1
|
Wang H, Zhang J, Wei Z, Chen S, Zheng J, Li Y. The prognostic implications and tumor-promoting functions of CHSY3 in gastric cancer. Front Immunol 2024; 15:1364979. [PMID: 38812506 PMCID: PMC11133601 DOI: 10.3389/fimmu.2024.1364979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Chondroitin sulfate synthase 3 (CHSY3) is an important enzyme that regulates glycosylation, but its role in tumors has not been determined. Here, we showed that high CHSY3 expression promotes proliferation in gastric cancer (GC) cells and is associated with poor prognosis in GC patients. We analyzed the immunohistochemistry data of 150 gastric cancer patients to determine the clinicopathological and survival significance of CHSY3. Immunofluorescence was used to detect the colocalization of CHSY3 with infiltrating immune cells. Additionally, CHSY3 was predominantly found in tumor tissues and showed higher abundance compared to matched adjacent tissues. High CHSY3 expression was associated with more advanced tumor stage, higher recurrence risk and worse survival. Immunohistochemistry and bioinformatic analysis revealed that CHSY3 expression was significantly positively correlated with tumor-associated macrophage (TAM) infiltration. Moreover, after knocking down CHSY3, the proliferation of cells was decreased, and the migration ability was reduced, as shown by scratch, monoclonal and transwell assays. In conclusion, this study revealed that CHSY3 has a tumor-promoting effect on GC, suggesting a novel therapeutic strategy against this disease.
Collapse
Affiliation(s)
- Han Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junchang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhuoqi Wei
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yang Y, Teng H, Zhang Y, Wang F, Tang L, Zhang C, Hu Z, Chen Y, Ge Y, Wang Z, Yu Y. A glycosylation-related gene signature predicts prognosis, immune microenvironment infiltration, and drug sensitivity in glioma. Front Pharmacol 2024; 14:1259051. [PMID: 38293671 PMCID: PMC10824914 DOI: 10.3389/fphar.2023.1259051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Glioma represents the most common primary cancer of the central nervous system in adults. Glycosylation is a prevalent post-translational modification that occurs in eukaryotic cells, leading to a wide array of modifications on proteins. We obtained the clinical information, bulk RNA-seq data, and single-cell RNA sequencing (scRNA-seq) from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Gene Expression Omnibus (GEO), and Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. RNA sequencing data for normal brain tissues were accessed from the Genotype-Tissue Expression (GTEx) database. Then, the glycosylation genes that were differentially expressed were identified and further subjected to variable selection using a least absolute shrinkage and selection operator (LASSO)-regularized Cox model. We further conducted enrichment analysis, qPCR, nomogram, and single-cell transcriptome to detect the glycosylation signature. Drug sensitivity analysis was also conducted. A five-gene glycosylation signature (CHPF2, PYGL, GALNT13, EXT2, and COLGALT2) classified patients into low- or high-risk groups. Survival analysis, qPCR, ROC curves, and stratified analysis revealed worse outcomes in the high-risk group. Furthermore, GSEA and immune infiltration analysis indicated that the glycosylation signature has the potential to predict the immune response in glioma. In addition, four drugs (crizotinib, lapatinib, nilotinib, and topotecan) showed different responses between the two risk groups. Glioma cells had been classified into seven lines based on single-cell expression profiles. The five-gene glycosylation signature can accurately predict the prognosis of glioma and may offer additional guidance for immunotherapy.
Collapse
Affiliation(s)
- Yanbo Yang
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiying Teng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Fei Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Liyan Tang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyi Hu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuxuan Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Ge
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanbing Yu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Xi Y, Wang L, Qi J, Wei B, Han X, Lu Y, Hu S, He H, Han C, Zhu Y, Hu J, Liu H, Wang J, Li L. Comprehensive transcriptomic and metabolomic analysis of the effect of feed restriction on duck sternal development. Poult Sci 2023; 102:102961. [PMID: 37604023 PMCID: PMC10465956 DOI: 10.1016/j.psj.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Luyao Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Bin Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Xu Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yinjuan Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Yuanchun Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
4
|
Mizumoto S, Yamada S. Histories of Dermatan Sulfate Epimerase and Dermatan 4- O-Sulfotransferase from Discovery of Their Enzymes and Genes to Musculocontractural Ehlers-Danlos Syndrome. Genes (Basel) 2023; 14:509. [PMID: 36833436 PMCID: PMC9957132 DOI: 10.3390/genes14020509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Dermatan sulfate (DS) and its proteoglycans are essential for the assembly of the extracellular matrix and cell signaling. Various transporters and biosynthetic enzymes for nucleotide sugars, glycosyltransferases, epimerase, and sulfotransferases, are involved in the biosynthesis of DS. Among these enzymes, dermatan sulfate epimerase (DSE) and dermatan 4-O-sulfotranserase (D4ST) are rate-limiting factors of DS biosynthesis. Pathogenic variants in human genes encoding DSE and D4ST cause the musculocontractural type of Ehlers-Danlos syndrome, characterized by tissue fragility, joint hypermobility, and skin hyperextensibility. DS-deficient mice exhibit perinatal lethality, myopathy-related phenotypes, thoracic kyphosis, vascular abnormalities, and skin fragility. These findings indicate that DS is essential for tissue development as well as homeostasis. This review focuses on the histories of DSE as well as D4ST, and their knockout mice as well as human congenital disorders.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | |
Collapse
|
5
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
6
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
7
|
Li WW, Liu B, Dong SQ, He SQ, Liu YY, Wei SY, Mou JY, Zhang JX, Liu Z. Bioinformatics and Experimental Analysis of the Prognostic and Predictive Value of the CHPF Gene on Breast Cancer. Front Oncol 2022; 12:856712. [PMID: 35372047 PMCID: PMC8965246 DOI: 10.3389/fonc.2022.856712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Background Recent studies in the United States have shown that breast cancer accounts for 30% of all new cancer diagnoses in women and has become the leading cause of cancer deaths in women worldwide. Chondroitin Polymerizing Factor (CHPF), is an enzyme involved in chondroitin sulfate (CS) elongation and a novel key molecule in the poor prognosis of many cancers. However, its role in the development and progression of breast cancer remains unclear. Methods The transcript expression of CHPF in the Cancer Genome Atlas-Breast Cancer (TCGA-BRCA), Gene Expression Omnibus (GEO) database was analyzed separately using the limma package of R software, and the relationship between CHPF transcriptional expression and CHPF DNA methylation was investigated in TCGA-BRCA. Kaplan-Meier curves were plotted using the Survival package to further assess the prognostic impact of CHPF DNA methylation/expression. The association between CHPF transcript expression/DNA methylation and cancer immune infiltration and immune markers was investigated using the TIMER and TISIDB databases. We also performed gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the clusterProfiler package. Western blotting and RT-PCR were used to verify the protein level and mRNA level of CHPF in breast tissue and cell lines, respectively. Small interfering plasmids and lentiviral plasmids were constructed for transient and stable transfection of breast cancer cell lines MCF-7 and SUM1315, respectively, followed by proliferation-related functional assays, such as CCK8, EDU, clone formation assays; migration and invasion-related functional assays, such as wound healing assay and transwell assays. We also conducted a preliminary study of the mechanism. Results We observed that CHPF was significantly upregulated in breast cancer tissues and correlated with poor prognosis. CHPF gene transcriptional expression and methylation are associated with immune infiltration immune markers. CHPF promotes proliferation, migration, invasion of the breast cancer cell lines MCF-7 and SUM1315, and is significantly enriched in pathways associated with the ECM-receptor interaction and PI3K-AKT pathway. Conclusion CHPF transcriptional expression and DNA methylation correlate with immune infiltration and immune markers. Upregulation of CHPF in breast cancer promotes malignant behavior of cancer cells and is associated with poorer survival in breast cancer, possibly through ECM-receptor interactions and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wan-Wan Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Bin Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Qing Dong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shi-Qing He
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ying Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Si-Yu Wei
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jing-Yi Mou
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jia-Xin Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhao Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Takashima M, Suzuki K, Mochizuki H, Uemura S, Inokuchi JI, Eguchi T. Expression of highly active chondroitin 4-O-sulfotransferase-1 in Escherichia coli by a trigger factor fusion protein expression system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Khan S, Sbeity M, Foulquier F, Barré L, Ouzzine M. TMEM165 a new player in proteoglycan synthesis: loss of TMEM165 impairs elongation of chondroitin- and heparan-sulfate glycosaminoglycan chains of proteoglycans and triggers early chondrocyte differentiation and hypertrophy. Cell Death Dis 2021; 13:11. [PMID: 34930890 PMCID: PMC8688514 DOI: 10.1038/s41419-021-04458-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023]
Abstract
TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFβ and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.
Collapse
Affiliation(s)
- Sajida Khan
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Malak Sbeity
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | | | - Lydia Barré
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France
| | - Mohamed Ouzzine
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, Vandoeuvre-lès-Nancy, Nancy, France.
| |
Collapse
|
10
|
Mizumoto S, Yamada S. An Overview of in vivo Functions of Chondroitin Sulfate and Dermatan Sulfate Revealed by Their Deficient Mice. Front Cell Dev Biol 2021; 9:764781. [PMID: 34901009 PMCID: PMC8652114 DOI: 10.3389/fcell.2021.764781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) are covalently attached to specific core proteins to form proteoglycans in their biosynthetic pathways. They are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases as well as sulfotransferases. Structural diversities of CS/DS and HS are essential for their various biological activities including cell signaling, cell proliferation, tissue morphogenesis, and interactions with a variety of growth factors as well as cytokines. Studies using mice deficient in enzymes responsible for the biosynthesis of the CS/DS and HS chains of proteoglycans have demonstrated their essential functions. Chondroitin synthase 1-deficient mice are viable, but exhibit chondrodysplasia, progression of the bifurcation of digits, delayed endochondral ossification, and reduced bone density. DS-epimerase 1-deficient mice show thicker collagen fibrils in the dermis and hypodermis, and spina bifida. These observations suggest that CS/DS are essential for skeletal development as well as the assembly of collagen fibrils in the skin, and that their respective knockout mice can be utilized as models for human genetic disorders with mutations in chondroitin synthase 1 and DS-epimerase 1. This review provides a comprehensive overview of mice deficient in CS/DS biosyntheses.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
11
|
Kai Y, Yoneyama H, Yoshikawa M, Kimura H, Muro S. Chondroitin sulfate in tissue remodeling: Therapeutic implications for pulmonary fibrosis. Respir Investig 2021; 59:576-588. [PMID: 34176780 DOI: 10.1016/j.resinv.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.
Collapse
Affiliation(s)
- Yoshiro Kai
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan; Department of Respiratory Medicine, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-cho, Yoshino-gun, Nara, 638-8551, Japan.
| | - Hiroyuki Yoneyama
- TME Therapeutics Inc., 2-16-1 Higashi-shinbashi, Minato-ku, Tokyo, 105-0021, Japan.
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| | - Hiroshi Kimura
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-city, Tokyo, 204-8522, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| |
Collapse
|
12
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
13
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Wei L, Cao P, Xu C, Zhong H, Wang X, Bai M, Hu B, Wang R, Liu N, Tian Y, Chen H, Li J, Yuan W. Chondroitin synthase‐3 regulates nucleus pulposus degeneration through actin‐induced YAP signaling. FASEB J 2020; 34:16581-16600. [PMID: 33089528 DOI: 10.1096/fj.202001021r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Leixin Wei
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
- State Key Laboratory of Cell Biology Shanghai Key Laboratory of Molecular Andrology CAS Center for Excellence in Molecular Cell Science Institute of Biochemistry and Cell Biology Chinese Academy of Science Shanghai China
| | - Peng Cao
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Chen Xu
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Huajian Zhong
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Xiukun Wang
- State Key Laboratory of Cell Biology Shanghai Key Laboratory of Molecular Andrology CAS Center for Excellence in Molecular Cell Science Institute of Biochemistry and Cell Biology Chinese Academy of Science Shanghai China
| | - Meizhu Bai
- State Key Laboratory of Cell Biology Shanghai Key Laboratory of Molecular Andrology CAS Center for Excellence in Molecular Cell Science Institute of Biochemistry and Cell Biology Chinese Academy of Science Shanghai China
| | - Bo Hu
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Ruizhe Wang
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Ning Liu
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Ye Tian
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Huajiang Chen
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - Jinsong Li
- State Key Laboratory of Cell Biology Shanghai Key Laboratory of Molecular Andrology CAS Center for Excellence in Molecular Cell Science Institute of Biochemistry and Cell Biology Chinese Academy of Science Shanghai China
| | - Wen Yuan
- Department of Orthopaedic Surgery Changzheng Hospital Second Military Medical University Shanghai China
| |
Collapse
|
15
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Sun W, Zhao F, Xu Y, Huang K, Guo X, Zheng B, Liu X, Luo Z, Kong Y, Xu M, Schadendorf D, Chen Y. Chondroitin polymerizing factor (CHPF) promotes development of malignant melanoma through regulation of CDK1. Cell Death Dis 2020; 11:496. [PMID: 32612115 PMCID: PMC7329816 DOI: 10.1038/s41419-020-2526-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
Chondroitin polymerizing factor (CHPF) is an important member of glycosyltransferases involved in the biosynthesis of chondroitin sulfate (CS). However, the relationship between CHPF and malignant melanoma (MM) is still unknown. In this study, it was demonstrated that CHPF was up-regulated in MM tissues compared with the adjacent normal skin tissues and its high expression was correlated with more advanced T stage. Further investigations indicated that the over-expression/knockdown of CHPF could promote/inhibit proliferation, colony formation and migration of MM cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of CHPF could also suppress tumorigenicity of MM cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of CHPF and identified CDK1 as the potential target. Furthermore, our study revealed that knockdown of CDK1 could inhibit development of MM in vitro, and alleviate the CHPF over-expression induced promotion of MM. In conclusion, our study showed, as the first time, CHPF as a tumor promotor for MM, whose function was carried out probably through the regulation of CDK1.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Kai Huang
- Brandon Reginal Hospital, HCA Healthcare/USF Morsani College of Medicine, Brandon, FL, USA
| | - Xianling Guo
- Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, 200072, PR, China
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, shanghai, 200032, China
| | - Xin Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhiguo Luo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yunyi Kong
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Foulquier F, Legrand D. Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129674. [PMID: 32599014 DOI: 10.1016/j.bbagen.2020.129674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
About half of the eukaryotic proteins bind biometals that participate in their structure and functions in virtually all physiological processes, including glycosylation. After reviewing the biological roles and transport mechanisms of calcium, magnesium, manganese, zinc and cobalt acting as cofactors of the metalloproteins involved in sugar metabolism and/or glycosylation, the paper will outline the pathologies resulting from a dysregulation of these metals homeostasis and more particularly Congenital Disorders of Glycosylation (CDGs) caused by ion transporter defects. Highlighting of CDGs due to defects in SLC39A8 (ZIP8) and TMEM165, two proteins transporting manganese from the extracellular space to cytosol and from cytosol to the Golgi lumen, respectively, has emphasized the importance of manganese homeostasis for glycosylation. Based on our current knowledge of TMEM165 structure and functions, this review will draw a picture of known and putative mechanisms regulating manganese homeostasis in the secretory pathway.
Collapse
Affiliation(s)
- François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France
| | - Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France.
| |
Collapse
|
18
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
19
|
Histone deacetylase-mediated regulation of chondroitin 4-O-sulfotransferase-1 (Chst11) gene expression by Wnt/β-catenin signaling. Biochem Biophys Res Commun 2016; 480:234-240. [PMID: 27751852 DOI: 10.1016/j.bbrc.2016.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
Chondroitin sulfate (CS) proteoglycans are abundant extracellular and cell surface molecules that consist of a protein core to which highly sulfated CS chains are covalently attached. The CS backbone is composed of repeating disaccharide units [-GlcA-GalNAc-]n, and during synthesis the CS chains acquire structural variability due to the action of sulfotransferases. Specific sulfation patterns are recognized by a large variety of proteins, including growth factors, morphogens, and extracellular matrix proteins, and these interactions regulate key events in development and normal physiology. Therefore, it is important to understand how gene expression of CS sulfotransferases is regulated. We previously found that Wnt signaling regulates the sulfation patterns of cell-associated CS chains by suppressing expression of chondroitin 4-O-sulfotaransferase-1 (C4ST-1), a CS biosynthetic enzyme. Here we investigated the mechanism underlying the regulation of C4ST-1 gene expression by Wnt/β-catenin signaling. Although C4ST-1 mRNA of 3'-UTR contains three binding sites for microRNAs (miRNA), these miRNAs played little role in controlling C4ST-1 gene expression. In contrast, the suppression of C4ST-1 gene expression by Wnt/β-catenin signaling can be recovered by treatment with trichostatin A, but not with 5'-aza-2'-deoxycytidine. These results suggest that the Wnt/β-catenin signal pathway controls C4ST-1 gene expression mainly through histone deacetylase.
Collapse
|
20
|
Sulfated glycosaminoglycans: their distinct roles in stem cell biology. Glycoconj J 2016; 34:725-735. [DOI: 10.1007/s10719-016-9732-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/27/2023]
|
21
|
Brown DS, Eames BF. Emerging tools to study proteoglycan function during skeletal development. Methods Cell Biol 2016; 134:485-530. [PMID: 27312503 DOI: 10.1016/bs.mcb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past 20years, appreciation for the varied roles of proteoglycans (PGs), which are specific types of sugar-coated proteins, has increased dramatically. PGs in the extracellular matrix were long known to impart structural functions to many tissues, especially articular cartilage, which cushions bones and allows mobility at skeletal joints. Indeed, osteoarthritis is a debilitating disease associated with loss of PGs in articular cartilage. Today, however, PGs have a demonstrated role in cell biological processes, such as growth factor signalling, prompting new perspectives on the etiology of PG-associated diseases. Here, we review diseases associated with defects in PG synthesis and sulfation, also highlighting current understanding of the underlying genetics, biochemistry, and cell biology. Since most research has analyzed a class of PGs called heparan sulfate PGs, more attention is paid here to studies of chondroitin sulfate PGs (CSPGs), which are abundant in cartilage. Interestingly, CSPG synthesis is tightly linked to the cell biological processes of secretion and lysosomal degradation, suggesting that these systems may be linked genetically. Animal models of loss of CSPG function have revealed CSPGs to impact skeletal development. Specifically, our work from a mutagenesis screen in zebrafish led to the hypothesis that cartilage PGs normally delay the timing of endochondral ossification. Finally, we outline emerging approaches in zebrafish that may revolutionize the study of cartilage PG function, including transgenic methods and novel imaging techniques. Our recent work with X-ray fluorescent imaging, for example, enables direct correlation of PG function with PG-dependent biological processes.
Collapse
Affiliation(s)
- D S Brown
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B F Eames
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cell Signal 2016; 28:110-9. [DOI: 10.1016/j.cellsig.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022]
|
23
|
Mochizuki H, Yamagishi K, Suzuki K, Kim YS, Kimata K. Heparosan-glucuronate 5-epimerase: Molecular cloning and characterization of a novel enzyme. Glycobiology 2015; 25:735-44. [DOI: 10.1093/glycob/cwv013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/05/2015] [Indexed: 02/04/2023] Open
|
24
|
Saliba M, Ramalanjaona N, Gulberti S, Bertin-Jung I, Thomas A, Dahbi S, Lopin-Bon C, Jacquinet JC, Breton C, Ouzzine M, Fournel-Gigleux S. Probing the acceptor active site organization of the human recombinant β1,4-galactosyltransferase 7 and design of xyloside-based inhibitors. J Biol Chem 2015; 290:7658-70. [PMID: 25568325 PMCID: PMC4367269 DOI: 10.1074/jbc.m114.628123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among glycosaminoglycan (GAG) biosynthetic enzymes, the human β1,4-galactosyltransferase 7 (hβ4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hβ4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr194, Tyr196, and Tyr199, which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp228, Asp229, and Arg226, and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr194 forming stacking interactions with the aglycone, and the hydrogen bond between the His195 nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hβ4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hβ4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.
Collapse
Affiliation(s)
- Mineem Saliba
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Nick Ramalanjaona
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Sandrine Gulberti
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Isabelle Bertin-Jung
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Aline Thomas
- the University Grenoble Alpes, CERMAV, BP 53, 38041 Grenoble Cedex 9, and
| | - Samir Dahbi
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Chrystel Lopin-Bon
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Jean-Claude Jacquinet
- the UMR 7311 CNRS-Institut de Chimie Organique et Analytique, Université d'Orléans-Pôle de Chimie, Rue de Chartres, 45067 Orléans Cedex 02, France
| | - Christelle Breton
- the University Grenoble Alpes, CERMAV, BP 53, 38041 Grenoble Cedex 9, and
| | - Mohamed Ouzzine
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex
| | - Sylvie Fournel-Gigleux
- From the UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex,
| |
Collapse
|
25
|
Miyata S, Kitagawa H. Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J Biochem 2014; 157:13-22. [PMID: 25381371 DOI: 10.1093/jb/mvu067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs), consisting of core proteins linked to one or more chondroitin sulphate (CS) chains, are major extracellular matrix (ECM) components of the central nervous system (CNS). Multi-functionality of CSPGs can be explained by the diversity in structure of CS chains that undergo dynamic changes during development and under pathological conditions. CSPGs, together with other ECM components, form mesh-like structures called perineuronal nets around a subset of neurons. Enzymatic digestion or genetic manipulation of CSPGs reactivates neural plasticity in the adult brain and improves regeneration of damaged axons after CNS injury. Recent studies have shown that CSPGs not only act as non-specific physical barriers that prevent rearrangement of synaptic connections but also regulate neural plasticity through specific interaction of CS chains with its binding partners in a manner that depends on the structure of the CS chain.
Collapse
Affiliation(s)
- Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
26
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
27
|
Vynios DH. Metabolism of cartilage proteoglycans in health and disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:452315. [PMID: 25105124 PMCID: PMC4106107 DOI: 10.1155/2014/452315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Cartilage proteoglycans are extracellular macromolecules with complex structure, composed of a core protein onto which a variable number of glycosaminoglycan chains are attached. Their biosynthesis at the glycosaminoglycan level involves a great number of sugar transferases well-orchestrated in Golgi apparatus. Similarly, their degradation, either extracellular or intracellular in lysosomes, involves a large number of hydrolases. A deficiency or malfunction of any of the enzymes participating in cartilage proteoglycan metabolism may lead to severe disease state. This review summarizes the findings regarding this topic.
Collapse
Affiliation(s)
- Demitrios H. Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| |
Collapse
|
28
|
|
29
|
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:4719-33. [DOI: 10.1016/j.bbagen.2013.06.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
30
|
Filipek-Górniok B, Holmborn K, Haitina T, Habicher J, Oliveira MB, Hellgren C, Eriksson I, Kjellén L, Kreuger J, Ledin J. Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev Dyn 2013; 242:964-75. [PMID: 23703795 DOI: 10.1002/dvdy.23981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. RESULTS Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. CONCLUSIONS There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 2013; 288:10953-61. [PMID: 23457301 DOI: 10.1074/jbc.r112.437038] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 Japan
| | | | | |
Collapse
|
32
|
Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta Gen Subj 2012; 1820:1306-17. [DOI: 10.1016/j.bbagen.2012.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 12/30/2022]
|
33
|
Ogawa H, Hatano S, Sugiura N, Nagai N, Sato T, Shimizu K, Kimata K, Narimatsu H, Watanabe H. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development. PLoS One 2012; 7:e43806. [PMID: 22952769 PMCID: PMC3429490 DOI: 10.1371/journal.pone.0043806] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2−/− mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2−/− chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.
Collapse
Affiliation(s)
- Hiroyasu Ogawa
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Takashi Sato
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Katsuji Shimizu
- Department of Orthopaedic Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
| | - Koji Kimata
- Research Complex for Medicine Frontiers, Aichi Medical University, Nagakute, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, Advanced Industrial Science and Technology, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- * E-mail:
| |
Collapse
|
34
|
Wilson DG, Phamluong K, Lin WY, Barck K, Carano RAD, Diehl L, Peterson AS, Martin F, Solloway MJ. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol 2012; 363:413-25. [PMID: 22280990 DOI: 10.1016/j.ydbio.2012.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Joint and skeletal development is highly regulated by extracellular matrix (ECM) proteoglycans, of which chondroitin sulfate proteoglycans (CSPGs) are a major class. Despite the requirement of joint CSPGs for skeletal flexibility and structure, relatively little is understood regarding their role in establishing joint positioning or in modulating signaling and cell behavior during joint formation. Chondroitin sulfate synthase 1 (Chsy1) is one of a family of enzymes that catalyze the extension of chondroitin and dermatan sulfate glycosaminoglycans. Recently, human syndromic brachydactylies have been described to have loss-of-function mutations at the CHSY1 locus. In concordance with these observations, we demonstrate that mice lacking Chsy1, though viable, display chondrodysplasia and decreased bone density. Notably, Chsy1(-/-) mice show a profound limb patterning defect in which orthogonally shifted ectopic joints form in the distal digits. Associated with the digit-patterning defect is a shift in cell orientation and an imbalance in chondroitin sulfation. Our results place Chsy1 as an essential regulator of joint patterning and provide a mouse model of human brachydactylies caused by mutations in CHSY1.
Collapse
|
35
|
Gulberti S, Jacquinet JC, Chabel M, Ramalanjaona N, Magdalou J, Netter P, Coughtrie MWH, Ouzzine M, Fournel-Gigleux S. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity. Glycobiology 2011; 22:561-71. [DOI: 10.1093/glycob/cwr172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
36
|
Vibert A, Lopin-Bon C, Jacquinet JC. Efficient and Stereocontrolled Construction of Homo- and Heterogeneously 4- and 6-Sulfated Biotinylated Chondroitin Oligomers. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Sato T, Kudo T, Ikehara Y, Ogawa H, Hirano T, Kiyohara K, Hagiwara K, Togayachi A, Ema M, Takahashi S, Kimata K, Watanabe H, Narimatsu H. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem 2010; 286:5803-12. [PMID: 21148564 DOI: 10.1074/jbc.m110.159244] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan, consisting of repeating disaccharide units of N-acetylgalactosamine and glucuronic acid residues, and plays important roles in development and homeostasis of organs and tissues. Here, we generated and analyzed mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT-1). Csgalnact1(-/-) mice were viable and fertile but exhibited slight dwarfism. Biochemically, the level of CS in Csgalnact1(-/-) cartilage was reduced to ∼50% that of wild-type cartilage, whereas its chain length was similar to wild-type mice, indicating that CSGalNAcT-1 participates in the CS chain initiation as suggested in the previous study (Sakai, K., Kimata, K., Sato, T., Gotoh, M., Narimatsu, H., Shinomiya, K., and Watanabe, H. (2007) J. Biol. Chem. 282, 4152-4161). Histologically, the growth plate of Csgalnact1(-/-) mice contained shorter and slightly disorganized chondrocyte columns with a reduced volume of the extracellular matrix principally in the proliferative layer. Immunohistochemical analysis revealed that the level of both aggrecan and link protein 1 were decreased in Csgalnact1(-/-) cartilage. Western blot analysis demonstrated an increase in processed forms of aggrecan core protein. These results suggest that CSGalNAcT-1 is required for normal levels of CS biosynthesis in cartilage. Our observations suggest that CSGalNAcT-1 is necessary for normal levels of endochondral ossification, and the decrease in CS amount in the growth plate by its absence causes a rapid catabolism of aggrecan.
Collapse
Affiliation(s)
- Takashi Sato
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Open Space Laboratory Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kalathas D, Triantaphyllidou IE, Mastronikolis NS, Goumas PD, Papadas TA, Tsiropoulos G, Vynios DH. The chondroitin/dermatan sulfate synthesizing and modifying enzymes in laryngeal cancer: expressional and epigenetic studies. HEAD & NECK ONCOLOGY 2010; 2:27. [PMID: 20929582 PMCID: PMC2958872 DOI: 10.1186/1758-3284-2-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/07/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Significant biochemical changes are observed in glycosaminoglycans in squamous cell laryngeal carcinoma. The most characteristics are in chondroitin/dermatan sulfate fine structure and proportion, which might be due to differential expression of the enzymes involved in their biosynthesis. The aim of the present work was the investigation in expressional and epigenetic level of the enzymes involved in chondroitin/dermatan sulfate biosynthesis in laryngeal cancer. METHODS Tissues subjected to total RNA and DNA isolation, and protein extraction. The techniques used in this study were RT-PCR analysis, western blotting and methylation specific PCR. RESULTS We identified that many enzymes were expressed in the cancerous specimens intensively. Dermatan sulfate epimerase was expressed exclusively in the cancerous parts and in minor amounts in healthy tissues; in the macroscopically normal samples it was not detected. Furthermore, chondroitin synthase I and chondroitin polymerizing factor were strongly expressed in the cancerous parts compared to the corresponding normal tissues. Sulfotransferases, like chondroitin 6 sulfotransferase 3, were highly expressed mainly in healthy specimens. CONCLUSIONS The study of the various chondroitin/dermatan synthesizing enzymes revealed that they were differentially expressed in cancer, in human laryngeal cartilage, leading to specific chondroitin/dermatan structures which contributed to proteoglycan formation with specific features. The expression of the examined enzymes correlated with the glycosaminoglycan profile observed in previous studies.
Collapse
Affiliation(s)
- Dimitrios Kalathas
- Department of Chemistry, Laboratory of Biochemistry - Section of Organic Chemistry and Natural Products, Karatheodori str., University of Patras, Patras, 26500, Greece
| | - Irene-Eva Triantaphyllidou
- Department of Chemistry, Laboratory of Biochemistry - Section of Organic Chemistry and Natural Products, Karatheodori str., University of Patras, Patras, 26500, Greece
| | - Nicholas S Mastronikolis
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Patras, Hippokrates str., Patras, 26500, Greece
| | - Panos D Goumas
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Patras, Hippokrates str., Patras, 26500, Greece
| | - Thoedore A Papadas
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Patras, Hippokrates str., Patras, 26500, Greece
| | - Gabriel Tsiropoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Patras, Hippokrates str., Patras, 26500, Greece
| | - Demitrios H Vynios
- Department of Chemistry, Laboratory of Biochemistry - Section of Organic Chemistry and Natural Products, Karatheodori str., University of Patras, Patras, 26500, Greece
| |
Collapse
|
39
|
Ogawa H, Shionyu M, Sugiura N, Hatano S, Nagai N, Kubota Y, Nishiwaki K, Sato T, Gotoh M, Narimatsu H, Shimizu K, Kimata K, Watanabe H. Chondroitin sulfate synthase-2/chondroitin polymerizing factor has two variants with distinct function. J Biol Chem 2010; 285:34155-67. [PMID: 20729547 DOI: 10.1074/jbc.m110.109553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chondroitin sulfate (CS) is a polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and d-glucuronic acid residues, modified with sulfated residues at various positions. To date six glycosyltransferases for chondroitin synthesis have been identified, and the complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 (ChSy-1) and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is assumed to play a major role in CS biosynthesis. We found an alternative splice variant of mouse CSS2 in a data base that lacks the N-terminal transmembrane domain, contrasting to the original CSS2. Here, we investigated the roles of CSS2 variants. Both the original enzyme and the splice variant, designated CSS2A and CSS2B, respectively, were expressed at different levels and ratios in tissues. Western blot analysis of cultured mouse embryonic fibroblasts confirmed that both enzymes were actually synthesized as proteins and were localized in both the endoplasmic reticulum and the Golgi apparatus. Pulldown assays revealed that either of CSS2A, CSS2B, and CSS1/ChSy-1 heterogeneously and homogeneously interacts with each other, suggesting that they form a complex of multimers. In vitro glycosyltransferase assays demonstrated a reduced glucuronyltransferase activity in CSS2B and no polymerizing activity in CSS2B co-expressed with CSS1, in contrast to CSS2A co-expressed with CSS1. Radiolabeling analysis of cultured COS-7 cells overexpressing each variant revealed that, whereas CSS2A facilitated CS biosynthesis, CSS2B inhibited it. Molecular modeling of CSS2A and CSS2B provided support for their properties. These findings, implicating regulation of CS chain polymerization by CSS2 variants, provide insight in elucidating the mechanisms of CS biosynthesis.
Collapse
Affiliation(s)
- Hiroyasu Ogawa
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Potapenko IO, Haakensen VD, Lüders T, Helland A, Bukholm I, Sørlie T, Kristensen VN, Lingjaerde OC, Børresen-Dale AL. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol 2009; 4:98-118. [PMID: 20060370 DOI: 10.1016/j.molonc.2009.12.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is the stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process have been associated with malignant transformation. Simultaneous analysis of the expression of all glycan-related genes clearly gives the advantage of enabling a comprehensive view of the genetic background of the glycobiological changes in cancer cells. Studies focusing on the expression of the whole glycome have now become possible, which prompted us to review the present knowledge on glycosylation in relation to breast cancer diagnosis and progression, in the light of available expression data from tumors and breast tissue of healthy individuals. We used various data resources to select a set of 419 functionally relevant genes involved in synthesis, degradation and binding of N-linked and O-linked glycans, Lewis antigens, glycosaminoglycans (chondroitin, heparin and keratan sulfate in addition to hyaluronan) and glycosphingolipids. Such glycans are involved in a number of processes relevant to carcinogenesis, including regulation of growth factors/growth factor receptors, cell-cell adhesion and motility as well as immune system modulation. Expression analysis of these glycan-related genes revealed that mRNA levels for many of them differ significantly between normal and malignant breast tissue. An associative analysis of these genes in the context of current knowledge of their function in protein glycosylation and connection(s) to cancer indicated that synthesis, degradation and adhesion mediated by glycans may be altered drastically in mammary carcinomas. Although further analysis is needed to assess how changes in mRNA levels of glycan genes influence a cell's glycome and the precise role that such altered glycan structures play in the pathogenesis of the disease, lessons drawn from this study may help in determining directions for future research in the rapidly-developing field of glycobiology.
Collapse
Affiliation(s)
- Ivan O Potapenko
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med 2009; 11:e37. [PMID: 19968910 DOI: 10.1017/s1462399409001288] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury is one of the most devastating conditions that affects the central nervous system. It can lead to permanent disability and there are around two million people affected worldwide. After injury, accumulation of myelin debris and formation of an inhibitory glial scar at the site of injury leads to a physical and chemical barrier that blocks axonal growth and regeneration. The mammalian central nervous system thus has a limited intrinsic ability to repair itself after injury. To improve axonal outgrowth and promote functional recovery, it is essential to identify the various intrinsic and extrinsic factors controlling regeneration and navigation of axons within the inhibitory environment of the central nervous system. Recent advances in spinal cord research have opened new avenues for the exploration of potential targets for repairing the cord and improving functional recovery after trauma. Here, we discuss some of the important key molecules that could be harnessed for repairing spinal cord injury.
Collapse
|
42
|
Szczepina MG, Zheng RB, Completo GC, Lowary TL, Pinto BM. STD-NMR studies suggest that two acceptor substrates for GlfT2, a bifunctional galactofuranosyltransferase required for the biosynthesis of Mycobacterium tuberculosis arabinogalactan, compete for the same binding site. Chembiochem 2009; 10:2052-9. [PMID: 19575371 DOI: 10.1002/cbic.200900202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mycobacterial cell wall is a complex architecture, which has, as its major structural component, a lipidated polysaccharide covalently bound to peptidoglycan. This structure, termed the mycolyl-arabinogalactan-peptidoglycan complex, possesses a core galactan moiety composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating beta-(1-->6) and beta-(1-->5) linkages. Recent studies have shown that the entire galactan is synthesized by the action of only two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2. We report here saturation-transfer difference (STD) NMR spectroscopy studies with GlfT2 using two trisaccharide acceptor substrates, beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-O(CH(2))(7)CH(3) (2) and beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-O(CH(2))(7)CH(3) (3), as well as the donor substrate for the enzyme, UDP-Galf. Competition STD-NMR titration experiments and saturation transfer double difference (STDD) experiments with 2 and 3 were undertaken to explore the bifunctionality of this enzyme, in particular to answer whether one or two active sites are responsible for the formation of both beta-(1-->5)- and beta-(1-->6)-Galf linkages. It was demonstrated that 2 and 3 bind competitively at the same site; this suggests that GlfT2 has one active site pocket capable of catalyzing both beta-(1-->5) and beta-(1-->6) galactofuranosyl transfer reactions. The addition of UDP-Galf to GlfT2 in the presence of either 2 or 3 generated a tetrasaccharide product; this indicates that the enzyme was catalytically active under the conditions at which the STD-NMR experiments were carried out.
Collapse
Affiliation(s)
- Monica G Szczepina
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada)
| | | | | | | | | |
Collapse
|
43
|
Kämpf M, Absmanner B, Schwarz M, Lehle L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J Biol Chem 2009; 284:11900-12. [PMID: 19282279 DOI: 10.1074/jbc.m806416200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
N-Linked glycosylation involves the ordered, stepwise synthesis of the unique lipid-linked oligosaccharide precursor Glc(3)Man(9) GlcNAc(2)-PP-Dol on the endoplasmic reticulum (ER), catalyzed by a series of glycosyltransferases. Here we characterize Alg2 as a bifunctional enzyme that is required for both the transfer of the alpha1,3- and the alpha1,6-mannose-linked residue from GDP-mannose to Man(1)GlcNAc(2)-PP-Dol forming the Man(3)GlcNAc(2)-PP-Dol intermediate on the cytosolic side of the ER. Alg2 has a calculated mass of 58 kDa and is predicted to contain four transmembrane-spanning helices, two at the N terminus and two at the C terminus. Contradictory to topology predictions, we prove that only the two N-terminal domains fulfill this criterion, whereas the C-terminal hydrophobic sequences contribute to ER localization in a nontransmembrane manner. Surprisingly, none of the four domains is essential for transferase activity because truncated Alg2 variants can exert their function as long as Alg2 is associated with the ER by either its N- or C-terminal hydrophobic regions. By site-directed mutagenesis we demonstrate that an EX(7)E motif, conserved in a variety of glycosyltransferases, is not important for Alg2 function in vivo and in vitro. Instead, we identify a conserved lysine residue, Lys(230), as being essential for activity, which could be involved in the binding of the phosphate of the glycosyl donor.
Collapse
Affiliation(s)
- Michael Kämpf
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
44
|
Gervasi NM, Kwok JC, Fawcett JW. Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 2009; 3:907-23. [PMID: 18947312 DOI: 10.2217/17460751.3.6.907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.
Collapse
Affiliation(s)
- Noreen M Gervasi
- Cambridge University Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB22PY, UK.
| | | | | |
Collapse
|
45
|
Little PJ, Ballinger ML, Burch ML, Osman N. Biosynthesis of natural and hyperelongated chondroitin sulfate glycosaminoglycans: new insights into an elusive process. Open Biochem J 2008; 2:135-42. [PMID: 19238187 PMCID: PMC2627520 DOI: 10.2174/1874091x00802010135] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 11/24/2022] Open
Abstract
Proteoglycans are important components of the extracellular matrix of all tissues. Proteoglycans are comprised of a core protein and one or more covalently attached glycosaminoglycan (GAG) chains. The major chondroitin sulfate (CS) and dermatan sulfate (DS) proteoglycans are aggrecan, versican, biglycan and decorin. Cells synthesize GAGs of natural or basal lengths and the GAG chains are subject to considerable growth factor, hormonal and metabolic regulation to yield longer GAG chains with altered structure and function. The mechanism by which the CS/DS GAG chains are polymerized is unknown. Recent work has identified several monosaccharide transferases which when co-expressed yield GAG polymers and the length of the polymers depends upon the pair of enzymes coexpressed. The further extension of these chains is regulated by signaling pathways. Inhibition of these latter pathways may be a therapeutic target to prevent the elongation which is associated with increased binding of atherogenic lipids and the disease process of atherosclerosis.
Collapse
Affiliation(s)
- Peter J Little
- Diabetes and Cell Biology Laboratory, Vascular and Hypertension Division, BakerIDI Heart and Diabetes Institute, Melbourne, VIC, Australia 3004 and
| | | | | | | |
Collapse
|
46
|
Izumikawa T, Koike T, Shiozawa S, Sugahara K, Tamura JI, Kitagawa H. Identification of Chondroitin Sulfate Glucuronyltransferase as Chondroitin Synthase-3 Involved in Chondroitin Polymerization. J Biol Chem 2008; 283:11396-406. [DOI: 10.1074/jbc.m707549200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Borg N, Holland M. The effect of glycosaminoglycans on rat gametes in vitro and the associated signal pathway. Reproduction 2008; 135:311-9. [DOI: 10.1530/rep-07-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of adding the extracellular glycosaminoglycans (GAGs), hyaluronic acid (HA) and chondroitin sulphate (CS) to ratin vitrofertilisation (IVF) media were assessed. Metaphase II (MII) oocytes were also incubated in GAG-supplemented modified rat 1-cell embryo culture medium (mR1ECM+BSA) for 3 days. Cytoplasmic fragmentation was significantly reduced in mR1ECM+BSA with HA (39.0–48.0%) compared with the control (82.0%). In IVF experiments, neither HA (8.0–30.8%) nor CS (9.7–42.5%) improved fertilisation rates compared with controls fertilised in M16 (47.2%) or enriched Krebs–Ringer bicarbonate solution (61.5%). RT-PCR and Western blot were used to probe for CD44 mRNA and protein in Sprague–Dawley gametes and cumulus cells. CD44 was identified in cumulus cells, suggesting a role for oocyte maturation and cumulus expansion. The CD44 protein was also present on caudal epididymal spermatozoa that were highly stimulated by CSin vitroimplicating a role in fertilisation for CS and CD44.
Collapse
|
48
|
Dick G, Grøndahl F, Prydz K. Overexpression of the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 increases sulfation of chondroitin sulfate in the apical pathway of MDCK II cells. Glycobiology 2007; 18:53-65. [PMID: 17965432 DOI: 10.1093/glycob/cwm121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The canine 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 fused to GFP was stably expressed with a typical Golgi localization in MDCK II cells (MDCK II-PAPST1). The capacity for PAPS uptake into Golgi vesicles was enhanced to almost three times that of Golgi vesicles isolated from untransfected cells. We have previously shown that chondroitin sulfate proteoglycans (CSPGs) are several times more intensely sulfated in the basolateral than the apical secretory pathway in MDCK II cells (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem. 280:29596-29603). Here we demonstrate that increased availability of PAPS in the Golgi lumen enhances the sulfation of CSPG in the apical pathway several times, while sulfation of CSPGs in the basolateral pathway shows minor changes. Sulfation of heparan sulfate proteoglycans is essentially unchanged. Our data indicate that CSPG sulfation in the apical pathway of MDCK II cells occurs at suboptimal conditions, either because the sulfotransferases involved have high K(m) values, or there is a lower PAPS concentration in the lumen of the apical secretory route than in the basolateral counterpart.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Molecular Biosciences, University of Oslo, Box 1041 Blindern, 0316 Oslo, Norway
| | | | | |
Collapse
|
49
|
Izumikawa T, Uyama T, Okuura Y, Sugahara K, Kitagawa H. Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor. Biochem J 2007; 403:545-52. [PMID: 17253960 PMCID: PMC1876374 DOI: 10.1042/bj20061876] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/17/2022]
Abstract
Previously, we have demonstrated that co-expression of ChSy-1 (chondroitin synthase-1), with ChPF (chondroitin-polymerizing factor) resulted in a marked augmentation of glycosyltransferase activities and the expression of the chondroitin polymerase activity of ChSy-1. These results prompted us to evaluate the effects of co-expression of the recently cloned CSS3 (chondroitin sulfate synthase-3) with ChPF, because ChSy-1 and CSS3 have similar properties, i.e. they possess GalNAcT-II (N-acetylgalactosaminyltransferase-II) and GlcAT-II (glucuronyltransferase-II) activities responsible for the elongation of CS (chondroitin sulfate) chains but cannot polymerize chondroitin chains by themselves. Co-expressed CSS3 and ChPF showed not only substantial GalNAcT-II and GlcAT-II activities but also chondroitin polymerase activity. Interestingly, co-expressed ChSy-1 and CSS3 also exhibited polymerase activity. The chain length of chondroitin formed by the co-expressed proteins in various combinations was different. In addition, interactions between any two of ChSy-1, CSS3 and ChPF were demonstrated by pull-down assays. Moreover, overexpression of CSS3 increased the amount of CS in HeLa cells, while the RNA interference of CSS3 resulted in a reduction in the amount of CS in the cells. Altogether these results suggest that chondroitin polymerization is achieved by multiple combinations of ChSy-1, CSS3 and ChPF. Based on these characteristics, we have renamed CSS3 ChSy-2 (chondroitin synthase-2).
Collapse
Key Words
- chondroitin sulfate
- chondroitin polymerization
- glycosyltransferase
- glycosaminoglycan
- protein interaction
- proteoglycan
- chpf, chondroitin-polymerizing factor
- chsy, chondroitin synthase
- chgn, chondroitin β1,4-n-acetylgalactosaminyltransferase
- cs, chondroitin sulfate
- css3, chondroitin sulfate synthase-3
- gag, glycosaminoglycan
- galnact, β1,4-n-acetylgalactosaminyltransferase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- glcat, β1,3-glucuronyltransferase
- has, hyaluronan synthase
- hs, heparan sulfate
- pg, proteoglycan
- rt, reverse transcriptase
- sirna, small interfering rna
- tm, thrombomodulin
Collapse
Affiliation(s)
- Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Toru Uyama
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Yuka Okuura
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Kazuyuki Sugahara
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
50
|
Sugiura N, Shimokata S, Watanabe H, Kimata K. MS analysis of chondroitin polymerization: effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal Biochem 2007; 365:62-73. [PMID: 17395146 DOI: 10.1016/j.ab.2007.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/12/2007] [Accepted: 02/19/2007] [Indexed: 12/01/2022]
Abstract
Chondroitin polymerase from Escherichia coli strain K4 (K4CP) synthesizes chondroitin (CH) polysaccharides by the alternate addition of N-acetyl-D-galactosamine (GalNAc) and D-glucuronic acid (GlcA) to acceptor CH oligosaccharides in the presence of Mn(2+) ions. In this study, we applied matrix-assisted laser desorption ionization and time-of-flight mass spectrometry (MALDI-TOF MS) for the further characterization of the products synthesized by K4CP from CH hexasaccharide as an initial acceptor and UDP-GalNAc and UDP-GlcA as donors. The analysis identified individual CH chains of various lengths and enabled the calculation of their average molecular weights. The ion peaks of the CH chains synthesized in the short-time reactions demonstrated not only the alternate addition of GlcA and GalNAc but also the more frequent transfer of GlcA and GalNAc, consistent with our previous kinetic data. In contrast, the MS spectra of the chains synthesized in the long-time reaction showed that CH chains containing GalNAc at the nonreducing ends were more abundant than those containing GlcA. We found that this inconsistency was due to the preferential decomposition of UDP-GlcA by Mn(2+) ions. We defined the optimal conditions to yield further elongation of the CH chains that have nearly equal numbers of GlcA and GalNAc residues at the nonreducing ends.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|