and one in the hybrid region. Each acceptor bound the DNA with approximately equal thermodynamic stability, yet NC stimulated exchange with the former and actually inhibited with the latter. This emphasized the importance of the single-stranded region in NC stimulation. The results support a mechanism where NC enhances the docking of the acceptor to the single-stranded region and then the acceptor "zippers" through the hybrid and displaces the donor. Results with the mutated acceptors indicate that NC may actually inhibit strand exchange between genomes in nonhomologous regions.
Collapse
MESH Headings
- Base Pairing/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- HIV-1/chemistry
- HIV-1/genetics
- Models, Chemical
- Nucleic Acid Hybridization
- Nucleocapsid Proteins/chemistry
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/metabolism
- Point Mutation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
- Thermodynamics
Collapse
Affiliation(s)
- Megan J Heath
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
37
|
Abbink TEM, Beerens N, Berkhout B. Forced selection of a human immunodeficiency virus type 1 variant that uses a non-self tRNA primer for reverse transcription: involvement of viral RNA sequences and the reverse transcriptase enzyme. J Virol 2004; 78:10706-14. [PMID: 15367637 PMCID: PMC516392 DOI: 10.1128/jvi.78.19.10706-10714.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 uses the tRNA(3)(Lys) molecule as a selective primer for reverse transcription. This primer specificity is imposed by sequence complementarity between the tRNA primer and two motifs in the viral RNA genome: the primer-binding site (PBS) and the primer activation signal (PAS). In addition, there may be specific interactions between the tRNA primer and viral proteins, such as the reverse transcriptase (RT) enzyme. We constructed viruses with mutations in the PAS and PBS that were designed to employ the nonself primer tRNA(Pro) or tRNA(1,2)(Lys). These mutants exhibited a severe replication defect, indicating that additional adaptation of the mutant virus is required to accommodate the new tRNA primer. Multiple independent virus evolution experiments were performed to select for fast-replicating variants. Reversion to the wild-type PBS-lys3 sequence was the most frequent escape route. However, we identified one culture in which the virus gained replication capacity without reversion of the PBS. This revertant virus eventually optimized the PAS motif for interaction with the nonself primer. Interestingly, earlier evolution samples revealed a single amino acid change of an otherwise well-conserved residue in the RNase H domain of the RT enzyme, implicating this domain in selective primer usage. We demonstrate that both the PAS and RT mutations improve the replication capacity of the tRNA(1,2)(Lys)-using virus.
Collapse
MESH Headings
- Amino Acid Substitution
- Base Sequence
- Directed Molecular Evolution
- HIV Long Terminal Repeat
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/growth & development
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Mutation, Missense
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Pro/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease H/genetics
- Ribonuclease H/physiology
- Selection, Genetic
- Transcription, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Truus E M Abbink
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 2004; 279:48397-403. [PMID: 15355993 DOI: 10.1074/jbc.m408294200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.
Collapse
Affiliation(s)
- Jean-Christophe Paillart
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
39
|
Miller JT, Khvorova A, Scaringe SA, Le Grice SFJ. Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. Nucleic Acids Res 2004; 32:4687-95. [PMID: 15342789 PMCID: PMC516074 DOI: 10.1093/nar/gkh813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to determine the contribution of modified bases on the efficiency with which tRNA(Lys,3) is used in vitro as the HIV-1 replication primer, the properties of synthetic derivatives prepared by three independent methods were compared to the natural, i.e. fully modified, tRNA. When prepared directly by in vitro run-off transcription, we show here that the predominant tRNA species is 77 nt, representing a non-templated addition of a single nucleotide. As a consequence, this aberrant tRNA inefficiently primes (-) strand strong stop DNA synthesis from the primer binding site (PBS) on the HIV-1 viral RNA genome to which it must hybridize. In contrast, correctly sized tRNA(Lys,3) can be prepared by (i) total chemical synthesis and ligation of 'half' tRNAs, (ii) transcription of a cassette whose DNA template contained strategically placed 2'-O-Methyl-containing ribonucleotides and (iii) processing from a larger precursor by means of targeted cleavage with Escherichia coli RNase H. When each of these 76 nt tRNAs was supplemented into a (-) strand strong stop DNA synthesis reaction utilizing the HXB2 strain of HIV-1, the amount of product obtained was comparable to that from the fully modified counterpart. Parallel assays monitoring early events in (-) strand strong stop DNA synthesis using either the HXB2 or Mal strain of HIV-1 RNA as the template indicated little difference in the pattern or total product amount when primed with either natural or synthetic tRNA(Lys,3). In addition, nuclease mapping of PBS-bound tRNA suggests inter-molecular base pairing between bases of the tRNA anticodon domain and the U-rich U5-IR loop of the viral 5' leader region is less stable on the HIV-1(HXB2) genome than the HIV-1(Mal) isolate.
Collapse
Affiliation(s)
- Jennifer T Miller
- Reverse Transcriptase Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
40
|
Heilman-Miller SL, Wu T, Levin JG. Alteration of nucleic acid structure and stability modulates the efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid protein. J Biol Chem 2004; 279:44154-65. [PMID: 15271979 DOI: 10.1074/jbc.m401646200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus type 1 minus-strand transfer, the nucleocapsid protein (NC) facilitates annealing of the complementary repeat regions at the 3'-ends of acceptor RNA and minus-strand strong-stop DNA ((-) SSDNA). In addition, NC destabilizes the highly structured complementary trans-activation response element (TAR) stem-loop (TAR DNA) at the 3'-end of (-) SSDNA and inhibits TAR-induced self-priming, a dead-end reaction that competes with minus-strand transfer. To investigate the relationship between nucleic acid secondary structure and NC function, a series of truncated (-) SSDNA and acceptor RNA constructs were used to assay minus-strand transfer and self-priming in vitro. The results were correlated with extensive enzymatic probing and mFold analysis. As the length of (-) SSDNA was decreased, self-priming increased and was highest when the DNA contained little more than TAR DNA, even if NC and acceptor were both present; in contrast, truncations within TAR DNA led to a striking reduction or elimination of self-priming. However, destabilization of TAR DNA was not sufficient for successful strand transfer: the stability of acceptor RNA was also crucial, and little or no strand transfer occurred if the RNA was highly stable. Significantly, NC may not be required for in vitro strand transfer if (-) SSDNA and acceptor RNA are small, relatively unstructured molecules with low thermodynamic stabilities. Collectively, these findings demonstrate that for efficient NC-mediated minus-strand transfer, a delicate thermodynamic balance between the RNA and DNA reactants must be maintained.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2780, USA
| | | | | |
Collapse
|
41
|
Goldschmidt V, Paillart JC, Rigourd M, Ehresmann B, Aubertin AM, Ehresmann C, Marquet R. Structural variability of the initiation complex of HIV-1 reverse transcription. J Biol Chem 2004; 279:35923-31. [PMID: 15194685 DOI: 10.1074/jbc.m404473200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2). Our results show that the structure of the initiation complex is not conserved. In MAL, and according to sequence analysis in 14% of HIV-1 isolates, formation of the initiation complex is accompanied by complex rearrangements of the viral RNA, and extensive interactions with tRNA(3)(Lys) are required for efficient initiation of reverse transcription. In NL4.3, HXB2, and most isolates, tRNA(3)(Lys) annealing minimally affects the viral RNA structure and no interaction outside the PBS is required for optimal initiation of reverse transcription. We suggest that in MAL, extensive interactions with tRNA(3)(Lys) are required to drive the structural rearrangements generating the structural elements ultimately recognized by reverse transcriptase. In NL4.3 and HXB2, these elements are already present in the viral RNA prior to tRNA(3)(Lys) annealing, thus explaining that extensive interactions with the primer are not required. Interestingly, such interactions are required in HXB2 mutants designed to use a non-cognate tRNA as primer (tRNA(His)). In the latter case, the extended interactions are required to counteract a negative contribution associate with the alternate primer.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Hargittai MRS, Gorelick RJ, Rouzina I, Musier-Forsyth K. Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. J Mol Biol 2004; 337:951-68. [PMID: 15033363 DOI: 10.1016/j.jmb.2004.01.054] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 11/22/2022]
Abstract
HIV-1 reverse transcriptase uses human tRNA(Lys,3) as a primer to initiate reverse transcription. Prior to initiation, the 3' 18 nucleotides of this tRNA are annealed to a complementary sequence on the RNA genome known as the primer binding site (PBS). Here, we show that the HIV-1 nucleocapsid protein (NC) enhances this annealing by approximately five orders of magnitude in vitro, decreasing the transition state enthalpy from approximately 20 kcal mol(-1) for the uncatalyzed reaction to 13 kcal mol(-1) for the NC-catalyzed process. Moreover, the annealing follows second-order kinetics, consistent with the nucleation of the intermolecular duplex being the rate-limiting step. This nucleation is preceded by melting of a small duplex region within the original structure, and is followed by much faster zipping of the rest of the 18 base-pair (bp) duplex. A tRNA mutational analysis shows that destabilization of the tRNA acceptor stem has only a minor effect on the annealing rate. In contrast, addition of bases to the 5' end of tRNA that are complementary to its single-stranded 3' end interferes with duplex nucleation and therefore has a much larger effect on the net reaction rate. Assuming that the apparent transition free energy of the annealing reaction, Delta G(++) is a sum of the melting (Delta G(m)) and nucleation (Delta G(nuc)) free energies, we show that NC affects both Delta G(m) and Delta G(nuc). We estimate that ten to 100-fold of the overall rate enhancement is due to NC-induced destabilization of a 4 bp helix in the PBS, while the additional factor of 10(3)-10(4) rate enhancement is a result of NC-facilitated duplex nucleation. The apparently similar effectiveness of wild-type and SSHS NC, a mutant that lacks the zinc finger structures, in facilitating the tRNA annealing reaction is most likely the result of the mutual cancellation of two factors: SSHS NC is less effective than wild-type NC as a duplex destabilizer, but more effective as a duplex nucleating agent.
Collapse
Affiliation(s)
- Michele R S Hargittai
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
43
|
Rigourd M, Goldschmidt V, Brulé F, Morrow CD, Ehresmann B, Ehresmann C, Marquet R. Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer. Nucleic Acids Res 2003; 31:5764-75. [PMID: 14500840 PMCID: PMC206454 DOI: 10.1093/nar/gkg754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer. However, mutant His-AC selects additional mutations during cell culture, generating successively His-AC-GAC and His-AC-AT-GAC. Here, we wanted to establish direct relationships between the evolution of these mutants in cell culture, their efficiency in initiating reverse transcription and the structure of the primer/template complexes in vitro. The initiation of reverse transcription of His and His-AC RNAs was dramatically reduced. However, His-AC-GAC RNA, which incorporated three adaptative point mutations, was reverse transcribed more efficiently than the wild type RNA. Incorporation of two additional mutations decreased the efficiency of the initiation of reverse transcription, which remained at the wild type level. Structural probing showed that even though both His-AC and His-AC-GAC RNAs can potentially interact with the anticodon loop of tRNA(His), only the latter template formed a stable interaction. Thus, our results showed that the selection of adaptative mutations by HIV-1 mutants utilizing tRNA(His) as primer was initially dictated by the efficiency of the initiation of reverse transcription, which relied on the existence of a stable interaction between the mutated A-rich loop and the anticodon loop of tRNA(His).
Collapse
Affiliation(s)
- Mickaël Rigourd
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|