1
|
Luo J, Ranish J. Isobaric crosslinking mass spectrometry technology for studying conformational and structural changes in proteins and complexes. eLife 2024; 13:RP99809. [PMID: 39540830 PMCID: PMC11563578 DOI: 10.7554/elife.99809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems BiologySeattleUnited States
| | - Jeff Ranish
- Institute for Systems BiologySeattleUnited States
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
O'Brien MJ, Ansari A. Critical Involvement of TFIIB in Viral Pathogenesis. Front Mol Biosci 2021; 8:669044. [PMID: 33996913 PMCID: PMC8119876 DOI: 10.3389/fmolb.2021.669044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Viral infections and the harm they cause to their host are a perpetual threat to living organisms. Pathogenesis and subsequent spread of infection requires replication of the viral genome and expression of structural and non-structural proteins of the virus. Generally, viruses use transcription and translation machinery of the host cell to achieve this objective. The viral genome encodes transcriptional regulators that alter the expression of viral and host genes by manipulating initiation and termination steps of transcription. The regulation of the initiation step is often through interactions of viral factors with gene specific factors as well as general transcription factors (GTFs). Among the GTFs, TFIIB (Transcription Factor IIB) is a frequent target during viral pathogenesis. TFIIB is utilized by a plethora of viruses including human immunodeficiency virus, herpes simplex virus, vaccinia virus, Thogoto virus, hepatitis virus, Epstein-Barr virus and gammaherpesviruses to alter gene expression. A number of viral transcriptional regulators exhibit a direct interaction with host TFIIB in order to accomplish expression of their genes and to repress host transcription. Some viruses have evolved proteins with a three-dimensional structure very similar to TFIIB, demonstrating the importance of TFIIB for viral persistence. Upon viral infection, host transcription is selectively altered with viral transcription benefitting. The nature of viral utilization of TFIIB for expression of its own genes, along with selective repression of host antiviral genes and downregulation of general host transcription, makes TFIIB a potential candidate for antiviral therapies.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Wang J, Shi K, Wu Z, Zhang C, Li Y, Deng H, Zhao S, Deng W. Disruption of the interaction between TFIIAαβ and TFIIA recognition element inhibits RNA polymerase II gene transcription in a promoter context-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194611. [PMID: 32745626 DOI: 10.1016/j.bbagrm.2020.194611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
General transcription factors and core promoter elements play a pivotal role in RNA polymerase II (Pol II)-mediated transcription initiation. In the previous work, we have defined a TFIIA recognition element (IIARE) that modulates Pol II-directed gene transcription in a promoter context-dependent manner. However, how TFIIA interacts with the IIARE and whether the interaction between TFIIA and the IIARE is involved in the regulation of gene transcription by Pol II are not fully understood. In the present study, we confirm that both K348 and K350 residues in TFIIAαβ are required for the interaction between TFIIAαβ and the IIARE. Disruption of the interaction between them by gene mutations dampens TFIIAαβ binding to the AdML-IIARE promoter and the transcriptional activation of the promoter containing a IIARE in vitro and in vivo. Stable expression of the TFIIAαβ mutant containing both K348A and K350A in the cell line with endogenous TFIIAαβ silence represses endogenous gene expression by reducing the occupancies of TFIIAαβ, TBP, p300, and Pol II at the promoters containing a IIARE. The findings from this study provide a novel insight into the regulatory mechanism of gene transcription mediated by TFIIA and the IIARE.
Collapse
Affiliation(s)
- Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters. Cell Rep 2017; 18:275-286. [PMID: 28052256 DOI: 10.1016/j.celrep.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/02/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
Despite the availability of whole-genome sequences for almost all model organisms, making faithful predictions of gene expression levels based solely on the corresponding promoter sequences remains a challenge. Plasmid-based approaches and methods involving selection markers are not ideal due to copy-number fluctuations and their disruptive nature. Here, we present a genome editing method using the CRISPR/Cas9 complex and elucidate insights into the activity of canonical promoters in live yeast cells. The method involves the introduction of a novel cut site into a specific genomic location, followed by the integration of an edited sequence into the same location in a scarless manner. Using this method to edit the GAL1 and GAL80 promoter sequences, we found that the relative positioning of promoter elements was critically important for setting promoter activity levels in single cells. The method can be extended to other organisms to decode genotype-phenotype relationships in various gene networks.
Collapse
|
6
|
Wang J, Zhao S, He W, Wei Y, Zhang Y, Pegg H, Shore P, Roberts SGE, Deng W. A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. J Biol Chem 2017; 292:11873-11885. [PMID: 28539359 DOI: 10.1074/jbc.m116.770412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (pol II) is required for the transcription of all protein-coding genes and as such represents a major enzyme whose activity is tightly regulated. Transcriptional initiation therefore requires numerous general transcriptional factors and cofactors that associate with pol II at the core promoter to form a pre-initiation complex. Transcription factor IIA (TFIIA) is a general cofactor that binds TFIID and stabilizes the TFIID-DNA complex during transcription initiation. Previous studies showed that TFIIA can make contact with the DNA sequence upstream or downstream of the TATA box, and that the region bound by TFIIA could overlap with the elements recognized by another factor, TFIIB, at adenovirus major late core promoter. Whether core promoters contain a DNA motif recognized by TFIIA remains unknown. Here we have identified a core promoter element upstream of the TATA box that is recognized by TFIIA. A search of the human promoter database revealed that many natural promoters contain a TFIIA recognition element (IIARE). We show that the IIARE enhances TFIIA-promoter binding and enhances the activity of TATA-containing promoters, but represses or activates promoters that lack a TATA box. Chromatin immunoprecipitation assays revealed that the IIARE activates transcription by increasing the recruitment of pol II, TFIIA, TAF4, and P300 at TATA-dependent promoters. These findings extend our understanding of the role of TFIIA in transcription, and provide new insights into the regulatory mechanism of core promoter elements in gene transcription by pol II.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Shasha Zhao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Wei He
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yun Wei
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yang Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Henry Pegg
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stefan G E Roberts
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | - Wensheng Deng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China.
| |
Collapse
|
7
|
Streubel J, Baum H, Grau J, Stuttman J, Boch J. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS One 2017; 12:e0173580. [PMID: 28301511 PMCID: PMC5354296 DOI: 10.1371/journal.pone.0173580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.
Collapse
Affiliation(s)
- Jana Streubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Baum
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Stuttman
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Use of site-specific protein-DNA photocrosslinking of purified complexes to analyze the topology of the RNA polymerase II transcription initiation complex. Methods Mol Biol 2009. [PMID: 19378180 DOI: 10.1007/978-1-60327-015-1_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A method for the photocrosslinking of proteins to DNA in purified complexes is described. It makes use of the juxtaposition of a limited number of photoreactive nucleotides with a limited number of radiolabeled nucleotides at a specific location in a DNA fragment. Protein-DNA complexes are submitted to an electrophoretic mobility shift assay that is then irradiated with UV light in order to crosslink the proteins to DNA. The specific complexes are localized on the gel, purified, and processed for the identification of the crosslinked polypeptides.
Collapse
|
9
|
Bonham AJ, Neumann T, Tirrell M, Reich NO. Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays. Nucleic Acids Res 2009; 37:e94. [PMID: 19487241 PMCID: PMC2715255 DOI: 10.1093/nar/gkp424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have developed a high-throughput protein binding microarray (PBM) assay to systematically investigate transcription regulatory protein complexes binding to DNA with varied specificity and affinity. Our approach is based on the novel coupling of total internal reflectance fluorescence (TIRF) spectroscopy, swellable hydrogel double-stranded DNA microarrays and dye-labeled regulatory proteins, making it possible to determine both equilibrium binding specificities and kinetic rates for multiple protein:DNA interactions in a single experiment. DNA specificities and affinities for the general transcription factors TBP, TFIIA and IIB determined by TIRF–PBM are similar to those determined by traditional methods, while simultaneous measurement of the factors in binary and ternary protein complexes reveals preferred binding combinations. TIRF–PBM provides a novel and extendible platform for multi-protein transcription factor investigation.
Collapse
Affiliation(s)
- Andrew J Bonham
- Department of Biomolecular Science & Engineering, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
10
|
Ray S, Paulmurugan R, Patel MR, Ahn BC, Wu L, Carey M, Gambhir SS. Noninvasive imaging of therapeutic gene expression using a bidirectional transcriptional amplification strategy. Mol Ther 2008; 16:1848-56. [PMID: 18766175 DOI: 10.1038/mt.2008.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promoters that limit transgene expression to tumors play a vital role in cancer gene therapy. Although tumor specific, the human Survivin promoter (pSurv) elicits low levels of transcription. A bidirectional two-step transcriptional amplification (TSTA) system was designed to enhance expression of the therapeutic gene (TG) tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL or TR) and the reporter gene firefly luciferase (FL) from pSurv. An adenoviral vector carrying the enhanced targeting apparatus (Ad-pSurv-TR-G8-FL) was tested for efficiency and specificity of gene expression in cells and in living animals. Compared to the one-step systems (Ad-pSurv-FL or Ad-pSurv-TR), the bidirectional TSTA system showed tenfold higher expression of both the therapeutic and the reporter gene and their expression correlated in cells (R(2) = 0.99) and in animals (R(2) = 0.67). Noninvasive quantitative monitoring of magnitude and time variation of TRAIL gene expression was feasible by bioluminescence imaging of the transcriptionally linked FL gene in xenograft tumors following intratumoral adenoviral injection. Moreover, the TSTA adenovirus maintained promoter specificity in nontarget tissues following tail vein administration. These studies demonstrate the potential of the bidirectional TSTA system to achieve high levels of gene expression from a weak promoter, while preserving specificity and the ability to image expression of the TG noninvasively.
Collapse
Affiliation(s)
- Sunetra Ray
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abnizova I, Subhankulova T, Gilks WR. Recent computational approaches to understand gene regulation: mining gene regulation in silico. Curr Genomics 2007; 8:79-91. [PMID: 18660846 PMCID: PMC2435357 DOI: 10.2174/138920207780368150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 01/03/2023] Open
Abstract
This paper reviews recent computational approaches to the understanding of gene regulation in eukaryotes. Cis-regulation of gene expression by the binding of transcription factors is a critical component of cellular physiology. In eukaryotes, a number of transcription factors often work together in a combinatorial fashion to enable cells to respond to a wide spectrum of environmental and developmental signals. Integration of genome sequences and/or Chromatin Immunoprecipitation on chip data with gene-expression data has facilitated in silico discovery of how the combinatorics and positioning of transcription factors binding sites underlie gene activation in a variety of cellular processes.The process of gene regulation is extremely complex and intriguing, therefore all possible points of view and related links should be carefully considered. Here we attempt to collect an inventory, not claiming it to be comprehensive and complete, of related computational biological topics covering gene regulation, which may en-lighten the process, and briefly review what is currently occurring in these areas.We will consider the following computational areas:o gene regulatory network construction;o evolution of regulatory DNA;o studies of its structural and statistical informational properties;o and finally, regulatory RNA.
Collapse
Affiliation(s)
| | - T Subhankulova
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, Cambridge, UK
| | | |
Collapse
|
12
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
13
|
Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R. Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 2006; 123:1-12. [PMID: 16324763 DOI: 10.1016/j.jbiotec.2005.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/21/2005] [Accepted: 10/19/2005] [Indexed: 11/26/2022]
Abstract
A synthetic bidirectional expression module was constructed by placing a computationally designed minimal promoter sequence on the 5' and 3' sides of a transcription activation module. The activation of transcription from the unidirectional and bidirectional promoters constructed from the same sequence elements was evaluated by using the reporter genes gusA and gfp. The analysis based on transient and stable transformation of tobacco showed that the artificially designed multifactorial activation module activated transcription simultaneously to comparable levels in both the directions. The transcription activation module responded to elicitors like salicylic acid, NaCl and IAA in the forward as well as reverse directions. The concentration of the elicitor required for highest gene activation was similar for the two directions in case of the three activators. The kinetics of time of induction was similar in the two directions for salicylic acid and NaCl. In the case of IAA, the transcription activation was faster in the reverse direction. The results show that constitutive and chemically inducible bidirectional promoters can be deployed for predictable simultaneous regulation of two genes for genetic engineering in plants.
Collapse
|
14
|
Huo YX, Tian ZX, Rappas M, Wen J, Chen YC, You CH, Zhang X, Buck M, Wang YP, Kolb A. Protein-induced DNA bending clarifies the architectural organization of the sigma54-dependent glnAp2 promoter. Mol Microbiol 2006; 59:168-80. [PMID: 16359326 DOI: 10.1111/j.1365-2958.2005.04943.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sigma54-RNA polymerase (Esigma54) predominantly contacts one face of the DNA helix in the closed promoter complex, and interacts with the upstream enhancer-bound activator via DNA looping. Up to date, the precise face of Esigma54 that contacts the activator to convert the closed complex to an open one remains unclear. By introducing protein-induced DNA bends at precise locations between upstream enhancer sequences and the core promoter of the sigma54-dependent glnAp2 promoter without changing the distance in-between, we observed a strong enhanced or decreased promoter activity, especially on linear DNA templates in vitro. The relative positioning and orientations of Esigma54, DNA bending protein and enhancer-bound activator on linear DNA were determined by in vitro footprinting analysis. Intriguingly, the locations from which the DNA bending protein exerted its optimal stimulatory effects were all found on the opposite face of the DNA helix compared with the DNA bound Esigma54 in the closed complex. Therefore, these results provide evidence that the activator must approach the Esigma54 closed complexes from the unbound face of the promoter DNA helix to catalyse open complex formation. This proposal is further supported by the modelling of activator-promoter DNA-Esigma54 complex.
Collapse
Affiliation(s)
- Yi-Xin Huo
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Su M, Lee D, Ganss B, Sodek J. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter. J Biol Chem 2006; 281:9882-90. [PMID: 16495225 DOI: 10.1074/jbc.m508364200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
Collapse
Affiliation(s)
- Ming Su
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, 234 FitzGerald Building, 150 College Street, Toronto, Ontario M5S 3E2, Canada.
| | | | | | | |
Collapse
|
16
|
Copik AJ, Webb MS, Miller AL, Wang Y, Kumar R, Thompson EB. Activation function 1 of glucocorticoid receptor binds TATA-binding protein in vitro and in vivo. Mol Endocrinol 2006; 20:1218-30. [PMID: 16469772 DOI: 10.1210/me.2005-0257] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanism through which the glucocorticoid receptor (GR) stimulates transcription is still unclear, although it is clear that the GR affects assembly of the transcriptional machinery. The binding of the TATA-binding protein (TBP) to the TATA-box is accepted as essential in this process. It is known that the GR can interact in vitro with TBP, but the direct interaction of TBP with GR has not been previously characterized quantitatively and has not been appreciated as an important step in assembling the transcriptional complex. Herein, we demonstrate that the TBP-GR interaction is functionally significant by characterizing the association of TBP and GR in vitro by a combination of techniques and confirming the role of this interaction in vivo. Combined analysis, using native gel electrophoresis, sedimentation equilibrium, and isothermal microcalorimetry titrations, characterize the stoichiometry, affinity, and thermodynamics of the TBP-GR interaction. TBP binds recombinant GR activation function 1 (AF1) with a 1:2 stoichiometry and a dissociation constant in the nanomolar range. In vivo fluorescence resonance energy transfer experiments, using fluorescently labeled TBP and various GR constructs, transiently transfected into CV-1 cells, show GR-TBP interactions, dependent on AF1. AF1-deletion variants showed fluorescence resonance energy transfer efficiencies on the level of coexpressed cyan fluorescent protein and yellow fluorescent protein, indicating that the interaction is dependent on AF1 domain. To demonstrate the functional role of the in vivo GR-TBP interaction, increased amounts of TBP expressed in vivo stimulated expression of GR-driven reporters and endogenous genes, and the effect was also specifically dependent on AF1.
Collapse
Affiliation(s)
- Alicja J Copik
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068, USA
| | | | | | | | | | | |
Collapse
|
17
|
Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem 2005; 280:36986-93. [PMID: 16150697 DOI: 10.1074/jbc.m506056200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macromolecular translocation inhibitor II (MTI-II), which was first identified as an in vitro inhibitor of binding between the highly purified glucocorticoid receptor (GR) and isolated nuclei, is an 11.5-kDa Zn(2+)-binding protein that is also known as ZnBP or parathymosin. MTI-II is a small nuclear acidic protein that is highly conserved in rats, cows, and humans and widely distributed in mammalian tissues, yet its physiological function is unknown. To elucidate its in vivo function in relation to GR, we transiently transfected mammalian cells with an expression plasmid encoding MTI-II. Unexpectedly, we found that the expression of MTI-II enhances the transcriptional activity of GR. The magnitude of the transcriptional enhancement induced by MTI-II is comparable with that induced by the steroid receptor coactivator SRC-1. In contrast, MTI-II had little effect on the transcriptional activity of estrogen receptor. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, GR coprecipitates with MTI-II, and, vice versa, MTI-II coprecipitates with GR. The expression of various deletion mutants of MTI-II revealed that the central acidic domain is essential for the enhancement of GR-dependent transcription. Microscopic analysis of MTI-II fused to green fluorescent protein and GR fused to red fluorescent protein in living HeLa cells showed that MTI-II colocalizes with GR in discrete subnuclear domains in a hormone-dependent manner. Coexpression of MTI-II with the coactivator SRC-1 or p300 further enhances GR-dependent transcription. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, p300 and CREB-binding protein are coprecipitated with MTI-II. Furthermore, the knockdown of endogenous MTI-II by RNAi reduces the transcriptional activity of GR in cells. Moreover, expression of MTI-II enhances the glucocorticoid-dependent transcription of the endogenous glucocorticoid-inducible enzyme in cells. Taken together, these results indicate that MTI-II enhances GR-dependent transcription via a direct interaction with GR in vivo. Thus, MTI-II is a new member of the GR-coactivator complex.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Department of Biochemistry, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | |
Collapse
|
18
|
Ray S, Paulmurugan R, Hildebrandt I, Iyer M, Wu L, Carey M, Gambhir SS. Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression. Hum Gene Ther 2005; 15:681-90. [PMID: 15242528 PMCID: PMC4153396 DOI: 10.1089/1043034041361271] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Molecular imaging methods have previously been employed to image tissue-specific reporter gene expression by a two-step transcriptional amplification (TSTA) strategy. We have now developed a new bidirectional vector system, based on the TSTA strategy, that can simultaneously amplify expression for both a target gene and a reporter gene, using a relatively weak promoter. We used the synthetic Renilla luciferase (hrl) and firefly luciferase (fl) reporter genes to validate the system in cell cultures and in living mice. When mammalian cells were transiently cotransfected with the GAL4-responsive bidirectional reporter vector and various doses of the activator plasmid encoding the GAL4-VP16 fusion protein, pSV40-GAL4-VP16, a high correlation (r(2) = 0.95) was observed between the expression levels of both reporter genes. Good correlations (r(2) = 0.82 and 0.66, respectively) were also observed in vivo when the transiently transfected cells were implanted subcutaneously in mice or when the two plasmids were delivered by hydrodynamic injection and imaged. This work establishes a novel bidirectional vector approach utilizing the TSTA strategy for both target and reporter gene amplification. This validated approach should prove useful for the development of novel gene therapy vectors, as well as for transgenic models, allowing noninvasive imaging for indirect monitoring and amplification of target gene expression.
Collapse
Affiliation(s)
- Sunetra Ray
- Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lipinski KS, Djeha HA, Gawn J, Cliffe S, Maitland NJ, Palmer DH, Mountain A, Irvine AS, Wrighton CJ. Optimization of a synthetic β-catenin-dependent promoter for tumor-specific cancer gene therapy. Mol Ther 2004; 10:150-61. [PMID: 15233950 DOI: 10.1016/j.ymthe.2004.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 03/27/2004] [Indexed: 01/02/2023] Open
Abstract
We recently published the construction and evaluation of a beta-catenin-dependent, highly active promoter, CTP1, and its possible application for the treatment of colorectal cancer using gene-directed enzyme prodrug therapy with adenoviral (Ad) vectors. Alternative Ad-based approaches such as tumor-specific, replication-competent vectors and/or exploiting therapeutic gene products with intrinsic toxic activity, such as gibbon ape leukemia virus fusogenic membrane glycoprotein, diphtheria toxin A (DTA), and ricin, would demand a very tightly regulated promoter to avoid breakthrough replication and toxicity in nontumor tissue and Ad producer cell lines. In this study we optimized the activity/specificity profile of the synthetic beta-catenin-dependent promoter by varying its basal promoter, the number of Tcf binding sites, and the distance between these and the basal promoter. The optimal promoter, CTP4, showed virtually undetectable expression in cells with normal beta-catenin regulation but high level expression in cells deregulated for beta-catenin. Using CTP4 we were able to generate, for the first time to our knowledge, an Ad vector expressing fully active wild-type DTA without the need for time-consuming and cumbersome production systems. CTP4 should be the promoter of choice for Ad-based gene therapies of tumors deregulated for beta-catenin. We provide preliminary evidence that these may include prostate and ovarian as well as colorectal cancer.
Collapse
Affiliation(s)
- Kai S Lipinski
- ML Research, Keele University Science Park, Keele, Staffordshire ST5 5SP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mal TK, Masutomi Y, Zheng L, Nakata Y, Ohta H, Nakatani Y, Kokubo T, Ikura M. Structural and Functional Characterization on the Interaction of Yeast TFIID Subunit TAF1 with TATA-binding Protein. J Mol Biol 2004; 339:681-93. [PMID: 15165843 DOI: 10.1016/j.jmb.2004.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/02/2004] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
General transcription factor TFIID, consisting of TATA-binding protein (TBP) and TBP-associated factors (TAFs), plays a central role in both positive and negative regulation of transcription. The TAF N-terminal domain (TAND) of TAF1 has been shown to interact with TBP and to modulate the interaction of TBP with the TATA box, which is required for transcriptional initiation and activation of TATA-promoter operated genes. We have previously demonstrated that the Drosophila TAND region of TAF1 (residues 11-77) undergoes an induced folding from a largely unstructured state to a globular structure that occupies the DNA-binding surface of TBP thereby inhibiting the DNA-binding activity of TBP. In Saccharomyces cerevisiae, the TAND region of TAF1 displays marked differences in the primary structure relative to Drosophila TAF1 (11% identity) yet possesses transcriptional activity both in vivo and in vitro. Here we present structural and functional studies of yeast TAND1 and TAND2 regions (residues 10-37, and 46-71, respectively). Our NMR data show that, in yeast, TAND1 contains two alpha-helices (residues 16-23, 30-36) and TAND2 forms a mini beta-sheet structure (residues 53-56, 61-64). These TAND1 and TAND2 structured regions interact with the concave and convex sides of the saddle-like structure of TBP, respectively. Present NMR, mutagenesis and genetic data together elucidate that the minimal region (TAND1 core) required for GAL4-dependent transcriptional activation corresponds to the first helix region of TAND1, while the functional core region of TAND2, involved in direct interaction with TBP convex alpha-helix 2, overlaps with the mini beta-sheet region.
Collapse
Affiliation(s)
- Tapas K Mal
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ont. M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Makeev VJ, Lifanov AP, Nazina AG, Papatsenko DA. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information. Nucleic Acids Res 2004; 31:6016-26. [PMID: 14530449 PMCID: PMC219477 DOI: 10.1093/nar/gkg799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explored distance preferences in the arrangement of binding motifs for five transcription factors (Bicoid, Krüppel, Hunchback, Knirps and Caudal) in a large set of Drosophila cis-regulatory modules (CRMs). Analysis of non-overlapping binding motifs revealed the presence of periodic signals specific to particular combinations of binding motifs. The most striking periodic signals (10 bp for Bicoid and 11 bp for Hunchback) suggest preferential positioning of some binding site combinations on the same side of the DNA helix. We also analyzed distance preferences in arrangements of highly correlated overlapping binding motifs, such as Bicoid and Krüppel. Based on the distance analysis, we extracted preferential binding site arrangements and proposed models for potential composite elements (CEs) and antagonistic motif pairs involved in the function of developmental CRMs. Our results suggest that there are distinct hierarchical levels in the organization of transcription regulatory information. We discuss the role of the hierarchy in understanding transcriptional regulation and in detection of transcription regulatory regions in genomes.
Collapse
|