1
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural dynamics of the dengue virus non-structural 5 (NS5) interactions with promoter stem-loop A (SLA). NPJ VIRUSES 2025; 3:30. [PMID: 40295851 PMCID: PMC12003724 DOI: 10.1038/s44298-025-00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The dengue virus (DENV) NS5 protein, essential for viral RNA synthesis, is an attractive antiviral drug target. DENV NS5 interacts with the stem-loop A (SLA) promoter at the 5'-untranslated region of the viral genome to initiate negative-strand synthesis. However, the conformational dynamics of this interaction remains unclear. Our study explores the structural dynamics of DENV serotype 2 NS5 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen-deuterium exchange mass spectrometry (HDX-MS), computational modeling, and cryoEM. Our findings reveal that DENV2 NS5 binds SLA in a closed conformation, with interdomain cooperation between its methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, critical for the interaction. SLA binding induces conformational changes in both domains, highlighting NS5's multifunctional role in viral replication. Our cryoEM results visualizes the DENV2 NS5-SLA complex, confirming a conserved SLA binding across DENV serotypes and provides key insights for antiviral strategies targeting NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - James K Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Greg A Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Kaewjiw N, Thaingtamtanha T, Mehra D, Chawnawa W, Prommool T, Puttikhunt C, Songjaeng A, Kongmanas K, Avirutnan P, Luangaram P, Srisawat C, Roytrakul S, Bäurle SA, Noisakran S. Domperidone inhibits dengue virus infection by targeting the viral envelope protein and nonstructural protein 1. Sci Rep 2025; 15:3817. [PMID: 39885306 PMCID: PMC11782576 DOI: 10.1038/s41598-025-87146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) analysis were subsequently performed to determine specific interactions of domperidone with the DENV E and NS1 proteins and their binding affinity. Treatment of immortalized human hepatocyte-like cells (imHC) with domperidone could inhibit DENV production and NS1 secretion in a dose-dependent manner following infection with DENV serotype 2. These inhibitory effects were mediated by reduction in viral RNA replication and viral E and NS1 protein expression, but not by interference with virus entry into cells or NS1 oligomerization. The suppression of DENV production and NS1 secretion by domperidone was observed across all four DENV serotypes to varying degrees between different virus strains. The findings from our study suggest viral target-based repurposing of domperidone for modulating DENV.
Collapse
Affiliation(s)
- Nuttapong Kaewjiw
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanawat Thaingtamtanha
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Damini Mehra
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Wanida Chawnawa
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Luangaram
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Stephan A Bäurle
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand.
| |
Collapse
|
3
|
Chen A, Lupan AM, Quek RT, Stanciu SG, Asaftei M, Stanciu GA, Hardy KS, de Almeida Magalhães T, Silver PA, Mitchison TJ, Salic A. A coronaviral pore-replicase complex links RNA synthesis and export from double-membrane vesicles. SCIENCE ADVANCES 2024; 10:eadq9580. [PMID: 39514670 PMCID: PMC11546809 DOI: 10.1126/sciadv.adq9580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we show that the nonstructural viral membrane protein nsp4 is the key pore organizer, spanning the double membrane and forming most of the pore lining. Nsp4 interacts with nsp3 on the cytoplasmic side and with the viral replicase inside the DMV. Newly synthesized mRNAs exit the DMV into the cytoplasm, passing through a narrow ring of conserved nsp4 residues. Steric constraints imposed by the ring predict that modified nucleobases block mRNA transit, resulting in broad-spectrum anticoronaviral activity.
Collapse
Affiliation(s)
- Anan Chen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ana-Mihaela Lupan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Tong Quek
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Mihaela Asaftei
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
- Department of Microbiology, University of Bucharest, Aleea Portocalelor nr. 1-3, 060101 Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Kierra S. Hardy
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Faculty of Chemistry, University of Bucharest, Șoseaua Panduri nr. 90, 050663 Bucharest, Romania
| |
Collapse
|
4
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
5
|
Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingström J, Smed-Sörensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep 2023; 42:112835. [PMID: 37478010 DOI: 10.1016/j.celrep.2023.112835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Jiwoong Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden; Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Narayan R, Sharma M, Yadav R, Biji A, Khatun O, Kaur S, Kanojia A, Joy CM, Rajmani R, Sharma PR, Jeyasankar S, Rani P, Shandil RK, Narayanan S, Rao DC, Satchidanandam V, Das S, Agarwal R, Tripathi S. Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus in vivo. Cell Rep Med 2023; 4:101127. [PMID: 37463584 PMCID: PMC10439173 DOI: 10.1016/j.xcrm.2023.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
The COVID-19 pandemic highlights an urgent need for effective antivirals. Targeting host processes co-opted by viruses is an attractive antiviral strategy with a high resistance barrier. Picolinic acid (PA) is a tryptophan metabolite endogenously produced in mammals. Here, we report the broad-spectrum antiviral activity of PA against enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), flaviviruses, herpes simplex virus, and parainfluenza virus. Mechanistic studies reveal that PA inhibits enveloped virus entry by compromising viral membrane integrity, inhibiting virus-cellular membrane fusion, and interfering with cellular endocytosis. More importantly, in pre-clinical animal models, PA exhibits promising antiviral efficacy against SARS-CoV-2 and IAV. Overall, our data establish PA as a broad-spectrum antiviral with promising pre-clinical efficacy against pandemic viruses SARS-CoV-2 and IAV.
Collapse
Affiliation(s)
- Rohan Narayan
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Mansi Sharma
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Rajesh Yadav
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Abhijith Biji
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Aditi Kanojia
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Christy Margrat Joy
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Raju Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sharumathi Jeyasankar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, KIADB Industrial Area, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, KIADB Industrial Area, Doddaballapur, Bengaluru 561203, India
| | - Durga Chilakalapudi Rao
- Department of Biological Sciences, School of Engineering and Sciences, SRM University, Andhra Pradesh 522240, India
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Infosys Wing, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India; Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
7
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
9
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
10
|
Klaitong P, Smith DR. Roles of Non-Structural Protein 4A in Flavivirus Infection. Viruses 2021; 13:v13102077. [PMID: 34696510 PMCID: PMC8538649 DOI: 10.3390/v13102077] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Infections with viruses in the genus Flavivirus are a worldwide public health problem. These enveloped, positive sense single stranded RNA viruses use a small complement of only 10 encoded proteins and the RNA genome itself to remodel host cells to achieve conditions favoring viral replication. A consequence of the limited viral armamentarium is that each protein exerts multiple cellular effects, in addition to any direct role in viral replication. The viruses encode four non-structural (NS) small transmembrane proteins (NS2A, NS2B, NS4A and NS4B) which collectively remain rather poorly characterized. NS4A is a 16kDa membrane associated protein and recent studies have shown that this protein plays multiple roles, including in membrane remodeling, antagonism of the host cell interferon response, and in the induction of autophagy, in addition to playing a role in viral replication. Perhaps most importantly, NS4A has been implicated as playing a critical role in fetal developmental defects seen as a consequence of Zika virus infection during pregnancy. This review provides a comprehensive overview of the multiple roles of this small but pivotal protein in mediating the pathobiology of flaviviral infections.
Collapse
|
11
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
12
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
13
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
14
|
Sarkar R, Sharma KB, Kumari A, Asthana S, Kalia M. Japanese encephalitis virus capsid protein interacts with non-lipidated MAP1LC3 on replication membranes and lipid droplets. J Gen Virol 2021; 102. [DOI: 10.1099/jgv.0.001508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microtubule-associated protein 1 light chain 3 (MAP1LC3) is a protein with a well-defined function in autophagy, but still incompletely understood roles in several other autophagy-independent processess. Studies have shown MAP1LC3 is a host-dependency factor for the replication of several viruses. Japanese encephalitis virus (JEV), a neurotropic flavivirus, replicates on ER-derived membranes that are marked by autophagosome-negative non-lipidated MAP1LC3 (LC3-I). Depletion of LC3 exerts a profound inhibition on virus replication and egress. Here, we further characterize the role of LC3 in JEV replication, and through immunofluorescence and immunoprecipitation show that LC3-I interacts with the virus capsid protein in infected cells. This association was observed on capsid localized to both the replication complex and lipid droplets (LDs). JEV infection decreased the number of LDs per cell indicating a link between lipid metabolism and virus replication. This capsid-LC3 interaction was independent of the autophagy adaptor protein p62/Sequestosome 1 (SQSTM1). Further, no association of capsid was seen with the Gamma-aminobutyric acid receptor-associated protein family, suggesting that this interaction was specific for LC3. High-resolution protein-protein docking studies identified a putative LC3-interacting region in capsid, 56FTAL59,
and other key residues that could mediate a direct interaction between the two proteins.
Collapse
Affiliation(s)
- Riya Sarkar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Anita Kumari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
15
|
First Isolation of a Novel Aquatic Flavivirus from Chinook Salmon (Oncorhynchus tshawytscha) and Its In Vivo Replication in a Piscine Animal Model. J Virol 2020; 94:JVI.00337-20. [PMID: 32434883 DOI: 10.1128/jvi.00337-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023] Open
Abstract
The first isolation of a flavivirus from fish was made from moribund Chinook salmon (Oncorhynchus tshawytscha) from the Eel River, California, USA. Following the observation of cytopathic effect in a striped-snakehead fish cell line, 35-nm virions with flaviviral morphology were visualized using electron microcopy. Next-generation sequencing and rapid amplification of cDNA ends obtained the complete genome. Reverse transcriptase quantitative PCR (RT-qPCR) confirmed the presence of viral RNA in formalin-fixed tissues from the wild salmon. For the first time, in vivo replication of an aquatic flavivirus was demonstrated following intracoelomic injection in a Chinook salmon model of infection. RT-qPCR demonstrated viral replication in salmon brains up to 15 days postinjection. Infectious virus was then reisolated in culture, fulfilling Rivers' postulates. Only limited replication occurred in the kidneys of Chinook salmon or in tissues of rainbow trout (Oncorhynchus mykiss). The proposed salmon flavivirus (SFV) has a 10.3-kb genome that encodes a rare dual open reading frame, a feature uncharacteristic of classical flaviviruses. Phylogenetic analysis places SFV in a basal position among a new subgroup of recently recognized aquatic and bat flaviviruses distinct from the established mosquito-borne, tick-borne, insect-only, and unknown-vector flavivirus groups. While the pathogenic potential of the virus remains to be fully elucidated, its basal phylogeny and the in vivo infection model will allow SFV to serve as a prototype for aquatic flaviviruses. Ongoing field and laboratory studies will facilitate better understanding of the potential impacts of SFV infection on ecologically and economically important salmonid species.IMPORTANCE Chinook salmon are a keystone fish species of great ecological and commercial significance in their native northern Pacific range and in regions to which they have been introduced. Threats to salmon populations include habitat degradation, climate change, and infectious agents, including viruses. While the first isolation of a flavivirus from wild migrating salmon may indicate an emerging disease threat, characterization of the genome provides insights into the ecology and long evolutionary history of this important group of viruses affecting humans and other animals and into an expanding group of recently discovered aquatic flaviviruses.
Collapse
|
16
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
17
|
Taguwa S, Yeh MT, Rainbolt TK, Nayak A, Shao H, Gestwicki JE, Andino R, Frydman J. Zika Virus Dependence on Host Hsp70 Provides a Protective Strategy against Infection and Disease. Cell Rep 2020; 26:906-920.e3. [PMID: 30673613 DOI: 10.1016/j.celrep.2018.12.095] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/28/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
The spread of mosquito-borne Zika virus (ZIKV), which causes neurological disorders and microcephaly, highlights the need for countermeasures against sudden viral epidemics. Here, we tested the concept that drugs targeting host proteostasis provide effective antivirals. We show that different cytosolic Hsp70 isoforms are recruited to ZIKV-induced compartments and are required for virus replication at pre- and post-entry steps. Drugs targeting Hsp70 significantly reduce replication of different ZIKV strains in human and mosquito cells, including human neural stem cells and a placental trophoblast cell line, at doses without appreciable toxicity to the host cell. By targeting several ZIKV functions, including entry, establishment of active replication complexes, and capsid assembly, Hsp70 inhibitors are refractory to the emergence of drug-resistant virus. Importantly, these drugs protected mouse models from ZIKV infection, reducing viremia, mortality, and disease symptoms. Hsp70 inhibitors are thus attractive candidates for ZIKV therapeutics with the added benefit of a broad spectrum of action.
Collapse
Affiliation(s)
- Shuhei Taguwa
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ming-Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - T Kelly Rainbolt
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arabinda Nayak
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
19
|
Identification and structural characterization of small molecule fragments targeting Zika virus NS2B-NS3 protease. Antiviral Res 2020; 175:104707. [PMID: 31953156 DOI: 10.1016/j.antiviral.2020.104707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
Zika virus (ZIKV) NS2B-NS3 protease is a validated antiviral target as it is essential for maturation of viral proteins. However, its negatively charged active site hinders the development of orthosteric small-molecule inhibitors. Fragment-based drug discovery (FBDD) is a powerful tool to generate novel chemical starting points against difficult drug targets. In this study, we scre ened a fragment compound library against the Zika protease using a primary thermal shift assay and identified twenty-two fragments which (bind to and) stabilize the protease. We then determined the X-ray crystal structures of two hits from different classes, all of which bind to the S1 pocket of the protease. We confirmed that these two fragments bind to the protease without inducing significant conformational changes using solution NMR spectroscopy. These fragment scaffolds serve as the starting point for subsequent lead compound development.
Collapse
|
20
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
22
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
23
|
Xing H, Xu S, Jia F, Yang Y, Xu C, Qin C, Shi L. Zika NS2B is a crucial factor recruiting NS3 to the ER and activating its protease activity. Virus Res 2019; 275:197793. [PMID: 31676367 DOI: 10.1016/j.virusres.2019.197793] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
Abstract
Zika virus (ZIKV) is an emergent flavivirus associated with severe neurological disorders. ZIKV NS3 protein is a viral protease that cleaves the ZIKV polyprotein precursor into individual viral proteins. In this study, we found that ZIKV NS3 by itself exhibited mitochondrial localization, which was quite different from its endoplasmic reticulum (ER) localization in ZIKV-infected cells. We screened viral proteins and identified NS2B as the bona fide recruiter of NS3 to the ER. The NS2B C-terminal tail interacted with NS3 protease domain to retain NS3 on the ER. β-Sheet motifs that formed between NS2B and the NS3 protease domain played important roles in their interaction, while mutation in the β-strand of NS2B attenuated NS2B-NS3 interaction and impaired the ability of NS3 protease to cleave the polyprotein precursor into multiple viral proteins. Consequently, NS2B mutations led to severe inhibition of ZIKV replication and production due to insufficient NS3 protease activity. In summary, our study reveals the critical role of NS2B in NS3 recruitment and protease function and provides mechanistic insight into ZIKV replication.
Collapse
Affiliation(s)
- Huaipeng Xing
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Fangfei Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Caimin Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100005, China.
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
24
|
Cellular Interleukin Enhancer-Binding Factor 2, ILF2, Inhibits Japanese Encephalitis Virus Replication In Vitro. Viruses 2019; 11:v11060559. [PMID: 31212927 PMCID: PMC6631381 DOI: 10.3390/v11060559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/01/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus which is the leading causative agent of viral encephalitis in endemic regions. JEV NS3 is a component of the viral replicase complex and is a multifunctional protein. In this study, interleukin enhancer-binding factor 2 (ILF2) is identified as a novel cellular protein interacting with NS3 through co-immunoprecipitation assay and LC-MS/MS. The expression of ILF2 is decreased in JEV-infected human embryonic kidney (293T) cells. The knockdown of endogenous ILF2 by special short hairpin RNA (shRNA) positively regulates JEV propagation, whereas the overexpression of ILF2 results in a significantly reduced JEV genome synthesis. Further analysis revealed that the knockdown of ILF2 positively regulates viral replication by JEV replicon system studies. These results suggest that ILF2 may act as a potential antiviral agent against JEV infection.
Collapse
|
25
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
26
|
Ng EY, Loh YR, Li Y, Li Q, Kang C. Expression, purification of Zika virus membrane protein-NS2B in detergent micelles for NMR studies. Protein Expr Purif 2019; 154:1-6. [DOI: 10.1016/j.pep.2018.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022]
|
27
|
Farias KJS, Machado PRL, de Almeida Júnior RF, Lopes da Fonseca BA. Brefeldin A and Cytochalasin B reduce dengue virus replication in cell cultures but do not protect mice against viral challenge. Access Microbiol 2019; 1:e000041. [PMID: 32974532 PMCID: PMC7470301 DOI: 10.1099/acmi.0.000041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dengue is an emerging arboviral disease caused by dengue virus (DENV). DENV belongs to the family Flaviviridae and genus Flavivirus. No specific anti-DENV drugs are currently available. METHODS We investigated the antiviral activity of Brefeldin A (BFA) and Cytochalasin B (CB) against this infection. The drugs BFA and CB were used in the in vitro treatment of dengue-2 virus (DENV-2) infections in Vero cell cultures and in protection from lethality by post-challenge administration in Swiss mice. Viral load was quantified by qRT-PCR and plaque assay in Vero cell cultures, post-infection, treated or not with the drugs. Post-challenge drug levels were evaluated by survival analysis. RESULTS Our results indicate that doses of 5 µg ml-1 of BFA and 10 µg ml-1 of CB are not toxic to the cells and induce a statistically significant inhibition of DENV-2 replication in Vero cells when compared to control. No BFA- or CB-treated mice survived the challenge with DENV-2. CONCLUSION These data suggest that BFA and CB have an antiviral action against DENV-2 replication in Vero cell culture, but do not alter infected mice mortality.
Collapse
Affiliation(s)
- Kleber Juvenal Silva Farias
- Department of Internal Medicine, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirao Preto SP, Brazil
- Program of Graduate Studies on Applied Microbiology and Immunology, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirão Preto SP, Brazil
- *Correspondence: Kleber Juvenal Silva Farias,
| | - Paula Renata Lima Machado
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Street General Gustavo Cordeiro de Farias, 384, Petropolis, 59012-570 Natal, RN, Brazil
| | - Renato Ferreira de Almeida Júnior
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Street General Gustavo Cordeiro de Farias, 384, Petropolis, 59012-570 Natal, RN, Brazil
| | - Benedito Antônio Lopes da Fonseca
- Department of Internal Medicine, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirao Preto SP, Brazil
| |
Collapse
|
28
|
Li Y, Loh YR, Hung AW, Kang C. Characterization of molecular interactions between Zika virus protease and peptides derived from the C-terminus of NS2B. Biochem Biophys Res Commun 2018; 503:691-696. [DOI: 10.1016/j.bbrc.2018.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
|
29
|
Chen YS, Fan YH, Tien CF, Yueh A, Chang RY. The conserved stem-loop II structure at the 3' untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS One 2018; 13:e0201250. [PMID: 30048535 PMCID: PMC6062100 DOI: 10.1371/journal.pone.0201250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023] Open
Abstract
Flaviviruses accumulate abundant subgenomic RNA (sfRNA) in infected cells. It has been reported that sfRNA results from stalling of host 5’-to-3’ exoribonuclease XRN1 at the highly structured RNA of the 3’ untranslated region (UTR). Although XRN1 digestion of a 3’-terminal 800-nt RNA could stall at a position to generate the sfRNA in vitro, we found that knocking out XRN1 had no effect on the accumulation of sfRNA in Japanese encephalitis virus (JEV) infected cells. Mutagenesis studies revealed that the stemloop II (SLII) at the 3’ UTR is required for the accumulation of sfRNA. According to the results of an in vitro RNA-dependent RNA polymerase (RdRp) assay, the (-)10431-10566 RNA fragment, containing the putative promoter on the antigenome for the sfRNA transcription, binds to RdRp protein and exhibits a strong promoter activity. Taken together, our results indicate that the JEV sfRNA could be transcribed initially and then be trimmed by XRN1 or other unidentified exoribonucleases.
Collapse
Affiliation(s)
- Yi-Shiuan Chen
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Yi-Hsin Fan
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Chih-Feng Tien
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Ruey-Yi Chang
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
- * E-mail:
| |
Collapse
|
30
|
piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues. Viruses 2018; 10:v10040213. [PMID: 29690553 PMCID: PMC5923507 DOI: 10.3390/v10040213] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is a competent vector for the majority of arboviruses. The mosquito innate immune response is a primary determinant for arthropod-borne virus transmission, and the midgut is the first barrier to pathogen transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. However, the roles that the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway play in antiviral immunity in Ae. albopictus and its midgut still need further exploration. This study aimed to explore the profiles of both viral-derived and host-originated piRNAs in the whole body and midgut infected with Dengue virus 2 (DENV-2) in Ae. albopictus, and to elucidate gene expression profile differences of the PIWI protein family between adult females and their midguts. A deep sequencing-based method was used to identify and analyze small non-coding RNAs, especially the piRNA profiles in DENV-2-infected Ae. albopictus and its midgut. The top-ranked, differentially-expressed piRNAs were further validated using Stem-loop qRT-PCR. Bioinformatics analyses and reverse-transcription PCR (RT-PCR) methods were used to detect PIWI protein family members, and their expression profiles. DENV-2 derived piRNAs (vpiRNA, 24–30 nts) were observed in both infected Ae. albopictus and its midgut; however, only vpiRNA in the whole-body library had a weak preference for adenine at position 10 (10A) in the sense molecules as a feature of secondary piRNA. These vpiRNAs were not equally distributed, instead they were derived from a few specific regions of the genome, especially several hot spots, and displayed an obvious positive strand bias. We refer to the differentially expressed host piRNAs after DENV infection as virus-induced host endogenous piRNAs (vepiRNAs). However, we found that vepiRNAs were abundant in mosquito whole-body tissue, but deficient in the midgut. A total of eleven PIWI family genes were identified in Ae. albopictus; however, only AalPiwi5–7 and AalAgo3(1–2) were readily detected in the midgut. The characteristics of piRNAs in DENV-2-infected Ae. albopictus adult females were similar to those previously described for flavivirus infections but were not observed in the midgut. The reduced levels of vepiRNAs and incomplete expression of PIWI pathway genes in midgut samples from DENV-2-infected Ae. albopictus suggests that viral regulation of host piRNAs may not be an important factor in the midgut.
Collapse
|
31
|
Cheng W, Chen G, Jia H, He X, Jing Z. DDX5 RNA Helicases: Emerging Roles in Viral Infection. Int J Mol Sci 2018; 19:ijms19041122. [PMID: 29642538 PMCID: PMC5979547 DOI: 10.3390/ijms19041122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 5 (DDX5), also called p68, is a prototypical member of the large ATP-dependent RNA helicases family and is known to participate in all aspects of RNA metabolism ranging from transcription to translation, RNA decay, and miRNA processing. The roles of DDX5 in cell cycle regulation, tumorigenesis, apoptosis, cancer development, adipogenesis, Wnt-β-catenin signaling, and viral infection have been established. Several RNA viruses have been reported to hijack DDX5 to facilitate various steps of their replication cycles. Furthermore, DDX5 can be bounded by the viral proteins of some viruses with unknown functions. Interestingly, an antiviral function of DDX5 has been reported during hepatitis B virus and myxoma virus infection. Thus, the precise roles of this apparently multifaceted protein remain largely obscure. Here, we provide a rapid and critical overview of the structure and functions of DDX5 with a particular emphasis on its role during virus infection.
Collapse
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| |
Collapse
|
32
|
Madani TA, Abuelzein ETME, Abu-Araki H, Ali SS, Jalalah SM, Hassan AM, Al-Bar HMS, Azhar EI. Ultrastructural Features of Alkhumra Hemorrhagic Fever Virus Infection of Cells Under In Vivo and In Vitro Conditions. Vector Borne Zoonotic Dis 2018; 18:108-113. [PMID: 29298405 DOI: 10.1089/vbz.2017.2194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkhumra hemorrhagic fever virus (AHFV) is an emerging novel flavivirus that was discovered in Saudi Arabia in 1995. The virus has since caused several outbreaks in the country that resulted in case fatality rates ranging from 1% to 25%. Meager information has been published on the ultrastructural features of the virus on cells under in vitro or in vivo conditions. The present electron microscopic study examined and compared the intracellular growth of the AHFV on the LLC-MK2 cells and brain cells of new born Wistar rats, inoculated intracerebrally. The cytopathological changes in both cell systems were noted, and localization of the virus particles in different cellular components was observed. Both apoptotic and lytic cell interactions were seen in the electron micrographs of both the LLC-MK2 and the rat brain cells. The results were discussed in relation to similar situations reported for other virus members of the genus Flavivirus.
Collapse
Affiliation(s)
- Tariq A Madani
- 1 Department of Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia .,2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia
| | - El-Tayb M E Abuelzein
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Huda Abu-Araki
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,4 Laboratory Animals Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Soad S Ali
- 5 Department of Anatomy, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Sawsan M Jalalah
- 6 Department of Pathology, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Hussein M S Al-Bar
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,7 Department of Family and Community Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Esam I Azhar
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,8 Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
33
|
The Dengue Virus Replication Complex: From RNA Replication to Protein-Protein Interactions to Evasion of Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:115-129. [PMID: 29845529 DOI: 10.1007/978-981-10-8727-1_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses from the Flavivirus family are the causative agents of dengue fever, Zika, Japanese encephalitis, West Nile encephalitis or Yellow fever and constitute major or emerging public health problems. A better understanding of the flavivirus replication cycle is likely to offer new opportunities for the design of antiviral therapies to treat severe conditions provoked by these viruses, but it should also help reveal fundamental biological mechanisms of the host cell. During virus replication, RNA synthesis is mediated by a dynamic and membrane-bound multi-protein assembly, named the replication complex (RC). The RC is composed of both viral and host-cell proteins that assemble within vesicles composed of the endoplasmic reticulum membrane, near the nucleus. At the heart of the flavivirus RC lies NS4B, a viral integral membrane protein that plays a role in virulence and in down-regulating the innate immune response. NS4B binds to the NS2B-NS3 protease-helicase, which itself interacts with the NS5 methyl-transferase polymerase. We present an overview of recent structural and functional data that augment our understanding of how viral RNA is replicated by dengue virus. We focus on structural data that illuminate the various roles played by proteins NS2B-NS3, NS4B and NS5. By participating in viral RNA cap methylation, the NS5 methyltransferase enables the virus to escape the host cell innate immune response. We present the molecular basis for this activity. We summarize what we know about the network of interactions established by NS2B-NS3, NS4B and NS5 (their "interactome"). This leads to a working model that is captured in the form of a rather naïve "cartoon", which we hope will be refined towards an atomic model in the near future.
Collapse
|
34
|
The Transactions of NS3 and NS5 in Flaviviral RNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:147-163. [PMID: 29845531 DOI: 10.1007/978-981-10-8727-1_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) replication occurs in virus-induced vesicles that contain the replication complex (RC) where viral RNA, viral proteins and host proteins participate in RNA-RNA, RNA-protein and protein-protein interactions to ensure viral genome synthesis. However, the details of the multitude of interactions involved in the biogenesis of the infectious virion are not fully understood. In this review, we will focus on the interaction between non-structural (NS) proteins NS3 and NS5, as well as their interactions with viral RNA and briefly also the interaction of NS5 with the host nuclear transport receptor protein importin-α. The multifunctional NS3 protease/helicase and NS5 methyltransferase (MTase)/RNA-dependent RNA polymerase (RdRp) contain all the enzymatic activities required to synthesize the viral RNA genome. The success stories of drug discovery and development with Hepatitis C virus (HCV), a member of the Flaviviridae family, has led to the view that DENV NS3 and NS5 may be attractive antiviral drug targets. However, more than 10 years of intensive research effort by Novatis has revealed that they are not "low hanging fruits" and therefore, the search for potent directly acting antivirals (DAAs) remains a pipeline goal for several medium to large drug discovery enterprises. The effort to discover DAAs for DENV has been boosted by the epidemic outbreak of the closely related flavivirus member - Zika virus (ZIKV). Because the viral RNA replication occurs within a molecular machine that is composed several viral and host proteins, much interest has turned to characterising functionally essential protein-protein interactions in order to identify potential allosteric inhibitor binding sites within the RC.
Collapse
|
35
|
Jans DA, Martin AJ. Nucleocytoplasmic Trafficking of Dengue Non-structural Protein 5 as a Target for Antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:199-213. [DOI: 10.1007/978-981-10-8727-1_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
He W, Xu H, Gou H, Yuan J, Liao J, Chen Y, Fan S, Xie B, Deng S, Zhang Y, Chen J, Zhao M. CSFV Infection Up-Regulates the Unfolded Protein Response to Promote Its Replication. Front Microbiol 2017; 8:2129. [PMID: 29163417 PMCID: PMC5673830 DOI: 10.3389/fmicb.2017.02129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023] Open
Abstract
Classical swine fever (CSF) is an OIE-listed, highly contagious animal disease caused by classical swine fever virus (CSFV). The endoplasmic reticulum (ER) is an organelle in which the replication of many RNA viruses takes place. During viral infection, a series of events elicited in cells can destroy the ER homeostasis that cause ER stress and induce an unfolded protein response (UPR). In this study, we demonstrate that ER stress was induced during CSFV infection as several UPR-responsive elements such as XBP1(s), GRP78 and CHOP were up-regulated. Specifically, CSFV transiently activated IRE1 pathway at the initial stage of infection but rapidly switched off, likely due to the reduction in cytoplasm Ca2+ after viral incubation. Additionally, our data show that the ER stress induced by CSFV can promote CSFV production, which the IRE1 pathway play an important role in it. Evidence of ER stress in vivo was also confirmed by the marked elevation of GRP78 in CSFV-infected pig PBMC and tissues. Collectively, these data indicate that the ER stress was induced upon CSFV infection and that the activation of the IRE1 pathway benefits CSFV replication.
Collapse
Affiliation(s)
- Wencheng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hailuan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongchao Gou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiedan Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Baoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaofeng Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yangyi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
38
|
Guo X, Wang S, Qiu ZG, Dou YL, Liu WL, Yang D, Shen ZQ, Chen ZL, Wang JF, Zhang B, Wang XW, Guo XF, Zhang XL, Jin M, Li JW. Efficient replication of blood-borne hepatitis C virus in human fetal liver stem cells. Hepatology 2017; 66:1045-1057. [PMID: 28407288 DOI: 10.1002/hep.29211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED The development of pathogenic mechanisms, specific antiviral treatments and preventive vaccines for hepatitis C virus (HCV) infection has been limited due to lack of cell culture models that can naturally imitate the entire HCV life cycle. Here, we established an HCV cell culture model based on human fetal liver stem cells (hFLSCs) that supports the entire blood-borne hepatitis C virus (bbHCV) life cycle. More than 90% of cells remained infected by various genotypes. bbHCV was efficiently propagated, and progeny virus were infectious to hFLSCs. The virus could be passed efficiently between cells. The viral infectivity was partially blocked by specific antibodies or small interfering RNA against HCV entry factors, whereas HCV replication was inhibited by antiviral drugs. We observed viral particles of approximately 55 nm in diameter in both cell culture media and infected cells after bbHCV infection. CONCLUSION Our data show that the entire bbHCV life cycle could be naturally imitated in hFLSCs. This model is expected to provide a powerful tool for exploring the process and the mechanism of bbHCV infection at the cellular level and for evaluating the treatment and preventive strategies of bbHCV infection. (Hepatology 2017;66:1045-1057).
Collapse
Affiliation(s)
- Xuan Guo
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Shu Wang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Ya-Ling Dou
- Peking Union Medical College Hospital, Chinese Medical Academy, Beijing, China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhao-Li Chen
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jing-Feng Wang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Bin Zhang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Xin-Wei Wang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Xiang-Fei Guo
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Xue-Lian Zhang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| |
Collapse
|
39
|
Brand C, Bisaillon M, Geiss BJ. Organization of the Flavivirus RNA replicase complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28815931 DOI: 10.1002/wrna.1437] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses, are serious human pathogens that cause significant morbidity and mortality globally each year. Flaviviruses are single-stranded, positive-sense RNA viruses, and encode two multidomain proteins, NS3 and NS5, that possess all enzymatic activities required for genome replication and capping. NS3 and NS5 interact within virus-induced replication compartments to form the RNA genome replicase complex. Although the individual enzymatic activities of both proteins have been extensively studied and are well characterized, there are still gaps in our understanding of how they interact to efficiently coordinate their respective activities during positive-strand RNA synthesis and capping. Here, we discuss what is known about the structures and functions of the NS3 and NS5 proteins and propose a preliminary NS3:NS5:RNA interaction model based on a large body of literature about how the viral enzymes function, physical restraints between NS3 and NS5, as well as critical steps in the replication process. WIREs RNA 2017, 8:e1437. doi: 10.1002/wrna.1437 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carolin Brand
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
Scutigliani EM, Kikkert M. Interaction of the innate immune system with positive-strand RNA virus replication organelles. Cytokine Growth Factor Rev 2017; 37:17-27. [PMID: 28709747 PMCID: PMC7108334 DOI: 10.1016/j.cytogfr.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023]
Abstract
All +RNA viruses induce replication organelles to shield viral RNA from innate immune surveillance. Recent literature suggests that non-self or aberrant-self membrane structures can be tagged with LC3 or ubiquitin. Interferon-induced GTPases then recognize these tags and destroy the membrane structures, thereby exposing PAMPs. More research will have to indicate whether this is a general antiviral mechanism affecting +RNA virus infections.
The potential health risks associated with (re-)emerging positive-strand RNA (+RNA) viruses emphasizes the need for understanding host-pathogen interactions for these viruses. The innate immune system forms the first line of defense against pathogenic organisms like these and is responsible for detecting pathogen-associated molecular patterns (PAMPs). Viral RNA is a potent inducer of antiviral innate immune signaling, provoking an antiviral state by directing expression of interferons (IFNs) and pro-inflammatory cytokines. However, +RNA viruses developed various methods to avoid detection and downstream signaling, including isolation of viral RNA replication in membranous viral replication organelles (ROs). These structures therefore play a central role in infection, and consequently, loss of RO integrity might simultaneously result in impaired viral replication and enhanced antiviral signaling. This review summarizes the first indications that the innate immune system indeed has tools to disrupt viral ROs and other non- or aberrant-self membrane structures, and may do this by marking these membranes with proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC3) and ubiquitin, resulting in the recruitment of IFN-inducible GTPases. Further studies should evaluate whether this process forms a general effector mechanism in +RNA virus infection, thereby creating the opportunity for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Enzo Maxim Scutigliani
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
41
|
Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the Nucleus during Flavivirus Replication. Viruses 2017; 9:v9010014. [PMID: 28106839 PMCID: PMC5294983 DOI: 10.3390/v9010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe-while closely related-the functional differences between similar viral proteins in their nuclear translocation.
Collapse
Affiliation(s)
- Adam J Lopez-Denman
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne 3086, Australia.
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
42
|
The calmodulin antagonist W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride) inhibits DENV infection in Huh-7 cells. Virology 2016; 501:188-198. [PMID: 27940224 DOI: 10.1016/j.virol.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Dengue virus (DENV) replicative cycle occurs in the endoplasmic reticulum where calcium ions play an important role in cell signaling. Calmodulin (CaM) is the primary sensor of intracellular Ca2+ levels in eukaryotic cells. In this paper, the effect of the calmodulin antagonist W-7 in DENV infection in Huh-7 cells was evaluated. W7 inhibited viral yield, NS1 secretion and viral RNA and protein synthesis. Moreover, luciferase activity, encoded by a DENV replicon, was also reduced. A decrease in the replicative complexes formation was clearly observed in W7 treated cells. Docking simulations suggest 2 possible mechanisms of action for W7: the direct inhibition of NS2B-NS3 activity and/or inhibition of the interaction between NS2A with Ca2+-CaM complex. This last possibility was supported by the in vitro interaction observed between recombinant NS2A and CaM. These results indicate that Ca2+-CaM plays an important role in DENV replication.
Collapse
|
43
|
Tay MYF, Smith K, Ng IHW, Chan KWK, Zhao Y, Ooi EE, Lescar J, Luo D, Jans DA, Forwood JK, Vasudevan SG. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production. PLoS Pathog 2016; 12:e1005886. [PMID: 27622521 PMCID: PMC5021334 DOI: 10.1371/journal.ppat.1005886] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. DENV NS5 is critical for virus RNA replication and an important drug target based on its high sequence conservation across serotypes, and the successful development of potent drugs that target the homologous NS5B of hepatitis C virus. NS5 also mediates other functions that are important for innate and adaptive immune responses by the infected host. Extensive gene swapping and functional analyses between NS5 of DENV serotypes 1 and 2, that are the two most disparate in terms of nuclear vs cytoplasmic localization of NS5 identified the last 18 amino acid residues of the ~900 amino-acid residues long protein to be responsible for subcellular localization. Because this region is very flexible and not easily seen in crystal structures of DENV NS5, co-crystals of the newly discovered peptide region with importin α were obtained. Structure-based mutations introduced into a DENV2 infectious clone showed that the proline to threonine at position 884 resulted in NS5 being mostly cytoplasmic without affecting virus replication. However mutation of arginine 888, which is conserved in all flaviviruses, to alanine resulted in a completely non-viable virus, suggesting that the C-terminal region is essential for NS5 function irrespective of its role in subcellular location.
Collapse
Affiliation(s)
- Moon Y. F. Tay
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kate Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kitti W. K. Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yongqian Zhao
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore
- UPMC UMRS CR7—CNRS ERL 8255-INSERM U1135 Centre d’Immunologie et des Maladies Infectieuses. Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
44
|
Nag DK, Brecher M, Kramer LD. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology 2016; 498:164-171. [PMID: 27588377 DOI: 10.1016/j.virol.2016.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Although infections of vertebrate hosts by arthropod-borne viruses may lead to pathogenic outcomes, infections of vector mosquitoes result in persistent infections, where the virus replicates in the host without causing apparent pathological effects. It is unclear how persistent infections are established and maintained in mosquitoes. Several reports revealed the presence of flavivirus-like DNA sequences in the mosquito genome, and recent studies have shown that DNA forms of RNA viruses restrict virus replication in Drosophila, suggesting that DNA forms may have a role in developing persistent infections. Here, we sought to investigate whether arboviruses generate DNA forms following infection in mosquitoes. Our results with West Nile, Dengue, and La Crosse viruses demonstrate that DNA forms of the viral RNA genome are generated in mosquito cells; however, not the entire viral genome, but patches of viral RNA in DNA forms can be detected 24h post infection.
Collapse
Affiliation(s)
- Dilip K Nag
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| | - Matthew Brecher
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA.
| | - Laura D Kramer
- Wadsworth Center, Griffin Laboratory, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12201, USA.
| |
Collapse
|
45
|
Li Y, Wong YL, Lee MY, Li Q, Wang QY, Lescar J, Shi PY, Kang C. Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016; 55:12068-72. [DOI: 10.1002/anie.201606609] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Qingxin Li
- Institute of Chemical & Engineering Sciences; Agency for Science, Technology, and Research; 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Qing-Yin Wang
- Novartis Institute for Tropical Diseases; Singapore Singapore
| | - Julien Lescar
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology; Sealy Center for Structural Biology & Molecular Biophysics; University of Texas Medical Branch; Galveston TX USA
| | - CongBao Kang
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| |
Collapse
|
46
|
Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Chiang PY, Wu HN. The role of surface basic amino acids of dengue virus NS3 helicase in viral RNA replication and enzyme activities. FEBS Lett 2016; 590:2307-20. [DOI: 10.1002/1873-3468.12232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Pao-Yin Chiang
- Graduate Institute of Life Sciences; National Defense Medical Centre; Taipei Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
| | - Huey-Nan Wu
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
| |
Collapse
|
48
|
Klema VJ, Ye M, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Choi KH. Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. PLoS Pathog 2016; 12:e1005451. [PMID: 26895240 PMCID: PMC4760774 DOI: 10.1371/journal.ppat.1005451] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023] Open
Abstract
Flavivirus nonstructural protein 5 (NS5) consists of methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, which catalyze 5'-RNA capping/methylation and RNA synthesis, respectively, during viral genome replication. Although the crystal structure of flavivirus NS5 is known, no data about the quaternary organization of the functional enzyme are available. We report the crystal structure of dengue virus full-length NS5, where eight molecules of NS5 are arranged as four independent dimers in the crystallographic asymmetric unit. The relative orientation of each monomer within the dimer, as well as the orientations of the MTase and RdRp domains within each monomer, is conserved, suggesting that these structural arrangements represent the biologically relevant conformation and assembly of this multi-functional enzyme. Essential interactions between MTase and RdRp domains are maintained in the NS5 dimer via inter-molecular interactions, providing evidence that flavivirus NS5 can adopt multiple conformations while preserving necessary interactions between the MTase and RdRp domains. Furthermore, many NS5 residues that reduce viral replication are located at either the inter-domain interface within a monomer or at the inter-molecular interface within the dimer. Hence the X-ray structure of NS5 presented here suggests that MTase and RdRp activities could be coordinated as a dimer during viral genome replication.
Collapse
Affiliation(s)
- Valerie J. Klema
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Mengyi Ye
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Aditya Hindupur
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells. J Virol 2016; 90:3411-27. [PMID: 26764008 DOI: 10.1128/jvi.00033-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.
Collapse
|
50
|
Nain M, Abdin MZ, Kalia M, Vrati S. Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol 2015; 26:129-41. [PMID: 26695690 DOI: 10.1002/rmv.1868] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts.
Collapse
Affiliation(s)
- Minu Nain
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Malik Z Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|