1
|
Zhu H, Ouyang H, Pan X, Zhang Z, Tan J, Yu N, Li M, Zhao Y. Increased ASF1B Expression Correlates With Poor Prognosis in Patients With Gliomas. Front Oncol 2022; 12:912101. [PMID: 35875094 PMCID: PMC9298524 DOI: 10.3389/fonc.2022.912101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Several studies have suggested that anti-silencing function 1 B (ASF1B) can serve as a good potential marker for predicting tumor prognosis. But the values of ASF1B in gliomas have not been elucidated and further confirmation is needed. Methods Transcriptomic and clinical data were downloaded from The Cancer Genome Atlas database (TCGA), genotypic tissue expression (GTEx), and the Chinese Gliomas Genome Atlas database (CGGA). Univariate and multivariate Cox regression analyses were used to investigate the link between clinical variables and ASF1B. Survival analysis was used to assess the association between ASF1B expression and overall survival (OS). The relationship between ASF1B expression and OS was studied using survival analysis. To investigate the probable function and immunological infiltration, researchers used gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and single-sample GSEA (ssGSEA). Results In glioma tissues, ASF1B expression was considerably higher than in normal tissues. The survival analysis found that increased ASF1B expression was linked with a poor prognosis in glioma patients. ASF1B demonstrated a high diagnostic value in glioma patients, according to a Receiver Operating Characteristic (ROC) analysis. ASF1B was found to be an independent predictive factor for OS in a Cox regression study (HR = 1.573, 95% CI: 1.053–2.350, p = 0.027). GO, KEGG, and GSEA functional enrichment analysis revealed that ASF1B was associated with nuclear division, cell cycle, m-phase, and cell cycle checkpoints. Immuno-infiltration analysis revealed that ASF1B was positively related to Th2 cells, macrophages, and aDC and was negatively related to pDC, TFH, and NK CD56 bright cells. Conclusion A high level of ASF1B mRNA expression was correlated with a poor prognosis in glioma patients in this study, implying that it could be a reliable prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Xinyi Pan
- Huankui Academy, Nanchang University, Nangchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Tan
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nianzu Yu
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yeyu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
3
|
Feng Z, Zhang J, Zheng Y, Wang Q, Min X, Tian T. Elevated expression of ASF1B correlates with poor prognosis in human lung adenocarcinoma. Per Med 2021; 18:115-127. [PMID: 33576264 DOI: 10.2217/pme-2020-0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: ASF1 is involved in tumorigenesis. However, its possible role in lung adenocarcinoma (LUAD) is unclear. This study thus explored the role of ASF1A and ASF1B in LUAD. Materials & methods: Data from The Cancer Genome Atlas and Gene Expression Omnibus were employed to investigate ASF1A and ASF1B expression and its roles in LUAD prognosis. Immunohistochemistry was applied to determine the protein expression of ASF1B of 30 LUAD patients. Results: The upregulation of ASF1B in tumor tissues is associated with worse overall survival and progress-free survival and is correlated with advanced tumor stage and tumor development. However, aberrant expression of ASF1A was not found in LUAD and ASF1A was not related to patients' overall survival and progress-free survival. Conclusion: ASF1B could be a promising prognostic and therapeutic biomarker in LUAD.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China.,Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, PR China
| | - Jiao Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, PR China.,Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yafang Zheng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Qingzhang Wang
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Xiaochuan Min
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| | - Tieshuan Tian
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin 300222, PR China
| |
Collapse
|
4
|
Papadopoulos P, Kafasi A, De Cuyper IM, Barroca V, Lewandowski D, Kadri Z, Veldthuis M, Berghuis J, Gillemans N, Benavente Cuesta CM, Grosveld FG, van Zwieten R, Philipsen S, Vernet M, Gutiérrez L, Patrinos GP. Mild dyserythropoiesis and β-like globin gene expression imbalance due to the loss of histone chaperone ASF1B. Hum Genomics 2020; 14:39. [PMID: 33066815 PMCID: PMC7566067 DOI: 10.1186/s40246-020-00283-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
The expression of the human β-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to β). The γ- to β-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (β-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to β-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to β-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.
Collapse
Affiliation(s)
- Petros Papadopoulos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Athanassia Kafasi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Vilma Barroca
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR1184, Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Martijn Veldthuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Jeffrey Berghuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Celina María Benavente Cuesta
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Rob van Zwieten
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Muriel Vernet
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Laura Gutiérrez
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Platelet Research Lab -Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)-, Department of Medicine -University of Oviedo-, Oviedo, Spain
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences and Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Han G, Zhang X, Liu P, Yu Q, Li Z, Yu Q, Wei X. Knockdown of anti-silencing function 1B histone chaperone induces cell apoptosis via repressing PI3K/Akt pathway in prostate cancer. Int J Oncol 2018; 53:2056-2066. [PMID: 30132513 PMCID: PMC6192734 DOI: 10.3892/ijo.2018.4526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among males worldwide. Anti-silencing function 1B histone chaperone (ASF1B) has been reported to be involved in PCa. The present study aimed to investigate the role and molecular mechanism of ASF1B in PCa. Data of genes were obtained from The Cancer Genome Atlas data- base. The core gene was identified using the DAVID website. Cell viability and colony formation were detected using a cell counting kit-8 assay and crystal violet staining, respectively. Cell cycle distribution and apoptosis were assessed using flow cytometry analysis. The corresponding factors were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting. It was demonstrated that ASF1B was highly expressed in the PCa tissues and cells compared with the non-PCa tissues and cells, respectively. While siRNA-ASF1B significantly reduced the viability and colony formation, it promoted apoptosis, G1 phase cell cycle arrest of LNCap as well as C4-2 cells. siRNA-ASF1B was revealed to significantly reduce the level of B-cell lymphoma-2 and cyclin D1, and enhance the expression levels of p53, caspase-3 and Bcl-2 associated X protein. Furthermore, the phosphorylation levels of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (Akt) were significantly decreased in the siRNA-ASF1B group compared with the mock group. In summary, the present study demonstrated that silencing of ASF1B suppressed the proliferation, and promoted apoptosis and cell cycle arrest of PCa cells. Inhibition of the PI3K/Akt signaling pathway was pertinent to the role of si-ASF1B. This phenomenon suggests that the downregulation of ASF1B may aid in inhibiting the progression of PCa.
Collapse
Affiliation(s)
- Guangye Han
- The Second Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xinjun Zhang
- The First Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Pei Liu
- The Second Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Quanfeng Yu
- The Second Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Zeyu Li
- The Second Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Qinnan Yu
- The First Ward of Urology Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| | - Xiaoxia Wei
- The Second Ward of Infection Department, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
6
|
ASF1a enhances antiviral immune response by associating with CBP to mediate acetylation of H3K56 at the Ifnb promoter. Mol Immunol 2016; 78:57-64. [DOI: 10.1016/j.molimm.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/15/2016] [Accepted: 08/13/2016] [Indexed: 01/01/2023]
|
7
|
Wang C, Chang JF, Yan H, Wang DL, Liu Y, Jing Y, Zhang M, Men YL, Lu D, Yang XM, Chen S, Sun FL. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis. Oncotarget 2016; 6:29599-613. [PMID: 26336826 PMCID: PMC4745749 DOI: 10.18632/oncotarget.5011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.
Collapse
Affiliation(s)
- Chen Wang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,UN School of Environmental Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Da-Liang Wang
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuanya Jing
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Meng Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Yu-Long Men
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Dongdong Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Xiao-Mei Yang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei, 064200, China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| |
Collapse
|
8
|
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, Allemand I, Fouchet P, Livera G, Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151:477-89. [PMID: 26850882 DOI: 10.1530/rep-15-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Anti-silencing function 1 (ASF1) is an evolutionarily conserved histone H3-H4 chaperone involved in the assembly/disassembly of nucleosome and histone modification. Two paralogous genes, Asf1a and Asf1b, exist in the mouse genome. Asf1a is ubiquitously expressed and its loss causes embryonic lethality. Conversely, Asf1b expression is more restricted and has been less studied. To determine the in vivo function of Asf1b, we generated a Asf1b-deficient mouse line (Asf1b(GT(ROSA-βgeo)437)) in which expression of the lacZ reporter gene is driven by the Asf1b promoter. Analysis of β-galactosidase activity at early embryonic stages indicated a correlation between Asf1b expression and cell differentiation potential. In the gonads of both male and female, Asf1b expression was specifically detected in the germ cell lineage with a peak expression correlated with meiosis. The viability of Asf1b-null mice suggests that Asf1b is dispensable for mouse development. However, these mice showed reduced reproductive capacity compared with wild-type controls. We present evidence that the timing of meiotic entry and the subsequent gonad development are affected more severely in Asf1b-null female mice than in male mice. In female mice, in addition to subfertility related to altered gamete formation, variable defects compromising the development and/or survival of their offspring were also observed. Altogether, our data indicate the importance of Asf1b expression at the time of meiotic entry, suggesting that chromatin modifications may play a central role in this process.
Collapse
Affiliation(s)
- S Messiaen
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - J Guiard
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - C Aigueperse
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - I Fliniaux
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - S Tourpin
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - V Barroca
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - I Allemand
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - P Fouchet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - G Livera
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - M Vernet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France Laboratoire de Recherche sur la réparation et la transcription dans les cellules souchesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| |
Collapse
|
9
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
10
|
Evans E, Hogarth C, Mitchell D, Griswold M. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice. Biol Reprod 2014; 90:108. [PMID: 24719255 DOI: 10.1095/biolreprod.114.118034] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Continual sperm production relies on germ cells undergoing spermatogenesis asynchronously. As a result, the testis always contains a mixed population of germ cells at different stages of their differentiation process. The heterogeneous nature of the testis makes profiling gene expression within Sertoli cells or specific populations of germ cells impossible when a wild-type testis is assessed. We recently reported a unique method for synchronizing spermatogenesis without affecting fertility by manipulating RA levels within the neonatal testis. Using this protocol, combined with the RiboTag transgenic mouse line, we have mapped the Sertoli and germ cell translatome during the initial synchronized wave of spermatogenesis. Using microarray analysis, we identified 392 and 194 germ cell and Sertoli cells transcripts, respectively, that dynamically change during spermatogonial differentiation, division, and the onset of meiosis. Functional annotation clustering revealed that transcripts enriched in germ cells were mostly associated with meiosis (21 transcripts), chromatin organization (12 transcripts), and cell cycle (3 transcripts). In addition, glycoproteins (65 transcripts), cell adhesion (15 transcripts), and cell junction (13 transcripts) transcripts were overrepresented in the Sertoli cell-enriched list. These datasets represent the first transcriptional analysis of spermatogonial differentiation, division, and meiotic onset. These data suggest that several of the genes encoding meiotic proteins are expressed and are actively being translated well before germ cells enter meiosis. In addition, this study provides novel candidate genes, Asf1b and Esyt3, that may be involved in the regulation of spermatogonial chromatin reorganization, germ-Sertoli cell interactions, and/or blood-testis barrier formation.
Collapse
Affiliation(s)
- Elizabeth Evans
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn Hogarth
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and The Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
11
|
Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G. Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Mol Biol Evol 2013; 30:1853-66. [PMID: 23645555 DOI: 10.1093/molbev/mst086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene duplication is regarded as the main source of adaptive functional novelty in eukaryotes. Processes such as neo- and subfunctionalization impact the evolution of paralogous proteins where functional divergence is frequently key to retain the gene copies. Here, we examined antisilencing function 1 (ASF1), a conserved eukaryotic H3-H4 histone chaperone, involved in histone dynamics during replication, transcription, and DNA repair. Although yeast feature a single ASF1 protein, two paralogs exist in most vertebrates, termed ASF1a and ASF1b, with distinct cellular roles in mammals. To explain this division of tasks, we integrated evolutionary and comparative genomic analyses with biochemical and structural approaches. First, we show that a duplication event at the ancestor of jawed vertebrates, followed by ASF1a relocation into an intron of the minichromosome maintenance complex component 9 (MCM9) gene at the ancestor of tetrapods, provided a different genomic environment for each paralog with marked differences of GC content and DNA replication timing. Second, we found signatures of positive selection in the N- and C-terminal regions of ASF1a and ASF1b. Third, we demonstrate that regions outside the primary interaction surface are key for the preferential interactions of the human paralogs with distinct H3-H4 chaperones. On the basis of these data, we propose that ASF1 experienced subfunctionalization shaped by the adaptation of the genes to their respective genomic context, reflecting a case of genomic context-driven escape from adaptive conflict.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chromatin assembly on herpes simplex virus 1 DNA early during a lytic infection is Asf1a dependent. J Virol 2012; 86:12313-21. [PMID: 22951827 DOI: 10.1128/jvi.01570-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus (HSV) is a large DNA virus which is characterized by its ability to form latent infections in neurons of the peripheral nervous system. Although histones are found in the capsids of small DNA viruses (papovaviruses), none are found in the capsids of large HSV. However, after entry into the infected cell nucleus, the HSV genome begins to associate with nucleosomes during the earliest stages of infection. In contrast, late during infection, newly replicated viral DNA does not appear to associate with nucleosomes, suggesting that histones are deposited specifically on input viral DNA. The mechanisms of deposition and removing histones from the viral genome are unclear. Recently, histone chaperones, involved in the assembly and disassembly of nucleosomes, have been identified. Human antisilencing factor 1 (Asf1) is one such factor which is involved in both the assembly and disassembly of nucleosomes in cellular systems. In this study, we have examined the effect of small interfering RNA (siRNA) knockdown of Asf1a on HSV infections in HeLa cells. Both viral replication and growth were found to be decreased. Also, viral DNA was significantly less protected from micrococcal nuclease (MNase) digestion up to 6 h postinfection (hpi). However, transcription of the immediate early (IE) genes ICP0 and ICP4 was significantly upregulated at 3 h postinfection. Also, these genes were found to be less protected from MNase digestion and, therefore, less associated with nucleosomes. These results suggest that Asf1a plays a role in regulating IE genes by assembling chromatin onto histone-free viral DNA by 3 h postinfection.
Collapse
|
13
|
Zhang J, Lu K, Xiang Y, Islam M, Kotian S, Kais Z, Lee C, Arora M, Liu HW, Parvin JD, Huang K. Weighted frequent gene co-expression network mining to identify genes involved in genome stability. PLoS Comput Biol 2012; 8:e1002656. [PMID: 22956898 PMCID: PMC3431293 DOI: 10.1371/journal.pcbi.1002656] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022] Open
Abstract
Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly enriched for housekeeping functions. The largest cancer network contained many genes with genome stability maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or centrosome duplication control including the well-known cancer marker MKI67. Our results suggest that the commonly recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhu Y, Weng M, Yang Y, Zhang C, Li Z, Shen WH, Dong A. Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:443-55. [PMID: 21251110 DOI: 10.1111/j.1365-313x.2011.04504.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Anti-silencing function1 (ASF1) is an evolutionarily conserved histone chaperone. Studies in yeast and animals indicate that ASF1 proteins play important roles in various chromatin-based processes, including gene transcription, DNA replication and repair. While two genes encoding ASF1 homologues, AtASF1A and AtASF1B, are found in the Arabidopsis genome, their function has not been studied. Here we report that both AtASF1A and AtASF1B proteins bind histone H3, and are localized in the cytoplasm and the nucleus. Loss-of-function of either AtASF1A or AtASF1B did not show obvious defects, whereas simultaneous knockdown of both genes in the double mutant Atasf1ab drastically inhibited plant growth and caused abnormal vegetative and reproductive organ development. The Atasf1ab mutant plants exhibit cell number reduction, S-phase delay/arrest, and reduced polyploidy levels. Selective up-regulation of expression of a subset of genes, including those involved in S-phase checkpoints and the CYCB1;1 gene at the G₂-to-M transition, was observed in Atasf1ab. Furthermore, the Atasf1ab-triggered replication fork stalling constitutively activates the DNA damage checkpoint and repair genes, including ATM, ATR, PARP1 and PARP2 as well as several genes of the homologous recombination (HR) pathway but not genes of the non-homologous end joining (NHEJ) pathway. In spite of the activation of repair genes, an increased level of DNA damage was detected in Atasf1ab, suggesting that defects in the mutant largely exceed the available capacity of the repair machinery. Taken together, our study establishes crucial roles for the AtASF1A and AtASF1B genes in chromatin replication, maintenance of genome integrity and cell proliferation during plant development.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Jiang WQ, Nguyen A, Cao Y, Chang ACM, Reddel RR. HP1-mediated formation of alternative lengthening of telomeres-associated PML bodies requires HIRA but not ASF1a. PLoS One 2011; 6:e17036. [PMID: 21347226 PMCID: PMC3039646 DOI: 10.1371/journal.pone.0017036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 01/11/2011] [Indexed: 12/20/2022] Open
Abstract
Approximately 10% of cancers use recombination-mediated Alternative Lengthening of Telomeres (ALT) instead of telomerase to prevent telomere shortening. A characteristic of cells that utilize ALT is the presence of ALT-associated PML nuclear bodies (APBs) containing (TTAGGG)n DNA, telomere binding proteins, DNA recombination proteins, and heterochromatin protein 1 (HP1). The function of APBs is unknown and it is possible that they are functionally heterogeneous. Most ALT cells lack functional p53, and restoration of the p53/p21 pathway in these cells results in growth arrest/senescence and a substantial increase in the number of large APBs that is dependent on two HP1 isoforms, HP1α and HP1γ. Here we investigated the mechanism of HP1-mediated APB formation, and found that histone chaperones, HIRA and ASF1a, are present in APBs following activation of the p53/p21 pathway in ALT cells. HIRA and ASF1a were also found to colocalize inside PML bodies in normal fibroblasts approaching senescence, providing evidence for the existence of a senescence-associated ASF1a/HIRA complex inside PML bodies, consistent with a role for these proteins in induction of senescence in both normal and ALT cells. Moreover, knockdown of HIRA but not ASF1a significantly reduced p53-mediated induction of large APBs, with a concomitant reduction of large HP1 foci. We conclude that HIRA, in addition to its physical and functional association with ASF1a, plays a unique, ASF1a-independent role, which is required for the localization of HP1 to PML bodies and thus for APB formation.
Collapse
Affiliation(s)
- Wei-Qin Jiang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Akira Nguyen
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ying Cao
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Andy C.-M. Chang
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Roger R. Reddel
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
16
|
Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2010; 30:480-93. [PMID: 21179005 DOI: 10.1038/emboj.2010.335] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
Mammalian cells possess two isoforms of the histone H3-H4 chaperone anti-silencing function 1 (Asf1), Asf1a and Asf1b. However to date, whether they have individual physiological roles has remained elusive. Here, we aim to elucidate the functional importance of Asf1 isoforms concerning both basic and applied aspects. First, we reveal a specific proliferation-dependent expression of human Asf1b unparalleled by Asf1a. Strikingly, in cultured cells, both mRNA and protein corresponding to Asf1b decrease upon cell cycle exit. Depletion of Asf1b severely compromises proliferation, leads to aberrant nuclear structures and a distinct transcriptional signature. Second, a major physiological implication is found in the applied context of tissue samples derived from early stage breast tumours in which we examined Asf1a/b levels. We reveal that overexpression of Asf1b mRNA correlate with clinical data and disease outcome. Together, our results highlight a distribution of tasks between the distinct Asf1 isoforms, which emphasizes a specialized function of Asf1b required for proliferation capacity. We discuss the implications of these results for breast cancer diagnosis and prognosis.
Collapse
|
17
|
Akai Y, Adachi N, Hayashi Y, Eitoku M, Sano N, Natsume R, Kudo N, Tanokura M, Senda T, Horikoshi M. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction. Proc Natl Acad Sci U S A 2010; 107:8153-8. [PMID: 20393127 PMCID: PMC2889523 DOI: 10.1073/pnas.0912509107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).
Collapse
Affiliation(s)
- Yusuke Akai
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naruhiko Adachi
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yohei Hayashi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Masamitsu Eitoku
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Norihiko Sano
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Ryo Natsume
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Norio Kudo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
18
|
Abstract
Histone chaperones may participate the decondensation and assembly of chromatins, thus regulate gene expression. They play important roles in almost all developmental processes, such as gametogenesis, fertilization, embryogenesis, growth and senescence. In this review, we used well studied examples to illustrate various functions of histone chaperones during developmental processes. Focus is given to nucleoplasmin, CAF-1, HIRA, ASF1/CIA, and NAP1.
Collapse
|
19
|
Padmanabhan B, Kataoka K, Umehara T, Adachi N, Yokoyama S, Horikoshi M. Structural similarity between histone chaperone Cia1p/Asf1p and DNA-binding protein NF-kappaB. J Biochem 2009; 138:821-9. [PMID: 16428312 DOI: 10.1093/jb/mvi182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural relationships between histone-binding proteins and DNA-binding proteins are important, since nucleosome-interacting factors possess histone-binding and/or DNA-binding components. S. cerevisiae (Sc) Cia1p/Asf1p, a homologue of human CIA (CCG1-interacting factor A), is the most evolutionarily conserved histone chaperone, which facilitates nucleosome assembly by interacting with the nucleosome entry site of the core histones H3/H4. The crystal structure of the evolutionarily conserved domain (residues 1-169) of Cia1p (ScCia1p-DeltaC2) was determined at 2.95 A resolution. The refined model contains 166 residues in the asymmetric unit. The overall tertiary structure resembles a beta-sandwich fold, and belongs to the "switched" immunoglobulin class of proteins. The crystal structure suggests that ScCia1p-DeltaC2 is structurally related to the DNA-binding proteins, such as NF-kappaB and its family members. This is the first examination of the structural similarities between a histone chaperone and DNA-binding proteins. We discuss the possibilities that the strands beta3 and beta4, which possess highly electronegative surface potentials, are the important regions for the interaction with core histones, and that the histone chaperone ScCia1p/Asf1p and the DNA-binding protein NF-kappaB may have evolved from the same prototypal protein class.
Collapse
Affiliation(s)
- Balasundaram Padmanabhan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba 300-2635
| | | | | | | | | | | |
Collapse
|
20
|
Grigsby IF, Rutledge EM, Morton CA, Finger FP. Functional redundancy of two C. elegans homologs of the histone chaperone Asf1 in germline DNA replication. Dev Biol 2009; 329:64-79. [PMID: 19233156 DOI: 10.1016/j.ydbio.2009.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/30/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022]
Abstract
Eukaryotic genomes contain either one or two genes encoding homologs of the highly conserved histone chaperone Asf1, however, little is known of their in vivo roles in animal development. UNC-85 is one of the two Caenorhabditis elegans Asf1 homologs and functions in post-embryonic replication in neuroblasts. Although UNC-85 is broadly expressed in replicating cells, the specificity of the mutant phenotype suggested possible redundancy with the second C. elegans Asf1 homolog, ASFL-1. The asfl-1 mRNA is expressed in the meiotic region of the germline, and mutants in either Asf1 genes have reduced brood sizes and low penetrance defects in gametogenesis. The asfl-1, unc-85 double mutants are sterile, displaying defects in oogenesis and spermatogenesis, and analysis of DNA synthesis revealed that DNA replication in the germline is blocked. Analysis of somatic phenotypes previously observed in unc-85 mutants revealed that they are neither observed in asfl-1 mutants, nor enhanced in the double mutants, with the exception of enhanced male tail abnormalities in the double mutants. These results suggest that the two Asf1 homologs have partially overlapping functions in the germline, while UNC-85 is primarily responsible for several Asf1 functions in somatic cells, and is more generally involved in replication throughout development.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech-BCHM-2, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
21
|
Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2008; 83:200-9. [PMID: 18971269 DOI: 10.1128/jvi.00645-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.
Collapse
|
22
|
Malay AD, Umehara T, Matsubara-Malay K, Padmanabhan B, Yokoyama S. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J Biol Chem 2008; 283:14022-31. [PMID: 18334479 DOI: 10.1074/jbc.m800594200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of core histones onto eukaryotic DNA is modulated by several histone chaperone complexes, including Asf1, CAF-1, and HIRA. Asf1 is a unique histone chaperone that participates in both the replication-dependent and replication-independent pathways. Here we report the crystal structures of the apo-form of fission yeast Asf1/Cia1 (SpAsf1N; residues 1-161) as well as its complexes with the B-domain of the fission yeast HIRA orthologue Hip1 (Hip1B) and the C-terminal region of the Cac2 subunit of CAF-1 (Cac2C). The mode of the fission yeast Asf1N-Hip1B recognition is similar to that of the human Asf1-HIRA recognition, suggesting that Asf1N recognition of Hip1B/HIRA is conserved from yeast to mammals. Interestingly, Hip1B and Cac2C show remarkably similar interaction modes with Asf1. The binding between Asf1N and Hip1B was almost completely abolished by the D37A and L60A/V62A mutations in Asf1N, indicating the critical role of salt bridge and van der Waals contacts in the complex formation. Consistently, both of the aforementioned Asf1 mutations also drastically reduced the binding to Cac2C. These results provide a structural basis for a mutually exclusive Asf1-binding model of CAF-1 and HIRA/Hip1, in which Asf1 and CAF-1 assemble histones H3/H4 (H3.1/H4 in vertebrates) in a replication-dependent pathway, whereas Asf1 and HIRA/Hip1 assemble histones H3/H4 (H3.3/H4 in vertebrates) in a replication-independent pathway.
Collapse
Affiliation(s)
- Ali D Malay
- Yokohama Institute, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
23
|
Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 2007; 446:338-41. [PMID: 17293877 DOI: 10.1038/nature05613] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 01/17/2007] [Indexed: 11/09/2022]
Abstract
CIA (CCG1-interacting factor A)/ASF1, which is the most conserved histone chaperone among the eukaryotes, was genetically identified as a factor for an anti-silencing function (Asf1) by yeast genetic screening. Shortly after that, the CIA-histone-H3-H4 complex was isolated from Drosophila as a histone chaperone CAF-1 stimulator. Human CIA-I/II (ASF1a/b) was identified as a histone chaperone that interacts with the bromodomain-an acetylated-histone-recognizing domain-of CCG1, in the general transcription initiation factor TFIID. Intensive studies have revealed that CIA/ASF1 mediates nucleosome assembly by forming a complex with another histone chaperone in human cells and yeast, and is involved in DNA replication, transcription, DNA repair and silencing/anti-silencing in yeast. CIA/ASF1 was shown as a major storage chaperone for soluble histones in proliferating human cells. Despite all these biochemical and biological functional analyses, the structure-function relationship of the nucleosome assembly/disassembly activity of CIA/ASF1 has remained elusive. Here we report the crystal structure, at 2.7 A resolution, of CIA-I in complex with histones H3 and H4. The structure shows the histone H3-H4 dimer's mutually exclusive interactions with another histone H3-H4 dimer and CIA-I. The carboxy-terminal beta-strand of histone H4 changes its partner from the beta-strand in histone H2A to that of CIA-I through large conformational change. In vitro functional analysis demonstrated that CIA-I has a histone H3-H4 tetramer-disrupting activity. Mutants with weak histone H3-H4 dimer binding activity showed critical functional effects on cellular processes related to transcription. The histone H3-H4 tetramer-disrupting activity of CIA/ASF1 and the crystal structure of the CIA/ASF1-histone-H3-H4 dimer complex should give insights into mechanisms of both nucleosome assembly/disassembly and nucleosome semi-conservative replication.
Collapse
Affiliation(s)
- Ryo Natsume
- Japan Biological Information Research Centre (JBIRC), Japan Biological Informatics Consortium (JBIC), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 2007; 13:313-27. [PMID: 17208950 DOI: 10.1093/humupd/dml057] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the elongating spermatid stage of spermiogenesis, human sperm chromatin undergoes a complex transition in which histones are extensively replaced by protamines in a carefully regulated transition including histone modifications and intermediate and temporary replacement of the histones by sperm-specific transition proteins. The replacement of most histones by protamines 1 and 2 facilitates a high order of chromatin packaging necessary for normal sperm function and may also be necessary for DNA silencing and imprinting changes within the sperm cell. Protamines 1 and 2 are usually expressed in nearly equal quantities, but elevated or diminished protamine 1/protamine 2 ratios are observed in some infertile men and is often associated with severe spermatogenesis defects. Human and animal studies demonstrate that expression of the protamine proteins is uniquely regulated by transcription/translation factors, including storage of the mRNA in ribonucleoprotein (RNP) particles composed of the mRNA, transcription factors and a kinesin molecule necessary for transport of the RNP to the cytoplasm and removal of transcriptional activators from the nucleus. Recent studies indicate that most patients with abnormal protamine protein levels have elevated levels of protamine transcript in the mature sperm cell, indicating a possible defect in transcription or translation. The regulation of protamine expression is unique and includes several possible mechanisms which may be responsible for dysregulation of protamine expression and concurrent broad spectrum defects in spermatogenesis. We suggest two hypotheses: (i) that abnormal protamine expression is indicative of a generalized defect in mRNA storage and/or translation which affects other mRNA transcripts or (ii) that protamines may act as a checkpoint of spermatogenesis.
Collapse
Affiliation(s)
- Douglas T Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | | | |
Collapse
|
25
|
Mousson F, Ochsenbein F, Mann C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 2006; 116:79-93. [PMID: 17180700 DOI: 10.1007/s00412-006-0087-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Nucleosome assembly involves deposition of a heterotetramer of histones H3/H4 onto DNA followed by two heterodimers of histones H2A/H2B. Cycles of nucleosome assembly and disassembly are essential to cellular events such as replication, transcription, and DNA repair. After synthesis in the cytoplasm, histones are shuttled into the nucleus where they are associated with chaperone proteins. Chaperones of histones H3/H4 include CAF-I, the Hir proteins, and Asf1. CAF-I and the Hir proteins function as replication-coupled and replication-independent deposition factors for H3/H4, respectively, whereas Asf1 may play a role in both pathways. In addition to acting as assembly factors, histone chaperones assist nucleosome dissociation from DNA and they may recruit other proteins to chromatin. The past few years have witnessed a notable accumulation of genetic, biochemical, and structural data on Asf1, which motivated this review. We discuss the sequence and structural features of Asf1 before considering its roles in nucleosome assembly/disassembly, the cellular response to DNA damage, and the regulation of gene expression. We emphasize the key role of Asf1 as a central node in a network of partners that place it at the crossroads of chromatin and DNA checkpoint pathways.
Collapse
Affiliation(s)
- Florence Mousson
- Département de Biologie Joliot-Curie, Service de Biophysique des Fonctions Membranaires, CEA/Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
26
|
Kido T, Lau YFC. The rat Tspy is preferentially expressed in elongated spermatids and interacts with the core histones. Biochem Biophys Res Commun 2006; 350:56-67. [PMID: 16996029 PMCID: PMC1885557 DOI: 10.1016/j.bbrc.2006.08.191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 08/31/2006] [Indexed: 11/23/2022]
Abstract
The testis specific protein Y encoded (TSPY) gene is a tandemly repeated gene on the mammalian Y chromosome. It encodes several slightly variant proteins that harbor a conserved domain of approximately 170 amino acids, termed TSPY/SET/NAP1 domain, capable of binding to cyclin B. The human TSPY is preferentially expressed in spermatogonia and to lesser extent in the spermatids. Although rat harbors a single functional Tspy gene on its Y chromosome, the human and rat genes differ in their expression patterns, suggesting that they might serve different or variant functions in the testis. Transcripts of rTspy were first detected in the testis of 28-day-old rats, at which time the first wave of meiotic division was occurring. The rTspy protein was initially detected in stage-9 elongating spermatids and peaked at stage-13 spermatids in adult testis, but not in spermatogonia, unlike the expression pattern of the human TSPY gene. Using a GST pull-down assay, we demonstrated that rTspy could bind to the core histones H2A, H2B, H3, and H4. Rat Tspy co-localized with the histones in the cytoplasm of selected elongated spermatids. Our results suggest that the rTspy may play critical roles as a histone chaperone during maturation of the elongating spermatids in the rat testis.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | |
Collapse
|
27
|
Umehara T, Otta Y, Tsuganezawa K, Matsumoto T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:971-3. [PMID: 16511210 PMCID: PMC1978123 DOI: 10.1107/s1744309105030927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/27/2005] [Indexed: 11/10/2022]
Abstract
In fission yeast, cia1+ is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1-161) of the cia1+-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 A, beta = 115.93 degrees and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 A resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Takashi Umehara
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Yumi Otta
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Tsuganezawa
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Takehisa Matsumoto
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 111-0032, Japan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Balasundaram Padmanabhan
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
- Correspondence e-mail: ,
| | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
- RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence e-mail: ,
| |
Collapse
|
28
|
Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. ACTA ACUST UNITED AC 2004; 271:3459-69. [PMID: 15317581 DOI: 10.1111/j.1432-1033.2004.04266.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most dramatic chromatin remodelling processes takes place during mammalian spermatogenesis. Indeed, during the postmeiotic maturation of male haploid germ cells, or spermiogenesis, histones are replaced by small basic proteins, which in mammals are transition proteins and protamines. However, nothing is known of the mechanisms controlling the process of histone replacement. Two hints from the literature could help to shed light on the underlying molecular events: one is the massive synthesis of histone variants, including testis-specific members, and the second is a stage specific post-translational modification of histones. A new testis-specific 'histone code' can therefore be generated combining both histone variants and histone post-translational modifications. This review will detail these two phenomena and discuss possible functional significance of the global chromatin alterations occurring prior to histone replacement during spermiogenesis.
Collapse
Affiliation(s)
- Jérôme Govin
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Equipe Chromatine et Expression des gènes, Institut Albert Bonniot, Faculté de médecine, La Tronche, France
| | | | | | | | | |
Collapse
|
29
|
Padmanabhan B, Kuzuhara T, Adachi N, Horikoshi M. The crystal structure of CCG1/TAF(II)250-interacting factor B (CIB). J Biol Chem 2003; 279:9615-24. [PMID: 14672934 DOI: 10.1074/jbc.m312165200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription initiation factor TFIID and its interactors play critical roles in regulating the transcription from both naked and chromatin DNA. We have isolated a novel TFIID interactor that we denoted as CCG1/TAF(II)250-interacting factor B (CIB). We show here that CIB activates transcription. To further understand the function of this protein, we determined its crystal structure at 2.2-Angstroms resolution. The tertiary structure of CIB reveals an alpha/beta-hydrolase fold that resembles structures in the prokaryotic alpha/beta-hydrolase family proteins. It is not similar in structure or primary sequence to any eukaryotic transcription or chromatin factors that have been reported to date. CIB possesses a conserved catalytic triad that is found in other alpha/beta-hydrolases, and our in vitro studies confirmed that it bears hydrolase activity. However, CIB differs from other alpha/beta-hydrolases in that it lacks a binding site excursion, which facilitates the substrate selectivity of the other alpha/beta-hydrolases. Further functional characterization of CIB based on its tertiary structure and through biochemical studies may provide novel insights into the mechanisms that regulate eukaryotic transcription.
Collapse
Affiliation(s)
- Balasundaram Padmanabhan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | | | | | | |
Collapse
|