1
|
Sun J, Fang C, Qin X, Si W, Wang F, Li Y, Yan X. Hemozoin: a waste product after heme detoxification? Parasit Vectors 2025; 18:83. [PMID: 40038801 PMCID: PMC11881329 DOI: 10.1186/s13071-025-06699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Hemozoin is considered a waste byproduct of heme detoxification following hemoglobin digestion; consequently, the biological functions of hemozoin in hemozoin-producing organisms have often been overlooked. However, recent findings indicate that Schistosoma hemozoin facilitates the transfer of iron from erythrocytes to eggs through its formation and degradation, thereby increasing interest in the role of malarial hemozoin. METHODS Using transmission electron microscopy, we compared the formation of Schistosoma hemozoin and malaria hemozoin. Through transcriptome analysis of different stages of P. falciparum 3D7WT and P. falciparum 3D7C580Y,- where the latter serves as a control with reduced hemozoin production, -we analyzed expression patterns of genes related to DNA synthesis, iron, and heme utilization. Using light microscopy, we observed hemozoin aggregation following artemether treatment, and macrophage morphology after ingesting hemozoin in vivo and in vitro. RESULTS Similar to Schistosoma hemozoin, malaria hemozoin consists of heme aggregation and a lipid matrix, likely involved in lipid processing and the utilization of heme and iron. Transcriptome analysis reveals that during the trophozoite stage, the expression levels of these genes in P. falciparum 3D7WT and P. falciparum 3D7C580Y are higher than those during the schizont stage. Correspondingly, less hemozoin was detected at the trophozoite stage, while more was observed during the schizont stage. These results suggest that when more heme and iron are utilized, less heme is available for hemozoin formation. Conversely, when less heme and iron are utilized, they can accumulate for hemozoin formation during the schizont stage, likely benefiting lipid remodeling. Disruption of heme utilization and hemozoin aggregation may lead to parasite death. In addition, the hemozoin released by schizonts can impair macrophage functions, potentially protecting merozoites from phagocytosis. Furthermore, it may be carried by gametocytes into the next host, fulfilling their requirements for iron and heme during their development in mosquitoes. CONCLUSIONS Hemozoin is not a waste byproduct of heme detoxification but instead plays a crucial role in the parasite's life cycle.
Collapse
Affiliation(s)
- Jun Sun
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.
| | - Chuantao Fang
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
- Shanghai Tenth People's Hospital, Tenth peoples hospital of Tongji university, Shanghai, People's Republic of China, Shanghai, China
| | - Xixi Qin
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Wenwen Si
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Fei Wang
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Yanna Li
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| | - Xiaoli Yan
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200331, People's Republic of China
| |
Collapse
|
2
|
Miura D, Tsurigami R, Kato H, Wariishi H, Shimizu M. Pathway crosstalk between the central metabolic and heme biosynthetic pathways in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2024; 108:37. [PMID: 38183476 PMCID: PMC10771590 DOI: 10.1007/s00253-023-12846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 01/08/2024]
Abstract
A comprehensive analysis to survey heme-binding proteins produced by the white-rot fungus Phanerochaete chrysosporium was achieved using a biotinylated heme-streptavidin beads system. Mitochondrial citrate synthase (PcCS), glyceraldehyde 3-phosphate dehydrogenase (PcGAPDH), and 2-Cys thioredoxin peroxidase (mammalian HBP23 homolog) were identified as putative heme-binding proteins. Among these, PcCS and PcGAPDH were further characterized using heterologously expressed recombinant proteins. Difference spectra of PcCS titrated with hemin exhibited an increase in the Soret absorbance at 414 nm, suggesting that the axial ligand of the heme is a His residue. The activity of PcCS was strongly inhibited by hemin with Ki oxaloacetate of 8.7 μM and Ki acetyl-CoA of 5.8 μM. Since the final step of heme biosynthesis occurred at the mitochondrial inner membrane, the inhibition of PcCS by heme is thought to be a physiological event. The inhibitory mode of the heme was similar to that of CoA analogues, suggesting that heme binds to PcCS at His347 at the AcCoA-CoA binding site, which was supported by the homology model of PcCS. PcGAPDH was also inhibited by heme, with a lower concentration than that for PcCS. This might be caused by the different location of these enzymes. From the integration of these phenomena, it was concluded that metabolic regulations by heme in the central metabolic and heme synthetic pathways occurred in the mitochondria and cytosol. This novel pathway crosstalk between the central metabolic and heme biosynthetic pathways, via a heme molecule, is important in regulating the metabolic balance (heme synthesis, ATP synthesis, flux balance of the tricarboxylic acid (TCA) cycle and cellular redox balance (NADPH production) during fungal aromatic degradation. KEY POINTS: • A comprehensive survey of heme-binding proteins in P. chrysosporium was achieved. • Several heme-binding proteins including CS and GAPDH were identified. • A novel metabolic regulation by heme in the central metabolic pathways was found.
Collapse
Affiliation(s)
- Daisuke Miura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | - Ryoga Tsurigami
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Wariishi
- Faculty of Arts and Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
3
|
Rahman A, Tamseel S, Dutta S, Khan N, Faaiz M, Rastogi H, Nath JR, Haldar K, Chowdhury P, Ashish, Bhattacharjee S. Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation. Commun Biol 2024; 7:1499. [PMID: 39538019 PMCID: PMC11561146 DOI: 10.1038/s42003-024-07178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13.
Collapse
Affiliation(s)
- Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Sabahat Tamseel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Smritikana Dutta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Nawaal Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Mohammad Faaiz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Pramit Chowdhury
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India.
| |
Collapse
|
4
|
Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023; 13:1031. [PMID: 37509066 PMCID: PMC10377097 DOI: 10.3390/biom13071031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.
Collapse
Affiliation(s)
- Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Sonali M Vaidya
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, D-56070 Koblenz, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
5
|
GAPDH mediates drug resistance and metabolism in Plasmodium falciparum malaria parasites. PLoS Pathog 2022; 18:e1010803. [PMID: 36103572 PMCID: PMC9512246 DOI: 10.1371/journal.ppat.1010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/26/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity. Malaria is a life-threatening mosquito-borne infection that remains an enormous public health threat worldwide, with over 600,000 deaths reported in 2020 alone. The parasites that cause malaria invade and replicate within human red blood cells. This unique environment provides the malaria parasite with almost unlimited supply of sugar in the form of glucose, which the parasite uses for energy and as building blocks to grow and divide. Parasites break down glucose, and must use these breakdown products to make new molecules, including a very important class of compounds called isoprenoids. Malaria parasites normally die when they are treated with a drug, called fosmidomycin, that inhibits this process. To understand how parasites regulate this critical function, in this study we identified parasites that were resistant to fosmidomycin. These fosmidomycin-resistant cells had mutations in an enzyme that is critical for sugar breakdown, called glyceraldehyde phosphate dehydrogenase (GAPDH). We find that parasites with mutant GAPDH enzymes still break down sugar normally, but are not inhibited by other changes in the cell that happen upon fosmidomycin treatment. These results reveal a new and important role for the enzyme GAPDH as a control-point for downstream metabolism in malaria parasites.
Collapse
|
6
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
7
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
8
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
9
|
Laryea MK, Sheringham Borquaye L. Antimalarial, Antioxidant, and Toxicological Evaluation of Extracts of Celtis africana, Grosseria vignei, Physalis micrantha, and Stachytarpheta angustifolia. Biochem Res Int 2021; 2021:9971857. [PMID: 34258066 PMCID: PMC8245231 DOI: 10.1155/2021/9971857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
In many parts of the world, malaria undoubtedly poses a serious threat to health care systems. Malaria treatment has increasingly become complicated, primarily due to the emergence of widespread resistance of the malaria parasites to cheap and affordable malaria therapeutics. The use of herbal remedies to treat various ailments, including malaria and malaria-like ailments in Ghana is common. We herein report on the antiplasmodial and antioxidant activities as well as toxicological evaluation of four medicinal plants (Celtis africana, Grosseria vignei, Physalis micrantha, and Stachytarpheta angustifolia) commonly used to treat malaria in Ghana. Following Soxhlet extraction of plant samples in ethanol, extracts were screened against Plasmodium falciparum (3D7 strain) in an in vitro antiplasmodial assay. The phosphomolybdenum and DPPH (1, 1-diphenyl-2 picrylhydrazyl) assays were used to evaluate antioxidant activities while toxicity assessment was carried out in mice using the acute toxicity test and kidney and liver function tests. Extracts from Celtis africana and Physalis micrantha were very active towards the parasites with half-maximal inhibitory concentrations (IC50's) of 29.1 and 3.5 µg/mL, respectively. Extracts of Grosseria vignei and Stachytarpheta angustifolia were inactive, having IC50 values greater than 50 µg/mL. All extracts exhibited excellent total antioxidant capacities (>800 mg/g AAE) and good DPPH radical scavenging potential (IC50 range of 300-900 µg/mL). The median lethal dose (LD50) of all extracts in the toxicological evaluation was greater than 2000 mg/kg and there was no effect of extracts on the levels and activities of key biomarkers of liver and kidney function. The activities of these plants obtained in this study partly give credence to their folkloric use in herbal medicines and suggest that they could provide promising lead compounds for malaria drug discovery programs.
Collapse
Affiliation(s)
- Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
10
|
Nagarkoti S, Dubey M, Awasthi D, Kumar V, Chandra T, Kumar S, Dikshit M. S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:444-454. [DOI: 10.1016/j.bbamcr.2017.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022]
|
11
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target. Exp Parasitol 2017; 179:7-19. [DOI: 10.1016/j.exppara.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023]
|
13
|
Huang Y, Zhang P, Yang Z, Wang P, Li H, Gao Z. Interaction of glyceraldehyde-3-phosphate dehydrogenase and heme: The relevance of its biological function. Arch Biochem Biophys 2017; 619:54-61. [PMID: 28315300 DOI: 10.1016/j.abb.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
Abstract
GAPDH was speculated to function as a transient trap to reduce the potential toxicity of free heme by a specific and reversible binding with heme. Up to now, there has been lack of studies focused on this effect. In this paper, the efficiency of GAPDH-heme complex on catalyzing protein carbonylation and nitration, the cross-linking of heme to protein formation, and cytotoxicity of GAPDH-heme were studied. It was found that the binding of GAPDH could inhibit H2O2-mediated degradation of heme. Peroxidase activity of GAPDH-heme complex was higher than that of free heme, but significantly lower than that of HSA-heme. Catalytic activity of heme corresponded complex toward tyrosine oxidation/nitration was decreased in the order of HSA-heme, heme and GAPDH-heme. GAPDH also inhibited heme-H2O2-NO2- induced protein carbonylation. No covalent bond was formed between heme and GAPDH after treated with H2O2. GAPDH was more effective than HSA on protecting cells against heme-NO2--H2O2 induced cytotoxicity. These results indicate that binding of GAPDH inhibits the activity of heme in catalyzing tyrosine nitration and protects the coexistent protein against oxidative damage, and the mechanism is different from that of HSA. This study may help clarifying the protective role of GAPDH acting as a chaperone in heme transfer to downstream areas.
Collapse
Affiliation(s)
- Yi Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, 430074, PR China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, 430074, PR China.
| |
Collapse
|
14
|
Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem 2016; 291:7703-15. [PMID: 26823464 DOI: 10.1074/jbc.m115.698282] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.
Collapse
Affiliation(s)
- Clara S Lin
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alessandro D Uboldi
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Christian Epp
- the Department of Infectious Diseases, Parasitology, Universität Heidelberg, INF 324, 69120 Heidelberg, Germany
| | - Hermann Bujard
- the Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany, and
| | - Takafumi Tsuboi
- the Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Peter E Czabotar
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alan F Cowman
- From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia, the Department of Medical Biology, University of Melbourne, Melbourne, Australia,
| |
Collapse
|
15
|
Sangolgi PB, Balaji C, Dutta S, Jindal N, Jarori GK. Cloning, expression, purification and characterization of Plasmodium spp. glyceraldehyde-3-phosphate dehydrogenase. Protein Expr Purif 2015; 117:17-25. [PMID: 26341815 DOI: 10.1016/j.pep.2015.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Plasmodium spp. solely rely on glycolysis for their energy needs during asexual multiplication in human RBCs, making the enzymes of this pathway potential drug targets. We have cloned, over-expressed and purified Plasmodium falciparum glyceraldehyde-3-phosphate dehydrogenase (PfGapdh) for its kinetic and structural characterization. ∼ 30-40 mg pure recombinant enzyme with a specific activity of 12.6 units/mg could be obtained from a liter of Escherichia coli culture. This enzyme is a homotetramer with an optimal pH ∼ 9. Kinetic measurements gave KmNAD=0.28 ± 0.3 mM and KmG3P=0.25 ± 0.03 mM. Polyclonal antibodies raised in mice showed high specificity as was evident from their non-reactivity to rabbit muscle Gapdh. Western blot of Plasmodium yoelii cell extract showed three bands at MW ∼ 27, ∼ 37 and ∼ 51 kDa. Presence of PyGapdh in all the three bands was confirmed by LC-ESI-MS. Interestingly, the ∼ 51 kDa form was present only in the soluble fraction of the extract. Subcellular distribution of Gapdh in P. yoelii was examined using differential detergent fractionation method. Each fraction was analyzed on a two-dimensional gel and visualized by Western blotting. All four subcellular fractions (i.e., cytosol, nucleus, cytoskeleton and cell membranes) examined had Gapdh associated with them. Each fraction had multiple molecular species associated with them. Such species could arise only by multiple post-translational modifications. Structural heterogeneity observed among molecular species of PyGapdh and their diverse subcellular distribution, supports the view that Gapdh is likely to have multiple non-glycolytic functions in the parasite and could be an effective target for anti-malarial chemotherapeutics.
Collapse
Affiliation(s)
- Prakash B Sangolgi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Nitin Jindal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India.
| |
Collapse
|
16
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Tripathy S, Roy S. Redox sensing and signaling by malaria parasite in vertebrate host. J Basic Microbiol 2015; 55:1053-63. [PMID: 25740654 DOI: 10.1002/jobm.201500031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Satyajit Tripathy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| | - Somenath Roy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore West Bengal India
| |
Collapse
|
18
|
Affiliation(s)
- Paul A. Sigala
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| |
Collapse
|
19
|
Ulrich P, Gipson GR, Clark MA, Tripathi A, Sullivan DJ, Cerami C. In vitro and in vivo antimalarial activity of amphiphilic naphthothiazolium salts with amine-bearing side chains. Am J Trop Med Hyg 2014; 91:824-32. [PMID: 25184829 DOI: 10.4269/ajtmh.13-0565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Because of emerging resistance to existing drugs, new chemical classes of antimalarial drugs are urgently needed. We have rationally designed a library of compounds that were predicted to accumulate in the digestive vacuole and then decrystallize hemozoin by breaking the iron carboxylate bond in hemozoin. We report the synthesis of 16 naphthothiazolium salts with amine-bearing side chains and their activities against the erythrocytic stage of Plasmodium falciparum in vitro. KSWI-855, the compound with the highest efficacy against the asexual stages of P. falciparum in vitro, also had in vitro activity against P. falciparum gametocytes and in vivo activity against P. berghei in a murine malaria model.
Collapse
Affiliation(s)
- Peter Ulrich
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Gregory R Gipson
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Martha A Clark
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Abhai Tripathi
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - David J Sullivan
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| | - Carla Cerami
- The Kenneth S. Warren Institute, Ossining, New York; University of North Carolina, Chapel Hill, North Carolina; Johns Hopkins Malaria Institute, Baltimore, Maryland
| |
Collapse
|
20
|
Imam M, Singh S, Kaushik NK, Chauhan VS. Plasmodium falciparum merozoite surface protein 3: oligomerization, self-assembly, and heme complex formation. J Biol Chem 2013; 289:3856-68. [PMID: 24362023 DOI: 10.1074/jbc.m113.520239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Merozoite surface protein 3 of Plasmodium falciparum, a 40-kDa protein that also binds heme, has been biophysically characterized for its tendency to form highly elongated oligomers. This study aims to systematically analyze the regions in MSP3 sequence involved in oligomerization and correlate its aggregation tendency with its high affinity for binding with heme. Through size exclusion chromatography, dynamic light scattering, and transmission electron microscopy, we have found that MSP3, previously known to form elongated oligomers, actually forms self-assembled filamentous structures that possess amyloid-like characteristics. By expressing different regions of MSP3, we observed that the previously described leucine zipper region at the C terminus of MSP3 may not be the only structural element responsible for oligomerization and that other peptide segments like MSP3(192-196) (YILGW) may also be required. MSP3 aggregates on incubation were transformed to long unbranched amyloid fibrils. Using immunostaining methods, we found that 5-15-μm-long fibrillar structures stained by anti-MSP3 antibodies were attached to the merozoite surface and also associated with erythrocyte membrane. We also found MSP3 to bind several molecules of heme by UV spectrophotometry, HPLC, and electrophoresis. This study suggested that its ability to bind heme is somehow related to its inherent characteristics to form oligomers. Moreover, heme interaction with a surface protein like MSP3, which does not participate in hemozoin formation, may suggest a protective role against the heme released from unprocessed hemoglobin released after schizont egress. These studies point to the other roles that MSP3 may play during the blood stages of the parasite, in addition to be an important vaccine candidate.
Collapse
Affiliation(s)
- Maryam Imam
- From the Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | | | | | | |
Collapse
|
21
|
Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, Padmanaban G. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog 2013; 9:e1003522. [PMID: 23935500 PMCID: PMC3731253 DOI: 10.1371/journal.ppat.1003522] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/10/2013] [Indexed: 01/21/2023] Open
Abstract
Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-14C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages. We demonstrated about two decades ago that the malaria parasite could make heme on its own, although it imports heme from red blood cell hemoglobin during the blood stages of infection. We investigated the role of parasite-synthesized heme in all stages of parasite growth by knocking out two genes in the heme-biosynthetic pathway of Plasmodium berghei that infects mice. We found that the parasite-synthesized heme complements the function of hemoglobin-heme during the blood stages. The parasite-synthesized heme appears to be a backup mechanism. The parasite incorporates both sources of heme into hemozoin, a detoxification product, and into mitochondrial cytochromes. The parasite-synthesized heme is, however, absolutely essential for parasite growth during the mosquito and liver stages. We restored the sporozoite formation and liver-stage development of the knockout parasites by providing the missing metabolite. Thus, the heme-biosynthetic pathway could be a target for antimalarial therapies in the mosquito and liver stages of infection. The knockout parasite could also be tested for its potential as a genetically attenuated sporozoite vaccine.
Collapse
|
22
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
23
|
Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, Vilhena TC, Dolabela MF, Green MD. Oxidative stress in malaria. Int J Mol Sci 2012; 13:16346-72. [PMID: 23208374 PMCID: PMC3546694 DOI: 10.3390/ijms131216346] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/08/2012] [Accepted: 11/23/2012] [Indexed: 12/16/2022] Open
Abstract
Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy.
Collapse
Affiliation(s)
- Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Danilo R. Moreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Bruno A. Q. Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Michelli E. S. Ferreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Ana Carolina M. Gonçalves
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Paula S. O. C. Laurindo
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Thyago C. Vilhena
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Maria F. Dolabela
- Pharmacy Faculty, Institute of Health Sciences, Federal University of Para. Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mail:
| | - Michael D. Green
- US Centers for Disease Control and Prevention, 1600 Clifton Road NE, mailstop G49, Atlanta, GA 30329, USA; E-Mail:
| |
Collapse
|
24
|
Lehane AM, McDevitt CA, Kirk K, Fidock DA. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:47-57. [PMID: 22773965 DOI: 10.1016/j.ijpddr.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chloroquine (CQ) was once a very effective antimalarial drug that, at its peak, was consumed in the hundreds of millions of doses per year. The drug acts against the Plasmodium parasite during the asexual intraerythrocytic phase of its lifecycle. Unfortunately, clinical resistance to this drug is now widespread. Questions remain about precisely how CQ kills malaria parasites, and by what means some CQ-resistant (CQR) parasites can withstand much higher concentrations of the drug than others that also fall in the CQR category. In this review we investigate the evidence for and against the proposal that CQ kills parasites by generating oxidative stress. Further, we examine a long-held idea that the glutathione system of malaria parasites plays a role in CQ resistance. We conclude that there is strong evidence that glutathione levels modulate CQ response in the rodent malaria species P. berghei, but that a role for redox in contributing to the degree of CQ resistance in species infectious to humans has not been firmly established.
Collapse
Affiliation(s)
- Adele M Lehane
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
25
|
Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MMK, Chen MJ, Guo ZF, Guo ZH, Sinniah K, Witte AB, Coghi P, Monti D. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem 2012; 7:2204-26. [PMID: 23112085 DOI: 10.1002/cmdc.201200383] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/30/2012] [Indexed: 01/14/2023]
Abstract
Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Richard K Haynes
- Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hannibal L, Collins D, Brassard J, Chakravarti R, Vempati R, Dorlet P, Santolini J, Dawson JH, Stuehr DJ. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 2012; 51:8514-29. [PMID: 22957700 DOI: 10.1021/bi300863a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.
Collapse
Affiliation(s)
- Luciana Hannibal
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Torrentino-Madamet M, Alméras L, Desplans J, Le Priol Y, Belghazi M, Pophillat M, Fourquet P, Jammes Y, Parzy D. Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach. Malar J 2011; 10:4. [PMID: 21223545 PMCID: PMC3030542 DOI: 10.1186/1475-2875-10-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Over its life cycle, the Plasmodium falciparum parasite is exposed to different environmental conditions, particularly to variations in O2 pressure. For example, the parasite circulates in human venous blood at 5% O2 pressure and in arterial blood, particularly in the lungs, at 13% O2 pressure. Moreover, the parasite is exposed to 21% O2 levels in the salivary glands of mosquitoes. Methods To study the metabolic adaptation of P. falciparum to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken. Results Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response. Conclusions These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of P. falciparum to environmental changes and may lead to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Marylin Torrentino-Madamet
- UMR-MD3 (Université de la Méditerranée), Antenne IRBA de Marseille (IMTSSA, Le Pharo), Allée du Médecin Colonel Eugène Jamot, BP 60109, 13262 Marseille cedex 07, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc Natl Acad Sci U S A 2010; 107:18004-9. [PMID: 20921417 DOI: 10.1073/pnas.1008133107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme proteins play essential roles in biology, but little is known about heme transport inside mammalian cells or how heme is inserted into soluble proteins. We recently found that nitric oxide (NO) blocks cells from inserting heme into several proteins, including cytochrome P450s, hemoglobin, NO synthases, and catalase. This finding led us to explore the basis for NO inhibition and to identify cytosolic proteins that may be involved, using inducible NO synthase (iNOS) as a model target. Surprisingly, we found that GAPDH plays a key role. GAPDH was associated with iNOS in cells. Pure GAPDH bound tightly to heme or to iNOS in an NO-sensitive manner. GAPDH knockdown inhibited heme insertion into iNOS and a GAPDH mutant with defective heme binding acted as a dominant negative inhibitor of iNOS heme insertion. Exposing cells to NO either from a chemical donor or by iNOS induction caused GAPDH to become S-nitrosylated at Cys152. Expressing a GAPDH C152S mutant in cells or providing a drug to selectively block GAPDH S-nitrosylation both made heme insertion into iNOS resistant to the NO inhibition. We propose that GAPDH delivers heme to iNOS through a process that is regulated by its S-nitrosylation. Our findings may uncover a fundamental step in intracellular heme trafficking, and reveal a mechanism whereby NO can govern the process.
Collapse
|
29
|
Use of thermal melt curves to assess the quality of enzyme preparations. Anal Biochem 2009; 399:268-75. [PMID: 20018159 DOI: 10.1016/j.ab.2009.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/05/2009] [Accepted: 12/09/2009] [Indexed: 11/20/2022]
Abstract
This study sought to determine whether the quality of enzyme preparations can be determined from their melting curves, which may easily be obtained using a fluorescent probe and a standard reverse transcription-polymerase chain reaction (RT-PCR) machine. Thermal melt data on 31 recombinant enzymes from Plasmodium parasites were acquired by incrementally heating them to 90 degrees C and measuring unfolding with a fluorescent dye. Activity assays specific to each enzyme were also performed. Four of the enzymes were denatured to varying degrees with heat and sodium dodecyl sulfate (SDS) prior to the thermal melt and activity assays. In general, melting curve quality was correlated with enzyme activity; enzymes with high-quality curves were found almost uniformly to be active, whereas those with lower quality curves were more varied in their catalytic performance. Inspection of melting curves of bovine xanthine oxidase and Entamoeba histolytica cysteine protease 1 allowed active stocks to be distinguished from inactive stocks, implying that a relationship between melting curve quality and activity persists over a wide range of experimental conditions and species. Our data suggest that melting curves can help to distinguish properly folded proteins from denatured ones and, therefore, may be useful in selecting stocks for further study and in optimizing purification procedures for specific proteins.
Collapse
|
30
|
Novel antimalarial aminoquinolines: heme binding and effects on normal or Plasmodium falciparum-parasitized human erythrocytes. Antimicrob Agents Chemother 2009; 53:4339-44. [PMID: 19651905 DOI: 10.1128/aac.00536-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new quinolizidinyl-alkyl derivatives of 7-chloro-4-aminoquinoline, named AM-1 and AP4b, which are highly effective in vitro against both the D10 (chloroquine [CQ] susceptible) and W2 (CQ resistant) strains of Plasmodium falciparum and in vivo in the rodent malaria model, have been studied for their ability to bind to and be internalized by normal or parasitized human red blood cells (RBC) and for their effects on RBC membrane stability. In addition, an analysis of the heme binding properties of these compounds and of their ability to inhibit beta-hematin formation in vitro has been performed. Binding of AM1 or AP4b to RBC is rapid, dose dependent, and linearly related to RBC density. Their accumulation in parasitized RBC (pRBC) is increased twofold compared to levels in normal RBC. Binding of AM1 or AP4b to both normal and pRBC is higher than that of CQ, in agreement with the lower pKa and higher lipophilicity of the compounds. AM1 or AP4b is not hemolytic per se and is less hemolytic than CQ when hemolysis is accelerated (induced) by hematin. Moreover, AM-1 and AP4b bind heme with a stoichiometry of interaction similar to that of CQ (about 1:1.7) but with a lower affinity. They both inhibit dose dependently the formation of beta-hematin in vitro with a 50% inhibitory concentration comparable to that of CQ. Taken together, these results suggest that the antimalarial activity of AM1 or AP4b is likely due to inhibition of hemozoin formation and that the efficacy of these compounds against the CQ-resistant strains can be ascribed to their hydrophobicity and capacity to accumulate in the vacuolar lipid (elevated lipid accumulation ratios).
Collapse
|
31
|
Liebau E, Dawood KF, Fabrini R, Fischer-Riepe L, Perbandt M, Stella L, Pedersen JZ, Bocedi A, Petrarca P, Federici G, Ricci G. Tetramerization and cooperativity in Plasmodium falciparum glutathione S-transferase are mediated by atypic loop 113-119. J Biol Chem 2009; 284:22133-22139. [PMID: 19531494 DOI: 10.1074/jbc.m109.015198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione S-transferase of Plasmodium falciparum (PfGST) displays a peculiar dimer to tetramer transition that causes full enzyme inactivation and loss of its ability to sequester parasitotoxic hemin. Furthermore, binding of hemin is modulated by a cooperative mechanism. Site-directed mutagenesis, steady-state kinetic experiments, and fluorescence anisotropy have been used to verify the possible involvement of loop 113-119 in the tetramerization process and in the cooperative phenomenon. This protein segment is one of the most prominent structural differences between PfGST and other GST isoenzymes. Our results demonstrate that truncation, increased rigidity, or even a simple point mutation of this loop causes a dramatic change in the tetramerization kinetics that becomes at least 100 times slower than in the native enzyme. All of the mutants tested have lost the positive cooperativity for hemin binding, suggesting that the integrity of this peculiar loop is essential for intersubunit communication. Interestingly, the tetramerization process of the native enzyme that occurs rapidly when GSH is removed is prevented not only by GSH but even by oxidized glutathione. This result suggests that protection by PfGST against hemin is independent of the redox status of the parasite cell. Because of the importance of this unique segment in the function/structure of PfGST, it could be a new target for the development of antimalarial drugs.
Collapse
Affiliation(s)
- Eva Liebau
- Institute of Animal Physiology, University of Münster, Hindenburgplatz, 55 Münster, Germany
| | - Kutayba F Dawood
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Raffaele Fabrini
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Lena Fischer-Riepe
- Institute of Animal Physiology, University of Münster, Hindenburgplatz, 55 Münster, Germany
| | - Markus Perbandt
- Institute of Biochemistry, Center for Structural and Cell Biology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; Laboratory for Structural Biology of Infection and Inflammation, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Lorenzo Stella
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Jens Z Pedersen
- Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Alessio Bocedi
- Department of Biology, University of Rome "Roma Tre," 00146 Rome, Italy; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27708
| | | | | | - Giorgio Ricci
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| |
Collapse
|
32
|
Radfar A, Diez A, Bautista JM. Chloroquine mediates specific proteome oxidative damage across the erythrocytic cycle of resistant Plasmodium falciparum. Free Radic Biol Med 2008; 44:2034-42. [PMID: 18397762 DOI: 10.1016/j.freeradbiomed.2008.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/22/2022]
Abstract
Resistance of Plasmodium falciparum to chloroquine hinders malaria control in endemic areas. Current hypotheses on the action mechanism of chloroquine evoke its ultimate interference with the parasite's oxidative defence systems. Through carbonyl derivatization by 2,4-dinitrophenylhydrazine and proteomics, we compared oxidatively modified proteins across the parasite's intraerythrocytic stages in untreated and transiently IC(50) chloroquine-treated cultures of the chloroquine-resistant P. falciparum strain Dd2. Functional plasmodial protein groups found to be most oxidatively damaged were among those central to the parasite's physiological processes, including protein folding, proteolysis, energy metabolism, signal transduction, and pathogenesis. While an almost constant number of oxidized proteins was detected across the P. falciparum life cycle, chloroquine treatment led to increases in both the extent of protein oxidation and the number of proteins oxidized as the intraerythrocytic cycle progressed to mature stages. Our data provide new insights into early molecular effects produced by chloroquine in the parasite, as well as into the normal protein-oxidation modifications along the parasite cycle. Oxidized proteins involved in the particular parasite drug-response suggest that chloroquine causes specific oxidative stress, sharing common features with eukaryotic cells. Targeting these processes might provide ways of combating chloroquine-resistance and developing new antimalarial drugs.
Collapse
Affiliation(s)
- Azar Radfar
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040, Madrid, Spain
| | | | | |
Collapse
|
33
|
Pisciotta JM, Sullivan D. Hemozoin: oil versus water. Parasitol Int 2008; 57:89-96. [PMID: 18373972 PMCID: PMC2442017 DOI: 10.1016/j.parint.2007.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Because the quinolines inhibit heme crystallization within the malaria parasite much work has focused on mechanism of formation and inhibition of hemozoin. Here we review the recent evidence for heme crystallization within lipids in diverse parasites and the new implications of a lipid site of crystallization for drug targeting. Within leukocytes hemozoin can generate toxic radical lipid metabolites, which may alter immune function or reduce deformability of uninfected erythrocytes.
Collapse
Affiliation(s)
- John M. Pisciotta
- The Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| | - David Sullivan
- The Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Phylogenetic and structural information on glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in Plasmodium provides functional insights. INFECTION GENETICS AND EVOLUTION 2008; 8:205-12. [DOI: 10.1016/j.meegid.2007.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob Agents Chemother 2008; 52:1291-6. [PMID: 18268087 DOI: 10.1128/aac.01033-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study.
Collapse
|
36
|
Birkholtz L, van Brummelen A, Clark K, Niemand J, Maréchal E, Llinás M, Louw A. Exploring functional genomics for drug target and therapeutics discovery in Plasmodia. Acta Trop 2008; 105:113-23. [PMID: 18083131 DOI: 10.1016/j.actatropica.2007.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/04/2023]
Abstract
Functional genomics approaches are indispensable tools in the drug discovery arena and have recently attained increased attention in antibacterial drug discovery research. However, the application of functional genomics to post-genomics research of Plasmodia is still in comparatively early stages. Nonetheless, with this genus having the most species sequenced of any eukaryotic organism so far, the Plasmodia could provide unique opportunities for the study of intracellular eukaryotic pathogens. This review presents the status quo of functional genomics of the malaria parasite including descriptions of the transcriptome, proteome and interactome. We provide examples for the in silico mining of the X-ome data sets and illustrate how X-omic data from drug challenged parasites might be used in elucidating amongst others, the mode-of-action of inhibitory compounds, validate potential targets and discover novel targets/therapeutics.
Collapse
|
37
|
Gayathri P, Balaram H, Murthy MRN. Structural biology of plasmodial proteins. Curr Opin Struct Biol 2007; 17:744-54. [PMID: 17875391 DOI: 10.1016/j.sbi.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.
Collapse
Affiliation(s)
- P Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
38
|
Schlitzer M. Malaria Chemotherapeutics Part I: History of Antimalarial Drug Development, Currently Used Therapeutics, and Drugs in Clinical Development. ChemMedChem 2007; 2:944-86. [PMID: 17530725 DOI: 10.1002/cmdc.200600240] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since ancient times, humankind has had to struggle against the persistent onslaught of pathogenic microorganisms. Nowadays, malaria is still the most important infectious disease worldwide. Considerable success in gaining control over malaria was achieved in the 1950s and 60s through landscaping measures, vector control with the insecticide DDT, and the widespread administration of chloroquine, the most important antimalarial agent ever. In the late 1960s, the final victory over malaria was believed to be within reach. However, the parasites could not be eradicated because they developed resistance against the most widely used and affordable drugs of that time. Today, cases of malaria infections are on the rise and have reached record numbers. This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy. The present knowledge regarding their mode of action and the mechanisms of resistance are explained, as are the attempts made by numerous research groups to overcome the resistance problem within classes of existing drugs and in some novel classes. Finally, this review covers all classes of antimalarials for which at least one drug candidate is in clinical development. Antimalarial agents that are solely in early development stages will be addressed in a separate review.
Collapse
Affiliation(s)
- Martin Schlitzer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
| |
Collapse
|
39
|
Kaiser M, Wittlin S, Nehrbass-Stuedli A, Dong Y, Wang X, Hemphill A, Matile H, Brun R, Vennerstrom JL. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother 2007; 51:2991-3. [PMID: 17562801 PMCID: PMC1932508 DOI: 10.1128/aac.00225-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using nonperoxidic analogs of artemisinin and OZ277 (RBx11160), the strong in vitro antiplasmodial activities of the latter two compounds were shown to be peroxide bond dependent. In contrast, the weak activities of artemisinin and OZ277 against six other protozoan parasites were peroxide bond independent. These data support the iron-dependent artemisinin alkylation hypothesis.
Collapse
|
40
|
Koncarevic S, Bogumil R, Becker K. SELDI-TOF-MS analysis of chloroquine resistant and sensitivePlasmodium falciparum strains. Proteomics 2007; 7:711-21. [PMID: 17295353 DOI: 10.1002/pmic.200600552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The resistance of the malarial parasite Plasmodium falciparum to chloroquine represents an emerging problem since neither mode of drug action nor mechanisms of resistance are fully elucidated. We describe a protein expression profiling approach by SELDI-TOF-MS as a useful tool for studying the proteome of malarial parasites. Reproducible and complex protein profiles of the P. falciparum strains K1, Dd2, HB3 and 3D7 were measured on four array types. Hierarchical clustering led to a clear separation of the two major subgroups "resistant" and "sensitive" as well as of the four parasite strains. Our study delivers sets of regulated proteins derived from extensive comparative analyses of 64 P. falciparum protein profiles. A group of 12 peaks reflecting proteome changes under chloroquine treatment and a set of 10 potential chloroquine resistance markers were defined. Three of these regulated peaks were preparatively enriched, purified and identified. They were shown to represent the plasmodial EXP-1 protein, also called circumsporozoite-related antigen, as well as the alpha- and beta- (delta-) chains of human hemoglobin.
Collapse
Affiliation(s)
- Sasa Koncarevic
- Interdisciplinary Research Center, Giessen University, Giessen, Germany
| | | | | |
Collapse
|
41
|
Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sci 2007; 80:813-28. [PMID: 17157328 DOI: 10.1016/j.lfs.2006.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
Digestion of hemoglobin in the food vacuole of the malaria parasite produces very high quantities of redox active toxic free heme. Hemozoin (beta-hematin) formation is a unique process adopted by Plasmodium sp. to detoxify free heme. Hemozoin formation is a validated target for most of the well-known existing antimalarial drugs and considered to be a suitable target to develop new antimalarials. Here we discuss the possible mechanisms of free heme detoxification in the malaria parasite and the mechanistic details of compounds, which offer antimalarial activity by inhibiting hemozoin formation. The chemical nature of new antimalarial compounds showing antimalarial activity through the inhibition of hemozoin formation has also been incorporated, which may help to design future antimalarials with therapeutic potential against multi-drug resistant malaria.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
42
|
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space? Malar J 2006; 5:110. [PMID: 17112376 PMCID: PMC1665468 DOI: 10.1186/1475-2875-5-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/17/2006] [Indexed: 11/21/2022] Open
Abstract
The organization and mining of malaria genomic and post-genomic data is important to significantly increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should, therefore, be as reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria genomic and post-genomic data were examined: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Recent progress towards a grid-enabled chemogenomic knowledge space is discussed.
Collapse
|
43
|
Robien MA, Bosch J, Buckner FS, Van Voorhis WCE, Worthey EA, Myler P, Mehlin C, Boni EE, Kalyuzhniy O, Anderson L, Lauricella A, Gulde S, Luft JR, DeTitta G, Caruthers JM, Hodgson KO, Soltis M, Zucker F, Verlinde CLMJ, Merritt EA, Schoenfeld LW, Hol WGJ. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 A resolution reveals intriguing extra electron density in the active site. Proteins 2006; 62:570-7. [PMID: 16345073 DOI: 10.1002/prot.20801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The crystal structure of D-glyceraldehyde-3-phosphate dehydrogenase (PfGAPDH) from the major malaria parasite Plasmodium falciparum is solved at 2.25 A resolution. The structure of PfGAPDH is of interest due to the dependence of the malaria parasite in infected human erythrocytes on the glycolytic pathway for its energy generation. Recent evidence suggests that PfGAPDH may also be required for other critical activities such as apical complex formation. The cofactor NAD(+) is bound to all four subunits of the tetrameric enzyme displaying excellent electron densities. In addition, in all four subunits a completely unexpected large island of extra electron density in the active site is observed, approaching closely the nicotinamide ribose of the NAD(+). This density is most likely the protease inhibitor AEBSF, found in maps from two different crystals. This putative AEBSF molecule is positioned in a crucial location and hence our structure, with expected and unexpected ligands bound, can be of assistance in lead development and design of novel antimalarials.
Collapse
Affiliation(s)
- Mark A Robien
- Structural Genomics of Pathogenic Protozoa (SGPP), Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Andricopulo AD, Akoachere MB, Krogh R, Nickel C, McLeish MJ, Kenyon GL, Arscott LD, Williams CH, Davioud-Charvet E, Becker K. Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Bioorg Med Chem Lett 2006; 16:2283-92. [PMID: 16458512 DOI: 10.1016/j.bmcl.2006.01.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.
Collapse
Affiliation(s)
- A D Andricopulo
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Crooke A, Diez A, Mason PJ, Bautista JM. Transient silencing of Plasmodium falciparum bifunctional glucose-6-phosphate dehydrogenase- 6-phosphogluconolactonase. FEBS J 2006; 273:1537-46. [PMID: 16689939 DOI: 10.1111/j.1742-4658.2006.05174.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (G6PD-6PGL) found in Plasmodium falciparum has unique structural and functional characteristics restricted to this genus. This study was designed to examine the effects of RNA-mediated PfG6PD-6PGL gene silencing in cultures of P. falciparum on the expression of parasite antioxidant defense genes at the transcription level. The highest degree of G6PD-6PGL silencing achieved was 86% at the mRNA level, with a recovery to almost normal levels within 24 h, indicating only transient diminished expression of the PfG6PD-6PGL gene. PfG6PD-6PGL silencing caused arrest of the trophozoite stage and enhanced gametocyte formation. In addition, an immediate transcriptional response was shown by thioredoxin reductase suggesting that P. falciparum G6PD-6PGL plays a physiological role in the specific response of the parasite to intracellullar oxidative stress. P. falciparum transfection with an empty DNA vector also promoted intracellular stress, as determined by mRNA up-regulation of antioxidant genes. Collectively, our findings point to an important role for this enzyme in the parasite's infection cycle. The different characteristics of G6PD-6PGL with respect to its homologue in the host make it an ideal target for therapeutic strategies.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Universidad Complutense de Madrid, Facultad de Veterinaria, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Abstract
The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.
Collapse
Affiliation(s)
- Paul F G Sims
- University of Manchester, Faculty of Life Sciences, Jackson's Mill, PO Box 88, Manchester, M60 1QD, UK.
| | | |
Collapse
|
47
|
Ginsburg H. Should chloroquine be laid to rest? Acta Trop 2005; 96:16-23. [PMID: 16054105 DOI: 10.1016/j.actatropica.2005.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 11/16/2022]
Abstract
Chloroquine (CQ) has been the front line antimalarial drug due to its efficacy, low cost and scanty side effects, until resistance has evolved. Although its use has been officially discontinued in most malaria-affected countries, it is still widely used. Practical and pharmacological considerations indicate that it could be still used in semi-immune adults and that more efficient treatment protocols could be devised to treat even patients infected with CQ-resistant parasite strains. Since its antimalarial activity is pleiotropic, drug resistance may be due to different mechanisms, each amenable to reversal by drug combination.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
48
|
Basso LA, da Silva LHP, Fett-Neto AG, de Azevedo WF, Moreira IDS, Palma MS, Calixto JB, Astolfi Filho S, dos Santos RR, Soares MBP, Santos DS. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review. Mem Inst Oswaldo Cruz 2005; 100:475-506. [PMID: 16302058 DOI: 10.1590/s0074-02762005000600001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Collapse
Affiliation(s)
- Luiz Augusto Basso
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kawazu SI, Ikenoue N, Takemae H, Komaki-Yasuda K, Kano S. Roles of 1-Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum. FEBS J 2005; 272:1784-91. [PMID: 15794764 DOI: 10.1111/j.1742-4658.2005.04611.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we investigated whether Plasmodium falciparum 1-Cys peroxiredoxin (Prx) (Pf1-Cys-Prx), a cytosolic protein expressed at high levels during the haem-digesting stage, can act as an antioxidant to cope with the oxidative burden of haem (ferriprotoporphyrin IX; FP). Recombinant Pf1-Cys-Prx protein (rPf1-Cys-Prx) competed with glutathione (GSH) for FP and inhibited FP degradation by GSH. When rPf1-Cys-Prx was added to GSH-mediated FP degradation, the amount of iron released was reduced to 23% of the reaction without the protein (P < 0.01). The rPf1-Cys-Prx bound to FP-agarose at pH 7.4, which is the pH of the parasite cytosol. The rPf1-Cys-Prx could completely protect glutamine synthetase from inactivation by the dithiothreitol-Fe(3+)-dependent mixed-function oxidation system, and it also protected enolase from inactivation by coincubation with FP/GSH. Incubation of white ghosts of human red blood cells and FP with rPf1-Cys-Prx reduced formation of membrane associations with FP to 75% of the incubation without the protein (P < 0.01). The findings of the present study suggest that Pf1-Cys-Prx protects the parasite against oxidative stresses by binding to FP, slowing the rate of GSH-mediated FP degradation and consequent iron generation, protecting proteins from iron-derived reactive oxygen species, and interfering with formation of membrane-associated FP.
Collapse
Affiliation(s)
- Shin-Ichiro Kawazu
- Research Institute, International Medical Center of Japan, Toyama, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
50
|
Abstract
With the sequencing of the Plasmodium falciparum genome now complete, increasing attention is turning to the function of gene products and to cell-regulatory processes. The combination of in silico analyses with modern molecular and biophysical methods is leading to rapid advances in our understanding of the mechanisms underlying the biochemistry and physiology of the parasite and its host cell. In this brief review, we present a "snap shot" of recent work in this area, with particular emphasis on aspects relevant to the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Katja Becker
- Department of Biochemistry, Interdisciplinary Research Center, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|