1
|
Agarwal AP, Kumar MS. Effect of epigenetic changes in hypoxia induced factor (HIF) gene across cancer types. Gene 2025; 934:149047. [PMID: 39490706 DOI: 10.1016/j.gene.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Cancer hypoxia, a crucial characteristic of malignancy, ranging from practically non-hypoxic to severe, impacts gene expression, metabolism and mechanisms associated with tumor formation serves as a key obstacle in cancer therapy. It triggers a complex network of cell signaling pathways, such as the NF-κB, PI3K, mTOR/AKT,MAPK, HIF and their associated genes regulating the effects of the same. The onset and advancement of cancer are attributed to genetic and epigenetic modifications which are intrinsically related. Off late, it has been observed that in disease progression, the epigenetic modifications lead to gene mutations that in turn alter the epigenome, presenting a major hurdle in fabricating treatment strategies. However, theprogress in science and technology has led to the emergence of various surfacing omics and multi-view clustering algorithms, which offer unparalleled prospects for further subtyping cancers, enhancing the prognosis and treatment results of these subtypes, and comprehending crucial pathophysiological mechanisms across diverse molecular strata. Multi-omics has allowed scientists to gain a more comprehensive understanding of the various ways that cellular malfunction can lead to cancer. So, it becomes of utmost importance to firstly understand the epigenetic changes taking place in tumor hypoxia at gene level. This review sheds light on the role of HIF gene in hypoxic milieu and its relationship with mechanisms of cancer epigenetics. It further glances as to how omics approach can be used to study the oncogenic cellular changes and how bioinformatic tools aid in identification of complex gene networks involved in disease progression. Lastly, it glimpses through the benefits and shortcomings of the existing epi drug therapy and how it can be used in developing novel treatment options.
Collapse
Affiliation(s)
- Aditi P Agarwal
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India..
| |
Collapse
|
2
|
Huang MY, Hu SY, Dong J, Deng L, Andriani L, Ma XY, Zhang YL, Zhang FL, Shao ZM, Li DQ. The DRAP1/DR1 Repressor Complex Increases mTOR Activity to Promote Progression and Confer Everolimus Sensitivity in Triple-Negative Breast Cancer. Cancer Res 2024; 84:2660-2673. [PMID: 38748783 DOI: 10.1158/0008-5472.can-23-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 08/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. In this study, we identified an upregulation of the transcriptional corepressor downregulator of transcription 1-associated protein 1 (DRAP1) in TNBC, which was closely associated with poor recurrence-free survival in patients with TNBC. DRAP1 promoted TNBC proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, the downregulator of transcription 1 (DR1)/DRAP1 heterodimer complex inhibited expression of the cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) and thereby increased activation of mTOR, which sensitized TNBC to treatment with the mTOR inhibitor everolimus. DRAP1 and DR1 also formed a positive feedback loop. DRAP1 enhanced the stability of DR1 by recruiting the deubiquitinase USP7 to inhibit its proteasomal degradation; in turn, DR1 directly promoted DRAP1 transcription. Collectively, this study uncovered a DRAP1-DR1 bidirectional regulatory pathway that promotes TNBC progression, suggesting that targeting the DRAP1/DR1 complex might be a potential therapeutic strategy to treat TNBC. Significance: DR1 and DRAP1 form a positive feedback loop and a repressor complex to cooperatively inhibit cytosolic arginine sensor for mTORC1 subunit 1 transcription and stimulate mTOR signaling, leading to progression and increased everolimus sensitivity in triple-negative breast cancer.
Collapse
Affiliation(s)
- Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Dong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Ma TS, Worth KR, Maher C, Ng N, Beghè C, Gromak N, Rose AM, Hammond EM. Hypoxia-induced transcriptional stress is mediated by ROS-induced R-loops. Nucleic Acids Res 2023; 51:11584-11599. [PMID: 37843099 PMCID: PMC10681727 DOI: 10.1093/nar/gkad858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with poor patient prognosis, therapy resistance and metastasis. Radiobiological hypoxia (<0.1% O2) is one of the few physiologically relevant stresses that activates both the replication stress/DNA damage response and the unfolded protein response. Recently, we found that hypoxia also leads to the robust accumulation of R-loops, which led us to question here both the mechanism and consequence of hypoxia-induced R-loops. Interestingly, we found that the mechanism of R-loop accumulation in hypoxia is dependent on non-DNA damaging levels of reactive oxygen species. We show that hypoxia-induced R-loops play a critical role in the transcriptional stress response, evidenced by the repression of ribosomal RNA synthesis and the translocation of nucleolin from the nucleolus into the nucleoplasm. Upon depletion of R-loops, we observed a rescue of both rRNA transcription and nucleolin translocation in hypoxia. Mechanistically, R-loops accumulate on the rDNA in hypoxia and promote the deposition of heterochromatic H3K9me2 which leads to the inhibition of Pol I-mediated transcription of rRNA. These data highlight a novel mechanistic insight into the hypoxia-induced transcriptional stress response through the ROS-R-loop-H3K9me2 axis. Overall, this study highlights the contribution of transcriptional stress to hypoxia-mediated tumorigenesis.
Collapse
Affiliation(s)
- Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Katja R Worth
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Conor Maher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Natalie Ng
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anna M Rose
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ramachandran S, Ma TS, Griffin J, Ng N, Foskolou IP, Hwang MS, Victori P, Cheng WC, Buffa FM, Leszczynska KB, El-Khamisy SF, Gromak N, Hammond EM. Hypoxia-induced SETX links replication stress with the unfolded protein response. Nat Commun 2021; 12:3686. [PMID: 34140498 PMCID: PMC8211819 DOI: 10.1038/s41467-021-24066-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is associated with poor patient prognosis and therapy resistance. A unique transcriptional response is initiated by hypoxia which includes the rapid activation of numerous transcription factors in a background of reduced global transcription. Here, we show that the biological response to hypoxia includes the accumulation of R-loops and the induction of the RNA/DNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. Therefore, suggesting that, SETX plays a role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we propose that the mechanism of SETX induction in hypoxia is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to hypoxia, which includes both a replication stress-dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Tiffany S Ma
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jon Griffin
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Natalie Ng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Iosifina P Foskolou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ming-Shih Hwang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Pedro Victori
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Wei-Chen Cheng
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Katarzyna B Leszczynska
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Healthy Lifespan and Neuroscience Institute, Firth Court, University of Sheffield, Sheffield, UK
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Thiruthaneeswaran N, Bibby BAS, Yang L, Hoskin PJ, Bristow RG, Choudhury A, West C. Lost in application: Measuring hypoxia for radiotherapy optimisation. Eur J Cancer 2021; 148:260-276. [PMID: 33756422 DOI: 10.1016/j.ejca.2021.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
The history of radiotherapy is intertwined with research on hypoxia. There is level 1a evidence that giving hypoxia-targeting treatments with radiotherapy improves locoregional control and survival without compromising late side-effects. Despite coming in and out of vogue over decades, there is now an established role for hypoxia in driving molecular alterations promoting tumour progression and metastases. While tumour genomic complexity and immune profiling offer promise, there is a stronger evidence base for personalising radiotherapy based on hypoxia status. Despite this, there is only one phase III trial targeting hypoxia modification with full transcriptomic data available. There are no biomarkers in routine use for patients undergoing radiotherapy to aid management decisions, and a roadmap is needed to ensure consistency and provide a benchmark for progression to application. Gene expression signatures address past limitations of hypoxia biomarkers and could progress biologically optimised radiotherapy. Here, we review recent developments in generating hypoxia gene expression signatures and highlight progress addressing the challenges that must be overcome to pave the way for their clinical application.
Collapse
Affiliation(s)
- Niluja Thiruthaneeswaran
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Becky A S Bibby
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Lingjang Yang
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Catharine West
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
8
|
MacLauchlan SC, Calabro NE, Huang Y, Krishna M, Bancroft T, Sharma T, Yu J, Sessa WC, Giordano F, Kyriakides TR. HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biol 2017; 65:45-58. [PMID: 28789925 DOI: 10.1016/j.matbio.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/22/2022]
Abstract
Thrombospondin-2 (TSP2) is a potent inhibitor of angiogenesis whose expression is dynamically regulated following injury. In the present study, it is shown that HIF-1α represses TSP2 transcription. Specifically, in vitro studies demonstrate that the prolyl hydroxylase inhibitor DMOG or hypoxia decrease TSP2 expression in fibroblasts. This effect is shown to be via a transcriptional mechanism as hypoxia does not alter TSP2 mRNA stability and this effect requires the TSP2 promoter. In addition, the documented repressive effect of nitric oxide (NO) on TSP2 is shown to be non-canonical and involves stabilization of hypoxia inducible factor-1a (HIF-1α). The regulation of TSP2 by hypoxia is supported by the in vivo observation that TSP2 has spatiotemporal expression distinct from regions of hypoxia in gastrocnemius muscle following murine hindlimb ischemia (HLI). A role for TSP2 regulation by HIF-1α is supported by the dysregulation of TSP2 expression in SM22α-cre HIF-1α KO mice following HLI. Indeed, there is a reduction in blood flow recovery in the SM22a-cre HIF-1α KO mice compared to littermate controls following HLI surgery, associated with impaired recovery and increased TSP2 levels. Moreover, SM22α-cre HIF-1α KO smooth muscle cells mice have increased TSP2 mRNA levels that persist in hypoxia. These findings identify a novel, ischemia-induced pro-angiogenic mechanism involving the transcriptional repression of TSP2 by HIF-1α.
Collapse
Affiliation(s)
- Susan C MacLauchlan
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nicole E Calabro
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yan Huang
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Meenakshi Krishna
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tara Bancroft
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tanuj Sharma
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jun Yu
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - William C Sessa
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Frank Giordano
- Section of Cardiovascular Medicine, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Themis R Kyriakides
- Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Amistad Building, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sukhanova IA, Sebentsova EA, Levitskaya NG. The acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments with rodents. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Chatterjee N, Lin Y, Yotnda P, Wilson JH. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair. J Mol Biol 2016; 428:2978-80. [PMID: 27318194 DOI: 10.1016/j.jmb.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Yotnda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Mehta AR, Armstrong AJ. Tasquinimod in the treatment of castrate-resistant prostate cancer - current status and future prospects. Ther Adv Urol 2016; 8:9-18. [PMID: 26834836 DOI: 10.1177/1756287215603558] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treatment options have significantly expanded in recent years for men with metastatic castration-resistant prostate cancer (mCRPC), with the routine use of immunotherapy (sipuleucel-T) and novel hormonal agents such as enzalutamide and abiraterone acetate prior to taxane-based chemotherapy or radium-223 radiotherapy. A number of immune checkpoints limit the immune response of the host to metastatic tumor progression in prostate cancer, one of which is an immunosuppressive and pro-angiogenic cell called the myeloid-derived suppressor cell (MDSC). Tasquinimod is a small molecular oral inhibitor of S100A9, a key cell surface regulator of MDSC function, and has shown anti-angiogenic, antitumor and immune-modulatory properties in preclinical models of prostate cancer and other solid tumors. A large randomized phase II trial of tasquinimod in men with chemotherapy-naïve mCRPC demonstrated a significant prolongation in radiographic and symptomatic progression-free survival compared with placebo, which was also associated with improvements in overall survival. Tasquinimod was studied in a global phase III randomized trial in men with bone mCRPC and, while it significantly improved radiographic progression-free survival, this did not result in an overall survival benefit. However, tasquinimod is under evaluation as well as a combination therapy with other systemic agents in prostate cancer and as a single agent in other solid tumors. This review encompasses the preclinical and clinical development of tasquinimod as a therapy for men with prostate cancer.
Collapse
Affiliation(s)
- Amit R Mehta
- Duke Cancer Institute Genitourinary Program, Cary, NC, USA
| | - Andrew J Armstrong
- Associate Professor of Medicine and Surgery, Associate Director for Clinical Research in Genitourinary Oncology, Duke Cancer Institute, Divisions of Medical Oncology and Urology, Duke University, DUMC Box 103861, Durham, NC 27710, USA
| |
Collapse
|
13
|
Brady LK, Popov V, Koumenis C. In Vivo Interrogation of the Hypoxic Transcriptome of Solid Tumors: Optimizing Hypoxic Probe Labeling with Laser Capture Microdissection for Isolation of High-Quality RNA for Deep Sequencing Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 899:41-58. [PMID: 27325261 DOI: 10.1007/978-3-319-26666-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Global gene expression analysis is a powerful method for identifying biological networks and regulatory mechanisms that govern cellular or tissue-level responses to physiologic stress. In the context of tumor biology, differential gene expression studies have provided information about the growth, aggressiveness, prognosis, and therapeutic response of tumors in patients. Scientists are using these valuable data to investigate pathways that can be targeted therapeutically with the goal of improving patient outcome. RNA sequencing enables nucleotide resolution of expression of whole transcriptomes, but arrives with a new set of challenges surrounding the management and analysis of large datasets. This chapter aims to review technical advancements to current methods for isolating high-quality RNA for sequencing studies directly from hypoxic tissues and introduces select widely used applications for gene expression analyses of next-generation sequencing data.
Collapse
Affiliation(s)
- Lauren K Brady
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir Popov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Lee SH, Min JW, Lee JS, Kim CH, Yoo YD, Lee EJ, Min KH, Hur GY, Lee SH, Lee SY, Kim JH, Lee SY, Shin C, Shim JJ, Kang KH, In KH. Reactive oxygen species modulator 1 (Romo1) overexpression is an independent predictor of poor survival in NSCLC patients who undergo surgical resection. Lung Cancer 2014; 87:45-52. [PMID: 25468147 DOI: 10.1016/j.lungcan.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Reactive oxygen species modulator 1 (Romo1) is a novel protein that plays an important role in intracellular reactive oxygen species generation. Romo1 is overexpressed in most cancer cell lines and related to invasiveness and chemoresistance in vitro. However, little information is available on its clinical implications. We investigated the association between Romo1 expression and the clinical outcomes of non-small cell lung cancer (NSCLC) patients who underwent surgical resection. MATERIALS AND METHODS Romo1 protein expressions were evaluated immunohistochemically in resected tumor specimens. Survival analyses for overall population (n=110) and early-stage patients (n=97) were performed according to clinical parameters including level of Romo1 expression. RESULTS Multivariate analyses showed that high Romo1 expression in tumor tissues was significantly associated with short disease-free survival (hazard ratio [HR]=3.16, 95% confidence interval [CI]: 1.21-8.22), and with short overall survival (HR=3.22, 95% CI: 1.02-10.21). Stronger associations were observed between Romo1 expression and disease-free survival (HR=3.69, 95% CI: 1.39-9.97) and overall survival (HR=4.21, 95% CI: 1.12-14.67) in stage I and II patients than in the overall population. Romo1 expression was not associated with any clinical parameter including age, gender, smoking status, stage, differentiation, or tumor histology. CONCLUSIONS Increased Romo1 expression in surgically resected NSCLC was found to be significantly associated with early recurrence and poor survival. Romo1 overexpression could be a potential adverse prognostic marker in this setting.
Collapse
Affiliation(s)
- Seung Hyeun Lee
- Department of Internal Medicine, KEPCO Medical Center, Seoul, South Korea
| | - Joo Won Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Myongji Hospital, Ilsan, South Korea
| | - Ji Sung Lee
- Biostatistical Consulting Unit, Sunchunhyang University Medical Center, Seoul, South Korea
| | - Chul Hwan Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Kyung Hoon Min
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Gyu Young Hur
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Seung Heon Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Sung Yong Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Je Hyeong Kim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Chol Shin
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Jae Jeong Shim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Kyung Ho Kang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
15
|
Wojtal KA, Cee A, Lang S, Götze O, Frühauf H, Geier A, Pastor-Anglada M, Torres-Torronteras J, Martí R, Fried M, Lutz TA, Maggiorini M, Gassmann M, Rogler G, Vavricka SR. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. Am J Physiol Gastrointest Liver Physiol 2014; 307:G673-88. [PMID: 24970780 DOI: 10.1152/ajpgi.00353.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals (n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland;
| | - Alexandra Cee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Götze
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Heiko Frühauf
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland
| | - Andreas Geier
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Marçal Pastor-Anglada
- Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Disease (CIBER EHD), University of Barcelona, Barcelona, Spain
| | - Javier Torres-Torronteras
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Michael Fried
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Marco Maggiorini
- Intensive Care Unit, Department of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Cayetano Heredia University (UPCH), Lima, Peru; and Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Stephan R Vavricka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| |
Collapse
|
16
|
Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, Björk P, Olsson A, Björk A, Leanderson T. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res 2012; 73:1386-99. [PMID: 23149916 DOI: 10.1158/0008-5472.can-12-2730] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tasquinimod is an orally active antiangiogenic drug that is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer. However, the target of this drug has remained unclear. In this study, we applied diverse strategies to identify the histone deacetylase HDAC4 as a target for the antiangiogenic activity of tasquinimod. Our comprehensive analysis revealed allosteric binding (Kd 10-30 nmol/L) to the regulatory Zn(2+) binding domain of HDAC4 that locks the protein in a conformation preventing HDAC4/N-CoR/HDAC3 complex formation. This binding inhibited colocalization of N-CoR/HDAC3, thereby inhibiting deacetylation of histones and HDAC4 client transcription factors, such as HIF-1α, which are bound at promoter/enhancers where epigenetic reprogramming is required for cancer cell survival and angiogenic response. Through this mechanism, tasquinimod is effective as a monotherapeutic agent against human prostate, breast, bladder, and colon tumor xenografts, where its efficacy could be further enhanced in combination with a targeted thapsigargin prodrug (G202) that selectively kills tumor endothelial cells. Together, our findings define a mechanism of action of tasquinimod and offer a perspective on how its clinical activity might be leveraged in combination with other drugs that target the tumor microenvironment. Cancer Res; 73(4); 1386-99. ©2012 AACR.
Collapse
Affiliation(s)
- John T Isaacs
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
18
|
Skowronski K, Dubey S, Rodenhiser D, Coomber B. Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells. Epigenetics 2010; 5:547-56. [PMID: 20543577 DOI: 10.4161/epi.5.6.12400] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modifications are involved in the initiation and progression of cancer. Expression patterns and activity of DNA methyltransferases (DNMTs) are strictly controlled in normal cells, however, regulation of these enzymes is lost in cancer cells due to unknown reasons. Cancer therapies which target DNMTs are promising treatments of hematologic cancers, but they lack effectiveness in solid tumors. Solid tumors exhibit areas of hypoxia and hypoglycaemia due to their irregular and dysfunctional vasculature, and we previously showed that hypoxia reduces global DNA methylation. Colorectal carcinoma (CRC) cells (HCT116 and 379.2; p53+/+ and p53-/-, respectively) were subjected to ischemia (hypoxia and hypoglycaemia) in vitro, and levels of DNMTs were assessed. We found a significant decrease in mRNA for DNMT1, DNMT3a and DNMT3b, and similar reductions in DNMT1 and DNMT3a protein levels were detected by western blotting. In addition, total activity levels of DNMTs (as measured by an ELISA-based DNMT activity assay) were reduced in cells exposed to hypoxic and hypoglycaemic conditions. Immunofluorescence of HCT116 tumor xenografts demonstrated an inverse relationship between ischemia (as revealed by carbonic anhydrase IX staining) and DNMT1 protein. Bisulfite sequencing of the proximal promoter region of p16INK4a showed a decrease in 5-methylcytosine following in vitro exposure to ischemia. These studies provide evidence for the down-regulation of DNMTs and modulation of methylation patterns by hypoxia and hypoglycaemia in human CRC cells, both in vitro and in vivo. Our findings suggest that ischemia, either intrinsic or induced through the use of anti-angiogenic drugs, may influence epigenetic patterning and hence tumor progression.
Collapse
Affiliation(s)
- Karolina Skowronski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, CA, USA
| | | | | | | |
Collapse
|
19
|
Aryee DNT, Niedan S, Kauer M, Schwentner R, Bennani-Baiti IM, Ban J, Muehlbacher K, Kreppel M, Walker RL, Meltzer P, Poremba C, Kofler R, Kovar H. Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the malignant properties of Ewing's sarcoma cells in vitro. Cancer Res 2010; 70:4015-23. [PMID: 20442286 DOI: 10.1158/0008-5472.can-09-4333] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoxia is an important condition in the tumor cell microenvironment and approximately 1% to 1.5% of the genome is transcriptionally responsive to hypoxia with hypoxia-inducible factor-1 (HIF-1) as a major mediator of transcriptional activation. Tumor hypoxia is associated with a more aggressive phenotype of many cancers in adults, but data on pediatric tumors are scarce. Because, by immunohistochemistry, HIF-1alpha expression was readily detectable in 18 of 28 primary Ewing's sarcoma family tumors (ESFT), a group of highly malignant bone-associated tumors in children and young adults, we studied the effect of hypoxia on ESFT cell lines in vitro. Intriguingly, we found that EWS-FLI1 protein expression, which characterizes ESFT, is upregulated by hypoxia in a HIF-1alpha-dependent manner. Hypoxia modulated the EWS-FLI1 transcriptional signature relative to normoxic conditions. Both synergistic as well as antagonistic transcriptional effects of EWS-FLI1 and of hypoxia were observed. Consistent with alterations in the expression of metastasis-related genes, hypoxia stimulated the invasiveness and soft agar colony formation of ESFT cells in vitro. Our data represent the first transcriptome analysis of hypoxic ESFT cells and identify hypoxia as an important microenvironmental factor modulating EWS-FLI1 expression and target gene activity with far-reaching consequences for the malignant properties of ESFT.
Collapse
Affiliation(s)
- Dave N T Aryee
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Hypoxia is an integral component of the inflamed tissue microenvironment. Today, the influence of hypoxia on the natural evolution of inflammatory responses is widely accepted; however, many molecular and cellular mechanisms mediating this relationship remain to be clarified. Hypoxic stress affects several independent transcriptional regulators related to inflammation in which HIF-1 and NF-kappaB play central roles. Transcription factors interact with both HATs and HDACs, which are components of large multiprotein co-regulatory complexes. This review summarizes the current knowledge on hypoxia-responsive transcriptional pathways in inflammation and their importance in the etiology of chronic inflammatory diseases, with the primary focus on transcriptional co-regulators and histone modifications in defining gene-specific transcriptional responses in hypoxia, and on the recent progress in the understanding of hypoxia-mediated epigenetic reprogramming. Furthermore, this review discusses the molecular cross-talk between glucocorticoid anti-inflammatory pathways and hypoxia.
Collapse
Affiliation(s)
- O Safronova
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | |
Collapse
|
21
|
Fish JE, Yan MS, Matouk CC, St Bernard R, Ho JJD, Ho JJD, Gavryushova A, Srivastava D, Marsden PA. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 2009; 285:810-26. [PMID: 19880524 DOI: 10.1074/jbc.m109.067868] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia elicits endothelial dysfunction, in part, through reduced expression of endothelial nitric-oxide synthase (eNOS). Here we present evidence that hypoxia causes a rapid decrease in the transcription of the eNOS/NOS3 gene, accompanied by decreased acetylation and lysine 4 (histone H3) methylation of eNOS proximal promoter histones. Surprisingly, we demonstrate that histones are rapidly evicted from the eNOS proximal promoter during hypoxia. We also demonstrate endothelium-specific H2A.Z incorporation at the eNOS promoter and find that H2A.Z is also evicted by hypoxic stimulation. After longer durations of hypoxia, histones are reincorporated at the eNOS promoter, but these histones lack substantial histone acetylation. Additionally, we identify a key role for the chromatin remodeler, BRG1, in re-establishing eNOS expression following reoxygenation of hypoxic cells. We posit that post-translational histone modifications are required to maintain constitutive eNOS transcriptional activity and that histone eviction rapidly resets histone marks and is a proximal event in the hypoxic repression of eNOS. Although nucleosome eviction has been reported in models of transcriptional activation, the observation that eviction can also accompany transcriptional repression in hypoxic mammalian cells argues that eviction may be broadly relevant to both positive and negative changes in transcription.
Collapse
Affiliation(s)
- Jason E Fish
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Agca C, Klein WH, Venuti JM. Reduced O2and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation. Dev Dyn 2009; 238:1777-87. [DOI: 10.1002/dvdy.22001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Posadas I, López-Hernández B, Clemente MI, Jiménez JL, Ortega P, de la Mata J, Gómez R, Muñoz-Fernández MA, Ceña V. Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for HIF-1alpha in early chemical hypoxia-mediated neurotoxicity. Pharm Res 2009; 26:1181-91. [PMID: 19191011 DOI: 10.1007/s11095-009-9839-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/20/2009] [Indexed: 01/23/2023]
Abstract
PURPOSE To study the effect of a non-viral vector (carbosilane dendrimer) to efficiently deliver small interfering RNA to postmitotic neurons to study the function of hypoxia-inducible factor-1alpha (HIF1-alpha) during chemical hypoxia-mediated neurotoxicity. METHODS Chemical hypoxia was induced in primary rat cortical neurons by exposure to CoCl(2). HIF1-alpha levels were determined by Western Blot and toxicity was evaluated by both MTT and LDH assays. Neurons were incubated with dendriplexes containing anti-HIF1-alpha siRNA and both uptake and HIF1-alpha knockdown efficiency were evaluated. RESULTS We report that a non-viral vector (carbosilane dendrimer) can deliver specific siRNA to neurons and selectively block HIF1-alpha synthesis with similar efficiency to that achieved by viral vectors. Using this method, we have found that this transcription factor plays a neuroprotective role during the early phase of chemical hypoxia-mediated neurotoxicity. CONCLUSION This work represents a proof-of-concept for the use of carbosilane dendrimers to deliver specific siRNA to postmitotic neurons to block selected protein synthesis. This indicates that this type of vector is a good alternative to viral vectors to achieve very high transfection levels in neurons. This also suggests that carbosilane dendrimers might be very useful for gene therapy.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Departamento de Ciencias Médicas, Unidad Asociada Neurodeath, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006, Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fähling M. Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol (Oxf) 2009; 195:205-30. [PMID: 18764866 DOI: 10.1111/j.1748-1716.2008.01894.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia is a consequence of inadequate oxygen availability. At the cellular level, lowered oxygen concentration activates signal cascades including numerous receptors, ion channels, second messengers, as well as several protein kinases and phosphatases. This, in turn, activates trans-factors like transcription factors, RNA-binding proteins and miRNAs, mediating an alteration in gene expression control. Each cell type has its unique constellation of oxygen sensors, couplers and effectors that determine the activation and predominance of several independent hypoxia-sensitive pathways. Hence, altered gene expression patterns in hypoxia result from a complex regulatory network with multiple divergences and convergences. Although hundreds of genes are activated by transcriptional control in hypoxia, metabolic rate depression, as a consequence of reduced ATP level, causes inhibition of mRNA translation. In a multi-phase response to hypoxia, global protein synthesis is suppressed, mainly by phosphorylation of eIF2-alpha by PERK and inhibition of mTOR, causing suppression of 5'-cap-dependent mRNA translation. Growing evidence suggests that mRNAs undergo sorting at stress granules, which determines the fate of mRNA as to whether being translated, stored, or degraded. Data indicate that translation is suppressed only at 'free' polysomes, but is active at subsets of membrane-bound ribosomes. The recruitment of specific mRNAs into subcellular compartments seems to be crucial for local mRNA translation in prolonged hypoxia. Furthermore, ribosomes themselves may play a significant role in targeting mRNAs for translation. This review summarizes the multiple facets of the cellular adaptation to hypoxia observed in mammals.
Collapse
Affiliation(s)
- M Fähling
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA, Simon MC. Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 2008; 283:16309-19. [PMID: 18430730 DOI: 10.1074/jbc.m710079200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although it is advantageous for hypoxic cells to inhibit protein synthesis and conserve energy, it is also important to translate mRNAs critical for adaptive responses to hypoxic stress. Because internal ribosome entry sites (IRES) have been postulated to mediate this preferential synthesis, we analyzed the 5 '-untranslated regions from a panel of stress-regulated mRNAs for m(7)GTP cap-independent translation and identified putative IRES elements in encephalomyocarditis virus, vascular endothelial growth factor, hypoxia-inducible factors (HIFs) 1alpha and 2alpha, glucose transporter-like protein 1, p57(Kip2), La, BiP, and triose phosphate isomerase transcripts. However, when capped and polyadenylated dicistronic RNAs were synthesized in vitro and transfected into cells, cellular IRES-mediated translation accounted for less than 1% that of the level of cap-dependent translation. Moreover, hypoxic stress failed to activate cap-independent synthesis, indicating that it is unlikely that this is the primary mechanism for the maintenance of the translation of these mRNAs under low O(2). Furthermore, although HIF-1alpha is frequently cited as an example of an mRNA that is preferentially translated, we demonstrate that under different levels and durations of hypoxic stress, changes in newly synthesized HIF-1alpha and beta-actin protein levels mirror alterations in corresponding mRNA abundance. In addition, our data suggest that cyclin-dependent kinase inhibitor p57(Kip2) and vascular endothelial growth factor mRNAs are selectively translated by an IRES-independent mechanism under hypoxic stress.
Collapse
Affiliation(s)
- Regina M Young
- Abramson Family Cancer Research Institute, Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008; 640:174-9. [PMID: 18294659 DOI: 10.1016/j.mrfmmm.2008.01.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 12/27/2007] [Accepted: 01/04/2008] [Indexed: 11/25/2022]
Abstract
Tumor cells respond to the harsh hypoxic microenvironment, in part, by transcriptional regulation of specific target genes. We found that hypoxia-mediated activation of selected genes occurs amidst widespread repression of transcription that is neither cell type-specific nor HIF-1-dependent. Despite overall repression, hypoxia induces a pool of histone modifications typically associated with transcriptional activation or repression. Chromatin immunoprecipitation analyses showed that this global mixture of hypoxia-modified histones is sorted in a gene-specific manner to correlate with transcriptional response to hypoxia. Exceptions to this were unexpected increases in H3K4me3 levels, typically associated with transcriptional activation, and decreased H3K27me3 levels, generally a marker of transcriptional silencing, at core promoters of both hypoxia-activated and -repressed genes. These data suggest that a novel signature of chromatin modifications is induced under hypoxic stress, which may play a role in gene regulatory switches active in proliferating tumor cells undergoing cycles of hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Amber Buescher Johnson
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED, Moreau P. Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol 2006; 68:277-85. [PMID: 17400064 DOI: 10.1016/j.humimm.2006.10.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 10/23/2006] [Indexed: 11/27/2022]
Abstract
Human leukocyte antigen G (HLA-G) molecules are expressed in cytotrophoblasts and play a key role in maintaining immune tolerance at the maternal-fetal interface. HLA-G expression was also reported in inflammatory diseases, organ transplantation, and malignant tumors. The regulatory mechanisms of HLA-G gene expression differ from those of classical HLA class I genes and are still only partially elucidated. Focusing on tumor cells, we previously demonstrated a tight control of HLA-G gene expression by cis-acting epigenetic mechanisms. In the present study, we hypothesized that these processes are dependent of microenvironment conditions, and more particularly, stress conditions like hypoxia. Cellular response to hypoxia is mainly driven by a key transcription factor, hypoxia-inducible factor 1 (HIF-1), and other factors, such as NF-kappaB, involved in angiogenesis and cell survival. Here we confirmed the influence of hypoxia on HLA-G gene induction in the HLA-G-negative M8 melanoma cell line. Moreover, upon treatment with the hypoxia-mimicking desferrioxamine, we demonstrated a decrease in HLA-G gene expression in melanoma FON and choriocarcinoma JEG-3 cell lines, both expressing constitutively HLA-G. Finally, we demonstrated for the first time that the modulation of HLA-G gene expression is dependent of HIF-1 stabilization and thus might be relevant for the control of HLA-G gene expression in hypoxic tumors.
Collapse
Affiliation(s)
- Gaël Mouillot
- Commissariat à l'Energie Atomique, Service de Recherches en Hémato-Immunologie, Direction des Sciences du Vivant/Dèpartement de Recherche Médicale, Hôpital Saint-Louis, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
29
|
Castaño E, Rodríguez-Zapata L, Rodriguez HP, Möbius N. Native NC2 selectively represses incorrect transcription initiation. Mol Biol 2006. [DOI: 10.1134/s0026893306020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hammond EM, Giaccia AJ. The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 2005; 331:718-25. [PMID: 15865928 DOI: 10.1016/j.bbrc.2005.03.154] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 12/14/2022]
Abstract
Hypoxia represents one of the most physiologically relevant stresses, having significant roles in both normal development and malignant progression. Exposure to severe hypoxia leads to the accumulation of p53 which can in turn lead to rapid apoptosis. In contrast to the response to DNA-damaging agents, hypoxia-induced p53 has little or no transcriptional transactivation capabilities and instead seems to function primarily as a transrepressor in order to induce apoptosis.
Collapse
Affiliation(s)
- Ester M Hammond
- Department of Radiation Oncology, Centre for Clinical Sciences Research, Stanford University, Stanford, CA 94303-5152, USA.
| | | |
Collapse
|
31
|
Fewell JE. Protective responses of the newborn to hypoxia. Respir Physiol Neurobiol 2005; 149:243-55. [PMID: 15941675 DOI: 10.1016/j.resp.2005.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
In human infants, spontaneous recovery from sleep related apnea or positional asphyxia can occur early with or without behavioral and/or cortical arousal or later as a result of autoresuscitation from "asphyxial coma" by hypoxic gasping. Because it occurs when early defense mechanisms are absent or fail to resolve apnea or positional asphyxia, autoresuscitation serves as a backup mechanism and is considered to be the last operative mechanism used by mammals to ensure survival during exposure to severe hypoxia. In this short review, factors will be considered that influence the onset, duration and number of potential autoresuscitation producing gasps as well as the integrated physiology of successful autoresuscitation and pathophysiology of failed autoresuscitation from hypoxic-induced apnea.
Collapse
Affiliation(s)
- James E Fewell
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive, N.W. Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
32
|
Gilfillan S, Stelzer G, Piaia E, Hofmann MG, Meisterernst M. Efficient Binding of NC2·TATA-binding Protein to DNA in the Absence of TATA. J Biol Chem 2005; 280:6222-30. [PMID: 15574413 DOI: 10.1074/jbc.m406343200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative cofactor 2 (NC2) forms a stable complex with TATA-binding protein (TBP) on promoters. This prevents the assembly of transcription factor (TF) IIA and TFIIB and leads to repression of RNA polymerase II transcription. Here we have revisited the interactions of NC2.TBP with DNA. We show that NC2.TBP complexes exhibit a significantly reduced preference for TATA box sequences compared with TBP and TBP.TFIIA complexes. In chromatin immunoprecipitations, NC2 is found on a variety of human TATA-containing and TATA-less promoters. Substantial amounts of NC2 are present in a complex with TBP in bulk chromatin. A complex of NC2.TBP displays a K(D) for DNA of approximately 2 x 10(-9) m for a 35-bp major late promoter oligonucleotide. While preferentially recognizing promoter-bound TBP, NC2 also accelerates TBP binding to promoters and stabilizes TBP.DNA complexes. Our data suggest that NC2 controls TBP binding and maintenance on DNA that is largely independent of a canonical TATA sequence.
Collapse
Affiliation(s)
- Siv Gilfillan
- Gene Expression, Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
Papandreou I, Powell A, Lim AL, Denko N. Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutat Res 2005; 569:87-100. [PMID: 15603754 DOI: 10.1016/j.mrfmmm.2004.06.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 05/22/2004] [Accepted: 06/02/2004] [Indexed: 05/01/2023]
Abstract
Multicellular organisms have developed sophisticated physiologic mechanisms by which they maintain their tissues at the optimal oxygen concentration. This level is important so that the benefits of free oxygen can be realized, while limiting the potential harms. Despite these efforts, there exist physiologic and pathophysiologic conditions where oxygen delivery drops below what is necessary for the tissue. Under these circumstances, the cell then goes through a series of coordinated responses in a time and oxygen concentration-dependent manner. The gene expression changes are designed to maintain cellular and tissue viability, and are comprised of transcriptional as well as post-transcriptional events. As we understand more about the hypoxic response, we realize how it can impact normal development, wound healing, and the malignant progression of a solid tumor.
Collapse
Affiliation(s)
- Ioanna Papandreou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Room 1245, CCSR South 269, Campus Drive Stanford, CA 94305-5152, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Solid tumors are not static entities but are constantly responding to environmental signals as they grow and develop. One mechanism by which they respond to the adverse conditions of the tumor microenvironment is through coordinated changes in gene expression. The synchronized turning of genes on and off leads to biologic adaption to the adverse oxygen-poor environment. Because tumor hypoxia can be found in almost every solid tumor, it represents one of the most pervasive microenvironmental stresses that can impact malignant progression and therapeutic response. Interestingly, tumors that exhibit robust induction of hypoxia-responsive gene expression networks show a clinically more aggressive natural history. The contribution of hypoxia-responsive gene networks to malignant response is currently under investigation. An understanding of the coordinated functions of hypoxia induced and repressed genes can lead to a better understanding of the clinical significance of the hypoxic tumor phenotype.
Collapse
Affiliation(s)
- Cornelia Leo
- Department of Gynecology, University of Leipzig, Germany
| | | | | |
Collapse
|
35
|
Acker T, Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 2004; 207:3171-88. [PMID: 15299039 DOI: 10.1242/jeb.01075] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY
Structural and functional integrity of brain function profoundly depends on a regular oxygen and glucose supply. Any disturbance of this supply becomes life threatening and may result in severe loss of brain function. In particular, reductions in oxygen availability (hypoxia) caused by systemic or local blood circulation irregularities cannot be tolerated for longer periods due to an insufficient energy supply to the brain by anaerobic glycolysis. Hypoxia has been implicated in central nervous system pathology in a number of disorders including stroke, head trauma, neoplasia and neurodegenerative disease. Complex cellular oxygen sensing systems have evolved for tight regulation of oxygen homeostasis in the brain. In response to variations in oxygen partial pressure (PO2) these induce adaptive mechanisms to avoid or at least minimize brain damage.
A significant advance in our understanding of the hypoxia response stems from the discovery of the hypoxia inducible factors (HIF), which act as key regulators of hypoxia-induced gene expression. Depending on the duration and severity of the oxygen deprivation, cellular oxygen-sensor responses activate a variety of short- and long-term energy saving and cellular protection mechanisms. Hypoxic adaptation encompasses an immediate depolarization block by changing potassium, sodium and chloride ion fluxes across the cellular membrane, a general inhibition of protein synthesis, and HIF-mediated upregulation of gene expression of enzymes or growth factors inducing angiogenesis, anaerobic glycolysis, cell survival or neural stem cell growth. However, sustained and prolonged activation of the HIF pathway may lead to a transition from neuroprotective to cell death responses. This is reflected by the dual features of the HIF system that include both anti- and proapoptotic components.
These various responses might be based on a range of oxygen-sensing signal cascades, including an isoform of the neutrophil NADPH oxidase, different electron carrier units of the mitochondrial chain such as a specialized mitochondrial, low PO2 affinity cytochrome c oxidase (aa3) and a subfamily of 2-oxoglutarate dependent dioxygenases termed HIF prolyl-hydroxylase (PHD) and HIF asparaginyl hydroxylase, known as factor-inhibiting HIF (FIH-1). Thus specific oxygen-sensing cascades, by means of their different oxygen sensitivities,cell-specific and subcellular localization, may help to tailor various adaptive responses according to differences in tissue oxygen availability.
Collapse
Affiliation(s)
- Till Acker
- Karolinska Institute, Cellular and Molecular Biology, Stockholm, Sweden
| | | |
Collapse
|
36
|
Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 2004; 64:2054-61. [PMID: 15026343 DOI: 10.1158/0008-5472.can-03-3196] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An orthotopic mouse model of cervical carcinoma has been used to investigate the relationship between acute (cyclic) hypoxia and spontaneous lymph node metastasis in vivo. The human cervical carcinoma cell line ME-180 was stably transfected to express the fluorescent protein DsRed2, which allowed the in vivo optical monitoring of tumor growth and metastasis by fluorescent microscopy. The surgically implanted primary tumors metastasize initially to local lymph nodes and later to lung, a pattern consistent with the clinical course of the disease. The effect of acute hypoxia on the growth and spread of these tumors was examined by exposing tumor-bearing mice to treatment consisting of exposure to 12 cycles of 10 min 7% O(2) followed by 10 min air (total 4 h) daily during tumor growth. After 21 days, the tumors were excised, lymph node and lung metastases were quantified, and the hypoxic fraction and relative vascular area of the primary tumors were assessed by immunohistochemical staining for the hypoxic marker drug EF5 [2-(2-nitro-1H-imidazole-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide] and the vascular marker CD31, respectively. In untreated mice, the primary tumor size was directly correlated with lymph node metastatic burden. The acute hypoxia treatment resulted in a significant decrease in the size of the primary tumors at the time of excision. However, the mice in the acute hypoxia group had an increased number of positive lymph nodes (2-4) as compared with control mice (1-3). Lung metastasis was not affected. The acute hypoxia treatment also decreased the relative vascular area in the primary tumors but did not affect the hypoxic fraction. These results suggest that fluctuating oxygenation in cervical carcinoma tumors may reduce tumor growth rate, but it may also enhance the ability of tumor cells to metastasize to local lymph nodes.
Collapse
Affiliation(s)
- Rob A Cairns
- Experimental Therapeutics Division, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
37
|
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23:9361-74. [PMID: 14645546 PMCID: PMC309606 DOI: 10.1128/mcb.23.24.9361-9374.2003] [Citation(s) in RCA: 1096] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 04/24/2003] [Accepted: 09/04/2003] [Indexed: 12/13/2022] Open
Abstract
Transcriptional responses to hypoxia are primarily mediated by hypoxia-inducible factor (HIF), a heterodimer of HIF-alpha and the aryl hydrocarbon receptor nuclear translocator subunits. The HIF-1alpha and HIF-2alpha subunits are structurally similar in their DNA binding and dimerization domains but differ in their transactivation domains, implying they may have unique target genes. Previous studies using Hif-1alpha(-/-) embryonic stem and mouse embryonic fibroblast cells show that loss of HIF-1alpha eliminates all oxygen-regulated transcriptional responses analyzed, suggesting that HIF-2alpha is dispensable for hypoxic gene regulation. In contrast, HIF-2alpha has been shown to regulate some hypoxia-inducible genes in transient transfection assays and during embryonic development in the lung and other tissues. To address this discrepancy, and to identify specific HIF-2alpha target genes, we used DNA microarray analysis to evaluate hypoxic gene induction in cells expressing HIF-2alpha but not HIF-1alpha. In addition, we engineered HEK293 cells to express stabilized forms of HIF-1alpha or HIF-2alpha via a tetracycline-regulated promoter. In this first comparative study of HIF-1alpha and HIF-2alpha target genes, we demonstrate that HIF-2alpha does regulate a variety of broadly expressed hypoxia-inducible genes, suggesting that its function is not restricted, as initially thought, to endothelial cell-specific gene expression. Importantly, HIF-1alpha (and not HIF-2alpha) stimulates glycolytic gene expression in both types of cells, clearly showing for the first time that HIF-1alpha and HIF-2alpha have unique targets.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Abramson Family Cancer Research Institute. Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
38
|
Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 2003; 22:5907-14. [PMID: 12947397 DOI: 10.1038/sj.onc.1206703] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical evidence shows that tumor hypoxia is an independent prognostic indicator of poor patient outcome. Hypoxic tumors have altered physiologic processes, including increased regions of angiogenesis, increased local invasion, increased distant metastasis and altered apoptotic programs. Since hypoxia is a potent controller of gene expression, identifying hypoxia-regulated genes is a means to investigate the molecular response to hypoxic stress. Traditional experimental approaches have identified physiologic changes in hypoxic cells. Recent studies have identified hypoxia-responsive genes that may define the mechanism(s) underlying these physiologic changes. For example, the regulation of glycolytic genes by hypoxia can explain some characteristics of the Warburg effect. The converse of this logic is also true. By identifying new classes of hypoxia-regulated gene(s), we can infer the physiologic pressures that require the induction of these genes and their protein products. Furthermore, these physiologically driven hypoxic gene expression changes give us insight as to the poor outcome of patients with hypoxic tumors. Approximately 1-1.5% of the genome is transcriptionally responsive to hypoxia. However, there is significant heterogeneity in the transcriptional response to hypoxia between different cell types. Moreover, the coordinated change in the expression of families of genes supports the model of physiologic pressure leading to expression changes. Understanding the evolutionary pressure to develop a 'hypoxic response' provides a framework to investigate the biology of the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Nicholas C Denko
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|