1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
3
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Dimerization of β 2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism. Cell Chem Biol 2022; 29:1532-1540.e5. [PMID: 36167077 DOI: 10.1016/j.chembiol.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Dimerization of beta 2-adrenergic receptor (β2-AR) has been observed across various physiologies. However, the function of dimeric β2-AR is still elusive. Here, we revealed that dimerization of β2-AR is responsible for the constitutive activity of β2-AR generating inverse agonism. Using a co-immunoimmobilization assay, we found that transient β2-AR dimers exist in a resting state, and the dimer was disrupted by the inverse agonists. A Gαs preferentially interacts with dimeric β2-AR, but not monomeric β2-AR, in a resting state, resulting in the production of a resting cAMP level. The formation of β2-AR dimers requires cholesterol on the plasma membrane. The cholesterol did not interfere with the agonist-induced activation of monomeric β2-AR, unlike the inverse agonists, implying that the cholesterol is a specific factor regulating the dimerization of β2-AR. Our model not only shows the function of dimeric β2-AR but also provides a molecular insight into the mechanism of the inverse agonism of β2-AR.
Collapse
|
5
|
Pandey S, Maharana J, Li XX, Woodruff TM, Shukla AK. Emerging Insights into the Structure and Function of Complement C5a Receptors. Trends Biochem Sci 2020; 45:693-705. [PMID: 32402749 DOI: 10.1016/j.tibs.2020.04.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Complement factor C5a is an integral constituent of the complement cascade critically involved in the innate immune response, and it exerts its functions via two distinct receptors, C5aR1 and C5aR2. While C5aR1 is a prototypical G-protein-coupled receptor (GPCR), C5aR2 lacks functional coupling to heterotrimeric G proteins, although both receptors efficiently recruit β arrestins (βarrs). Here, we discuss the recent studies providing direct structural details of ligand-receptor interactions, and a framework of functional bias in this system, including the differences in terms of structural motifs and transducer coupling. We also discuss the functional analogy of C5aR2 with the atypical chemokine receptors (ACKRs), and highlight the future directions to elucidate the mechanistic basis of the functional divergence of these receptors activated by a common natural agonist.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
6
|
Robertson N, Rappas M, Doré AS, Brown J, Bottegoni G, Koglin M, Cansfield J, Jazayeri A, Cooke RM, Marshall FH. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 2018; 553:111-114. [PMID: 29300009 DOI: 10.1038/nature25025] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/07/2017] [Indexed: 11/09/2022]
Abstract
The complement system is a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins including C5a and C3a. C5a exerts a pro-inflammatory effect via the G-protein-coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5aR1, also known as CD88) that is expressed on cells of myeloid origin. Inhibitors of the complement system have long been of interest as potential drugs for the treatment of diseases such as sepsis, rheumatoid arthritis, Crohn's disease and ischaemia-reperfusion injuries. More recently, a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. Peptide antagonists based on the C5a ligand have progressed to phase 2 trials in psoriasis and rheumatoid arthritis; however, these compounds exhibited problems with off-target activity, production costs, potential immunogenicity and poor oral bioavailability. Several small-molecule competitive antagonists for C5aR1, such as W-54011 and NDT9513727, have been identified by C5a radioligand-binding assays. NDT9513727 is a non-peptide inverse agonist of C5aR1, and is highly selective for the primate and gerbil receptors over those of other species. Here, to study the mechanism of action of C5a antagonists, we determine the structure of a thermostabilized C5aR1 (known as C5aR1 StaR) in complex with NDT9513727. We found that the small molecule bound between transmembrane helices 3, 4 and 5, outside the helical bundle. One key interaction between the small molecule and residue Trp2135.49 seems to determine the species selectivity of the compound. The structure demonstrates that NDT9513727 exerts its inverse-agonist activity through an extra-helical mode of action.
Collapse
Affiliation(s)
- Nathan Robertson
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Mathieu Rappas
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Andrew S Doré
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Jason Brown
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Giovanni Bottegoni
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Markus Koglin
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Julie Cansfield
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Ali Jazayeri
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Robert M Cooke
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK
| |
Collapse
|
7
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
8
|
Schonenbach NS, Hussain S, O'Malley MA. Structure and function of G protein‐coupled receptor oligomers: implications for drug discovery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:408-27. [DOI: 10.1002/wnan.1319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/26/2014] [Accepted: 10/11/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Nicole S. Schonenbach
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Sunyia Hussain
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
9
|
Khan A, Li D, Ibrahim S, Smyth E, Woulfe DS. The physical association of the P2Y12 receptor with PAR4 regulates arrestin-mediated Akt activation. Mol Pharmacol 2014; 86:1-11. [PMID: 24723492 PMCID: PMC4054002 DOI: 10.1124/mol.114.091595] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022] Open
Abstract
It is now well accepted that protease activated receptor (PAR) 1 and PAR4 have differential roles in platelet activation. PAR4, a low-affinity thrombin receptor in human platelets, participates in sustained platelet activation in a P2Y12-dependent manner; however, the mechanisms are not defined. Our previous studies demonstrated that thrombin induces the association of PAR4 with P2Y12, together with arrestin recruitment to the complex. Here we show that PAR4 and P2Y12 directly interact to coregulate Akt signaling after PAR4 activation. We observed direct and specific interaction of P2Y12 with PAR4 but not PAR1 by bioluminescent resonance energy transfer when the receptors were coexpressed in human embryonic kidney 293T cells. PAR4-P2Y12 dimerization was promoted by PAR4-AP and inhibited by P2Y12 antagonist. By using sequence comparison of the transmembrane domains of PAR1 and PAR4, we designed a mutant form of PAR4, "PAR4SFT," by replacing LGL194-196 at the base of transmembrane domain 4 with the corresponding aligned PAR1 residues SFT 220-222. PAR4SFT supported only 8.74% of PAR4-P2Y12 interaction, abolishing P2Y12-dependent arrestin recruitment to PAR4 and Akt activation. Nonetheless, PAR4SFT still supported homodimerization with PAR4. PAR4SFT failed to induce a calcium flux when expressed independently; however, coexpression of increasing concentrations of PAR4SFT, together with PAR4 potentiated PAR4-mediated calcium flux, suggested that PAR4 act as homodimers to signal to Gq-coupled calcium responses. In conclusion, PAR4 LGL (194-196) governs agonist-dependent association of PAR4 with P2Y12 and contributes to Gq-coupled calcium responses. PAR4-P2Y12 association supports arrestin-mediated sustained signaling to Akt. Hence, PAR4-P2Y12 dimerization is likely to be important for the PAR4-P2Y12 dependent stabilization of platelet thrombi.
Collapse
Affiliation(s)
- Aasma Khan
- Department of Biological Sciences, University of Delaware, Newark, Delaware (A.K., D.L., D.S.W.); and Institute for Translational Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (S.I., E.S.)
| | - Dongjun Li
- Department of Biological Sciences, University of Delaware, Newark, Delaware (A.K., D.L., D.S.W.); and Institute for Translational Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (S.I., E.S.)
| | - Salam Ibrahim
- Department of Biological Sciences, University of Delaware, Newark, Delaware (A.K., D.L., D.S.W.); and Institute for Translational Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (S.I., E.S.)
| | - Emer Smyth
- Department of Biological Sciences, University of Delaware, Newark, Delaware (A.K., D.L., D.S.W.); and Institute for Translational Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (S.I., E.S.)
| | - Donna S Woulfe
- Department of Biological Sciences, University of Delaware, Newark, Delaware (A.K., D.L., D.S.W.); and Institute for Translational Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (S.I., E.S.)
| |
Collapse
|
10
|
C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment. Immunol Cell Biol 2014; 92:631-9. [PMID: 24777312 DOI: 10.1038/icb.2014.32] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Abstract
The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of β-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated β-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between β-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for β-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the β-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis.
Collapse
|
11
|
High-throughput de novo screening of receptor agonists with an automated single-cell analysis and isolation system. Sci Rep 2014; 4:4242. [PMID: 24577528 PMCID: PMC3937795 DOI: 10.1038/srep04242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/10/2014] [Indexed: 11/21/2022] Open
Abstract
Reconstitution of signaling pathways involving single mammalian transmembrane receptors has not been accomplished in yeast cells. In this study, intact EGF receptor (EGFR) and a cell wall-anchored form of EGF were co-expressed on the yeast cell surface, which led to autophosphorylation of the EGFR in an EGF-dependent autocrine manner. After changing from EGF to a conformationally constrained peptide library, cells were fluorescently labeled with an anti-phospho-EGFR antibody. Each cell was subjected to an automated single-cell analysis and isolation system that analyzed the fluorescent intensity of each cell and automatically retrieved each cell with the highest fluorescence. In ~3.2 × 106 peptide library, we isolated six novel peptides with agonistic activity of the EGFR in human squamous carcinoma A431 cells. The combination of yeast cells expressing mammalian receptors, a cell wall-anchored peptide library, and an automated single-cell analysis and isolation system might facilitate a rational approach for de novo drug screening.
Collapse
|
12
|
Ghosh A, Sonavane U, Joshi R. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Comput Biol Chem 2014; 48:29-39. [DOI: 10.1016/j.compbiolchem.2013.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
|
13
|
Croker DE, Halai R, Fairlie DP, Cooper MA. C5a, but not C5a-des Arg, induces upregulation of heteromer formation between complement C5a receptors C5aR and C5L2. Immunol Cell Biol 2013; 91:625-33. [PMID: 24060963 DOI: 10.1038/icb.2013.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Receptors for C5a have an important role in innate immunity and inflammation where their expression and activation is tightly regulated. There are two known receptors for C5a: the C5a receptor (C5aR) and the C5a receptor like-2 (C5L2) receptor. Here we hypothesized that activation of C5aR might lead to heteromer formation with C5L2, as a downregulatory mechanism for C5aR signaling. To investigate this experimentally, bioluminescent resonance energy transfer (BRET) was implemented and supported by wide-field microscopy to analyze receptor localization in transfected HEK293 cells and human monocyte-derived macrophages (HMDM). BRET experiments indicated the presence of constitutive C5aR-C5L2 heteromers, where C5a, but not C5a-des Arg, was able to induce further heteromer formation, which was inhibited by a C5aR-specific antagonist. The data obtained suggest that C5aR-C5L2 can form heteromers in a process enhanced by C5a, but not by C5a-des Arg. There was also a significant difference in the levels of the anti-inflammatory cytokine IL-10 detected in HMDM following exposure to C5a compared with that seen for C5a-des Arg but no differences in the pro-inflammatory cytokines TNFα and IL-6. These subtle differences in C5a and C5a-des Arg induced receptor function may be of benefit in understanding the regulation of C5a in acute inflammation.
Collapse
Affiliation(s)
- Daniel E Croker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
14
|
Roy SJ, Glazkova I, Fréchette L, Iorio-Morin C, Binda C, Pétrin D, Trieu P, Robitaille M, Angers S, Hébert TE, Parent JL. Novel, gel-free proteomics approach identifies RNF5 and JAMP as modulators of GPCR stability. Mol Endocrinol 2013; 27:1245-66. [PMID: 23798571 DOI: 10.1210/me.2013-1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The maturation and folding of G protein-coupled receptors are governed by mechanisms that remain poorly understood. In an effort to characterize these biological events, we optimized a novel, gel-free proteomic approach to identify partners of the β2-adrenergic receptor (β2AR). In addition to a number of known interacting proteins such as heterotrimeric G protein subunits, this allowed us to identify proteins involved in endoplasmic reticulum (ER) QC of the receptor. Among β2AR-associated proteins is Ring finger protein 5 (RNF5), an E3 ubiquitin ligase anchored to the outer membrane of the ER. Coimmunoprecipitation assays confirmed, in a cellular context, the interaction between RNF5 and the β2AR as well as the prostaglandin D2 receptor (DP). Confocal microscopy revealed that DP colocalized with RNF5 at the ER. Coexpression of RNF5 with either receptor increased levels of their expression, whereas small interfering RNA-mediated knockdown of endogenous RNF5 promoted the opposite. RNF5 did not modulate the ubiquitination state of β2AR or DP. Instead, RNF5 ubiquitinated JNK-associated membrane protein (JAMP), a protein that recruits the proteasome to the ER membrane and that is negatively regulated by RNF5-mediated ubiquitination. JAMP coimmunoprecipitated with both β2AR and DP and decreased total receptor protein levels through proteasomal degradation. Expression of DP, a receptor largely retained in the ER, promoted proteasome recruitment by JAMP. Degradation of both receptors via JAMP was increased when RNF5 was depleted. Our data suggest that RNF5 regulates the turnover of specific G protein-coupled receptors by ubiquitinating JAMP and preventing proteasome recruitment.
Collapse
Affiliation(s)
- Sébastien J Roy
- Service de Rhumatologie Département de Médecine, Université de Sherbrooke, the Institut de Pharmacologie de Sherbrooke, and the Centre de Recherche Clinique Etienne-Lebel, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Poursharifi P, Lapointe M, Pétrin D, Devost D, Gauvreau D, Hébert TE, Cianflone K. C5L2 and C5aR interaction in adipocytes and macrophages: insights into adipoimmunology. Cell Signal 2012; 25:910-8. [PMID: 23268185 DOI: 10.1016/j.cellsig.2012.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Obesity is associated with inflammation characterized by increased infiltration of macrophages into adipose tissue. C5aR-like receptor 2 (C5L2) has been identified as a receptor for acylation-stimulating protein (ASP) and the inflammatory factor C5a, which also binds C5aR. The present study examines the effects of ligands ASP and C5a on interactions between the receptors C5L2 and C5aR in 3T3-L1 adipocytes and J774 macrophages. BRET experiments indicate that C5L2 and C5aR form homo- and heterodimers in transfected HEK 293 cells, which were stable in the presence of ligand. Cell surface receptor levels of C5L2 and C5aR increased during 3T3-L1 adipocyte differentiation; both receptors are also highly expressed in J774 macrophages. Using confocal microscopy to evaluate endogenous receptors in adipocytes following stimulation with ASP or C5a, C5L2 is internalized with increasing perinuclear colocalization with C5aR. There is little C5a-dependent colocalization in macrophages. While adipocyte-conditioned medium (ACM) increased C5L2-C5aR colocalization in macrophages, this was blocked by C5a. ASP stimulation increased Akt (Ser(473)) phosphorylation in both cell types; C5a induced slight Akt phosphorylation in adipocytes with less effect in macrophages. ASP, but not C5a, increased fatty acid uptake/esterification in adipocytes. C5L2-C5aR homodimerization versus heterodimerization may thus contribute to differential responses obtained following ASP vs C5a stimulation of adipocytes and macrophages, providing new insights into the complex interaction between these two cell types within adipose tissue. Studying the mechanisms involved in the differential responses of C5L2-C5aR activation based on cell type will further our understanding of inflammatory processes in obesity.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Marsango S, Bonaccorsi di Patti MC, Barra D, Miele R. Evidence that prokineticin receptor 2 exists as a dimer in vivo. Cell Mol Life Sci 2011; 68:2919-29. [PMID: 21161321 PMCID: PMC11114510 DOI: 10.1007/s00018-010-0601-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/29/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Prokineticins are proteins that regulate diverse biological processes including gastrointestinal motility, angiogenesis, circadian rhythm, and innate immune response. Prokineticins bind two closed related G-protein coupled receptors (GPCRs), PKR1 and PKR2. In general, these receptors act as molecular switches to relay activation to heterotrimeric G-proteins and a growing body of evidence points to the fact that GPCRs exist as homo- or heterodimers. We show here by Western-blot analysis that PKR2 has a dimeric structure in neutrophils. By heterologous expression of PKR2 in Saccharomyces cerevisiae, we examined the mechanisms of intermolecular interaction of PKR2 dimerization. The potential involvement of three types of mechanisms was investigated: coiled-coil, disulfide bridges, and hydrophobic interactions between transmembrane domains. Characterization of differently deleted or site-directed PKR2 mutants suggests that dimerization proceeds through interactions between transmembrane domains. We demonstrate that co-expressing binding-deficient and signaling-deficient forms of PKR2 can re-establish receptor functionality, possibly through a domain-swapping mechanism.
Collapse
Affiliation(s)
- Sara Marsango
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Donatella Barra
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, CNR Istituto di Biologia e Patologia Molecolari, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Miele
- Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, CNR Istituto di Biologia e Patologia Molecolari, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Fisette A, Cianflone K. The ASP and C5L2 pathway: another bridge between inflammation and metabolic homeostasis. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Klco JM, Sen S, Hansen JL, Lyngsø C, Nikiforovich GV, Sheikh SP, Baranski TJ. Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence. FEBS J 2009; 276:2786-800. [PMID: 19459935 DOI: 10.1111/j.1742-4658.2009.07002.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Residues that mediate helix-helix interactions within the seven transmembranes (TM) of G protein-coupled receptors are important for receptor biogenesis and the receptor switch mechanism. By contrast, the residues directly contacting the lipid bilayer have only recently garnered attention as potential receptor dimerization interfaces. In the present study, we aimed to determine the contributions of these lipid-facing residues to receptor function and oligomerization by systemically generating chimeric complement factor 5a receptors in which the entire lipid-exposed surface of a single TM helix was exchanged with the cognate residues from the angiotensin type 1 receptor. Disulfide-trapping and bioluminescence resonance energy transfer (BRET) studies demonstrated robust homodimerization of both complement factor 5a receptor and angiotensin type 1 receptor, but no evidence for heterodimerization. Despite relatively conservative substitutions, the lipid-facing chimeras (TM1, TM2, TM4, TM5, TM6 or TM7) were retained in the endoplasmic reticulum/cis-Golgi network. With the exception of the TM7 chimera that did not bind ligand, the lipid-facing chimeras bound ligand with low affinity, but similar to wild-type complement factor 5a receptors trapped in the endoplasmic reticulum with brefeldin A. These results suggest that the chimeric receptors were properly folded; moreover, native complement factor 5a receptors are not fully competent to bind ligand when present in the endoplasmic reticulum. BRET oligomerization studies demonstrated energy transfer between the wild-type complement factor 5a receptor and the lipid-facing chimeras, suggesting that the lipid-facing residues within a single TM segment are not essential for oligomerization. These studies highlight the importance of the lipid-facing residues in the complement factor 5a receptor for transport competence.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Harding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 2009; 96:964-73. [PMID: 19186134 DOI: 10.1016/j.bpj.2008.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/22/2008] [Indexed: 12/30/2022] Open
Abstract
Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.
Collapse
Affiliation(s)
- Peter J Harding
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
In vitro characterization of ligand-induced oligomerization of the S. cerevisiae G-protein coupled receptor, Ste2p. Biochim Biophys Acta Gen Subj 2008; 1790:1-7. [PMID: 18996443 DOI: 10.1016/j.bbagen.2008.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND The S. cerevisiae alpha-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic. METHODS Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization. RESULTS Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of alpha-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates alpha-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis. CONCLUSIONS alpha-factor induces oligomerization of Ste2p in vitro and in membrane. GENERAL SIGNIFICANCE These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.
Collapse
|
21
|
Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008; 32:1010-32. [PMID: 18811658 DOI: 10.1111/j.1574-6976.2008.00131.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
22
|
Rabiet MJ, Huet E, Boulay F. Complement component 5a receptor oligomerization and homologous receptor down-regulation. J Biol Chem 2008; 283:31038-46. [PMID: 18772131 DOI: 10.1074/jbc.m805260200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most G-protein-coupled receptors (GPCRs) form di(oligo)-meric structures that constitute signaling and trafficking units and might be essential for receptor functions. Cell responses to complement C5a receptor (C5aR) are tightly controlled by receptor desensitization and internalization. To examine the implication of dimerization in C5aR regulation, we generated an NH(2)-terminally modified C5aR mutant, unable to bind C5a, and a phosphorylation-deficient mutant. Neither an intact NH(2) terminus nor the presence of COOH-terminal phosphorylation sites appeared to be required for the formation of C5aR dimers. Upon C5a stimulation, mutant receptors did not internalize when individually expressed. C5a stimulation of cells that co-expressed wild type C5aR together with either unliganded or phosphorylation-deficient mutant resulted in co-internalization of mutant receptors with C5aR. Unliganded GPCRs can be cross-phosphorylated within a heterologous receptor dimer or by second messenger-activated kinases. C5a stimulation of (32)P-labeled cells that co-expressed the unliganded mutant with either C5aR or the phosphorylation-deficient mutant did not induce phosphorylation of the unliganded mutant. We can thus postulate that, in the case of C5aR, the stimulation and phosphorylation of one monomer is enough to lead to dimer internalization. The existence and functional implication of di(oligo)mer formation may be important for an accurate C5aR down-regulation in pathological conditions.
Collapse
Affiliation(s)
- Marie-Josèphe Rabiet
- Laboratoire Biochimie et Biophysique des Systèmes Intégrés, Grenoble F-38054, France.
| | | | | |
Collapse
|
23
|
Abstract
G-Protein-coupled receptors are one of the largest protein families found in metazoans. Using several novel strategies, the first atomic resolution structures of a receptor that is activated by a diffusible ligand have been determined.
Collapse
Affiliation(s)
- Kendall J. Blumer
- Department of Cell Biology
and Physiology, Washington University School of Medicine, St. Louis,
Missouri 63110
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
24
|
Hughes I, Saito M, Schlesinger PH, Ornitz DM. Otopetrin 1 activation by purinergic nucleotides regulates intracellular calcium. Proc Natl Acad Sci U S A 2007; 104:12023-8. [PMID: 17606897 PMCID: PMC1924595 DOI: 10.1073/pnas.0705182104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Otopetrin1 (Otop1) is a multitransmembrane domain protein required for the formation of otoconia in the vertebrate inner ear. Otoconia are complex calcium carbonate (CaCO(3)) biominerals that are required for the sensation of gravity. Examination of the phenotypes of animals with mutations or deficiencies in Otop1 suggests a direct role for Otop1 in the initiation of extracellular biomineralization, possibly through the regulation of intracellular Ca(2+). Here, we demonstrate that Otop1 overexpression can modulate purinergic-mediated Ca(2+) homeostasis in transfected cell lines. These experiments define a unique set of biochemical activities of Otop1, including depletion of endoplasmic reticulum Ca(2+) stores, specific inhibition of the purinergic receptor P2Y, and regulation of the influx of extracellular Ca(2+) in response to ATP, ADP, and UDP. These activities can be inhibited by the polyanion suramin in a rapidly reversible manner. This first characterization of the consequences of Otop1 overexpression indicates a profound effect on cellular Ca(2+) regulation. In a physiologic setting, these activities could direct the formation and growth of otoconia and regulate other biomineralization processes.
Collapse
Affiliation(s)
- Inna Hughes
- Departments of *Molecular Biology and Pharmacology and
| | - Mitsuyoshi Saito
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul H. Schlesinger
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of *Molecular Biology and Pharmacology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Monk PN, Scola AM, Madala P, Fairlie DP. Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 2007; 152:429-48. [PMID: 17603557 PMCID: PMC2050825 DOI: 10.1038/sj.bjp.0707332] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Complement fragment (C)5a is a 74 residue pro-inflammatory polypeptide produced during activation of the complement cascade of serum proteins in response to foreign surfaces such as microorganisms and tissue damaged by physical or chemical injury. C5a binds to at least two seven-transmembrane domain receptors, C5aR (C5R1, CD88) and C5L2 (gpr77), expressed ubiquitously on a wide variety of cells but particularly on the surface of immune cells like macrophages, neutrophils and T cells. C5aR is a classical G protein-coupled receptor that signals through G alpha i and G alpha 16, whereas C5L2 does not appear to couple to G proteins and has no known signalling activity. Although C5a was first described as an anaphylatoxin and later as a leukocyte chemoattractant, the widespread expression of C5aR suggested more general functionality. Our understanding of the physiology of C5a has improved significantly in recent years through exploitation of receptor knockout and knocking mice, C5 and C5a antibodies, soluble recombinant C5a and C5a analogues and newly developed receptor antagonists. C5a is now also implicated in non-immunological functions associated with developmental biology, CNS development and neurodegeneration, tissue regeneration, and haematopoiesis. Combined receptor mutagenesis, molecular modelling, structure-activity relationship studies and species dependence for ligand potency on C5aR have been helpful for identifying ligand binding sites on the receptor and for defining mechanisms of receptor activation and inactivation. This review will highlight major developments in C5a receptor research that support C5aR as an important therapeutic target. The intriguing possibilities raised by the existence of a non-signalling C5a receptor are also discussed.
Collapse
Affiliation(s)
- P N Monk
- Academic Neurology Unit, School of Medicine and Biomedical Science, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
26
|
Ma AWS, Redka DS, Pisterzi LF, Angers S, Wells JW. Recovery of oligomers and cooperativity when monomers of the M2 muscarinic cholinergic receptor are reconstituted into phospholipid vesicles. Biochemistry 2007; 46:7907-27. [PMID: 17552496 DOI: 10.1021/bi6026105] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
FLAG- and HA-tagged M2 muscarinic receptors from coinfected Sf9 cells have been purified in digitonin-cholate and reconstituted into phospholipid vesicles. The purified receptor was predominantly monomeric: it showed no detectable coimmunoprecipitation; it migrated as a monomer during electrophoresis before or after cross-linking with bis(sulfosuccinimidyl)suberate; and it bound agonists and antagonists in a manner indicative of identical and mutually independent sites. Receptor cross-linked after reconstitution or after reconstitution and subsequent solubilization in digitonin-cholate migrated almost exclusively as a tetramer. The binding properties of the reconstituted receptor mimicked those reported previously for cardiac muscarinic receptors. The apparent capacity for N-[3H]methylscopolamine (NMS) was only 60% of that for [3H]quinuclidinylbenzilate (QNB), yet binding at saturating concentrations of [3H]QNB was inhibited fully and in a noncompetitive manner at comparatively low concentrations of unlabeled NMS. Reconstitution of the receptor with a saturating quantity of functional G proteins led to the appearance of three classes of sites for the agonist oxotremorine-M in assays with [3H]QNB; GMP-PNP caused an apparent interconversion from highest to lowest affinity and the concomitant emergence of a fourth class of intermediate affinity. All of the data can be described quantitatively in terms of cooperativity among four interacting sites, presumably within a tetramer; the effect of GMP-PNP can be accommodated as a shift in the distribution of tetramers between two states that differ in their cooperative properties. Monomers of the M2 receptor therefore can be assembled into tetramers with binding properties that closely resemble those of the muscarinic receptor in myocardial preparations.
Collapse
Affiliation(s)
- Amy W-S Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | | | | | | | | |
Collapse
|
27
|
Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 2007; 8:177. [PMID: 17537266 PMCID: PMC1904246 DOI: 10.1186/1471-2105-8-177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G Protein-Coupled Receptors (GPCRs) are a large and diverse family of membrane proteins whose members participate in the regulation of most cellular and physiological processes and therefore represent key pharmacological targets. Although several bioinformatics resources support research on GPCRs, most of these have been designed based on the traditional assumption that monomeric GPCRs constitute the functional receptor unit. The increase in the frequency and number of reports about GPCR dimerization/oligomerization and the implication of oligomerization in receptor function makes necessary the ability to store and access information about GPCR dimers/oligomers electronically. RESULTS We present here the requirements and ontology (the information scheme to describe oligomers and associated concepts and their relationships) for an information system that can manage the elements of information needed to describe comprehensively the phenomena of both homo- and hetero-oligomerization of GPCRs. The comprehensive information management scheme that we plan to use for the development of an intuitive and user-friendly GPCR-Oligomerization Knowledge Base (GPCR-OKB) is the result of a community dialog involving experimental and computational colleagues working on GPCRs. CONCLUSION Our long term goal is to disseminate to the scientific community organized, curated, and detailed information about GPCR dimerization/oligomerization and its related structural context. This information will be reported as close to the data as possible so the user can make his own judgment on the conclusions drawn for a particular study. The requirements and ontology described here will facilitate the development of future information systems for GPCR oligomers that contain both computational and experimental information about GPCR oligomerization. This information is freely accessible at http://www.gpcr-okb.org.
Collapse
|
28
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
29
|
Das A, Forfar R, Ladds G, Davey J. Combined use of two transcriptional reporters improves signalling assays for G protein-coupled receptors in fission yeast. Yeast 2006; 23:889-97. [PMID: 17001618 DOI: 10.1002/yea.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The biochemical and genetic tractability of yeasts make them ideal hosts for the analysis of signalling from G protein-coupled receptors (GPCRs). Selected modifications to the strains allow the introduction of non-yeast components, while signal-dependent expression of reporter genes provides growth selection or enzyme read-out as assays for signalling. One issue with such systems is reporter expression in the absence of stimulation, usually because of spontaneous activation of intracellular signalling components and/or incomplete repression of the signal-dependent promoter. This limits the difference between reporter activity in the presence and absence of stimulation, often referred to as the signal:background ratio. In an effort to extend the applicability of the yeast system, we generated a Schizosaccharomyces pombe strain containing pheromone-dependent reporters for both growth selection and beta-galactosidase production. Simultaneous use of the two reporters provided several advantages over strains expressing only one reporter, particularly when coupled to the use of a competitive inhibitor of the nutritional reporter. For example, the beta-galactosidase signal:background ratio following stimulation with 10(-6) M P-factor increased from 35 for a strain containing a single lacZ reporter to almost 2500 for the double reporter. The sensitivity of the system was also improved, with higher signal:background ratios allowing detection of lower concentrations of P-factor. Although we have used Sz. pombe and focused on GPCR-based induction of beta-galactosidase, the principles described can be applied to other yeasts, different signalling pathways and alternative reporters.
Collapse
Affiliation(s)
- Anamika Das
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
30
|
Matsumoto ML, Narzinski K, Kiser PD, Nikiforovich GV, Baranski TJ. A comprehensive structure-function map of the intracellular surface of the human C5a receptor. I. Identification of critical residues. J Biol Chem 2006; 282:3105-21. [PMID: 17135254 DOI: 10.1074/jbc.m607679200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Medicine and Molecular Biology, Washington School of Medicine, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
31
|
Hagemann IS, Nikiforovich GV, Baranski TJ. Comparison of the retinitis pigmentosa mutations in rhodopsin with a functional map of the C5a receptor. Vision Res 2006; 46:4519-31. [PMID: 16962629 DOI: 10.1016/j.visres.2006.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
We compare the known retinitis pigmentosa (RP) mutations in rhodopsin with mutational data obtained for the complement factor 5a receptor (C5aR), a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). We have performed genetic analyses that define residues that are required for C5aR folding and function. The cognate residues in rhodopsin are not preferentially mutated in RP, suggesting that the predominant molecular defect in RP involves more than simple misfolding or inactivation. Energy calculations are performed to elucidate the structural effects of the RP mutations. Many of these mutations specifically disrupt the environment of the retinal prosthetic group of rhodopsin, and these do not correspond to essential residues in C5aR. This may be because a retinal group is present in rhodopsin but not in C5aR. Another subset of RP mutations is more generally important for receptor structure, and these mutations correlate with essential residues of C5aR.
Collapse
Affiliation(s)
- Ian S Hagemann
- Department of Medicine, Washington University in St. Louis, Campus Box 8127, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
32
|
Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Hervé C, Uzabiaga MF, Pereillo JM, Culouscou JM, Bono F, Ferrara P, Herbert JM. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A 2006; 103:11069-74. [PMID: 16835302 PMCID: PMC1635153 DOI: 10.1073/pnas.0510446103] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
P2Y12, a G protein-coupled receptor that plays a central role in platelet activation has been recently identified as the receptor targeted by the antithrombotic drug, clopidogrel. In this study, we further deciphered the mechanism of action of clopidogrel and of its active metabolite (Act-Met) on P2Y12 receptors. Using biochemical approaches, we demonstrated the existence of homooligomeric complexes of P2Y12 receptors at the surface of mammalian cells and in freshly isolated platelets. In vitro treatment with Act-Met or in vivo oral administration to rats with clopidogrel induced the breakdown of these oligomers into dimeric and monomeric entities in P2Y12 expressing HEK293 and platelets respectively. In addition, we showed the predominant association of P2Y12 oligomers to cell membrane lipid rafts and the partitioning of P2Y12 out of rafts in response to clopidogrel and Act-Met. The raft-associated P2Y12 oligomers represented the functional form of the receptor, as demonstrated by binding and signal transduction studies. Finally, using a series of receptors individually mutated at each cysteine residue and a chimeric P2Y12/P2Y13 receptor, we pointed out the involvement of cysteine 97 within the first extracellular loop of P2Y12 in the mechanism of action of Act-Met.
Collapse
Affiliation(s)
- Pierre Savi
- Department of Thrombosis and Angiogenesis, Sanofi-Aventis Recherche, 195 Route d'Espagne, 31036 Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Harrison C, van der Graaf PH. Current methods used to investigate G protein coupled receptor oligomerisation. J Pharmacol Toxicol Methods 2006; 54:26-35. [PMID: 16343954 DOI: 10.1016/j.vascn.2005.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Classical models of G protein coupled receptor (GPCR) signalling assume that each receptor functions as a single unit. However, evidence is increasing that GPCRs may form functional assemblies of dimeric or oligomeric units. There are several methods that can be used to give evidence of GPCR oligomerisation that will be discussed in this review. These include co-immunoprecipitation and Western blotting, resonance energy transfer methods and transactivation / complementation of partially functional receptors. One definitive method currently does not exist and there are various advantages and disadvantages to each method depending upon the system considered. Although co-immunoprecipitation and Western blot studies require disruption of the cellular environment and require specific antibodies, they are a good starting point to show that receptor oligomerisation occurs in native systems. Resonance energy transfer techniques provide evidence that receptors are in close proximity, are measured in living cells and some formats may be used for imaging applications. Transactivation / complementation requires extensive modification of the GPCR, but provides evidence that the receptors are in physical contact. Despite great advances being made using these techniques, future challenges involve the development of other methodologies to determine the role of receptor complexes in the pharmacology and physiology of native systems.
Collapse
Affiliation(s)
- Charlotte Harrison
- Discovery Biology, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom.
| | | |
Collapse
|
34
|
Kong MMC, Fan T, Varghese G, O'dowd BF, George SR. Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homo-oligomer. Mol Pharmacol 2006; 70:78-89. [PMID: 16597839 DOI: 10.1124/mol.105.021246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of oligomerization in D1 dopamine receptor trafficking to the cell surface was examined using conformationally distinct variants of this receptor. Substitution of the highly conserved aspartic acid (Asp103) in transmembrane domain 3 resulted in a constitutively active receptor, D103A, that did not bind agonists or antagonists but trafficked to the cell surface as oligomers. Coexpression of D103A with the wild-type D1 receptor in human embryonic kidney 293t cells resulted in inhibition of cell surface expression of the D1 receptor because of receptor oligomerization, causing intracellular retention of both proteins. Rescue of the intracellularly retained oligomer could be achieved only by membrane-permeable full and partial agonists, which resulted in cell surface expression of the D1 receptor, whereas cell-permeable antagonists and cell impermeable agonists had no effect. Cell surface fluorescence resonance energy transfer studies of cells coexpressing D103A and D1 revealed no signal before agonist treatment but a robust signal after agonist treatment, indicating that the intact D1/D103A oligomer reached the cell surface only after agonist treatment but not under basal conditions. This suggests that rescue of the retained D1/D103A oligomer to the cell surface was a result of an agonist-induced change in the conformation of D1, permitting cell surface trafficking of the D1/D103A receptor oligomeric complex from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michael M C Kong
- Department of Pharmacology, University of Toronto; Medical Sciences Building Rm 4358, Toronto, ON, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
35
|
Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ. Assembly, Activation, and Trafficking of the Fet3p·Ftr1p High Affinity Iron Permease Complex in Saccharomyces cerevisiae. J Biol Chem 2006; 281:13355-13364. [PMID: 16522632 DOI: 10.1074/jbc.m512042200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-competent complex. The cytoplasmic, carboxyl-terminal domain of each protein contains a four-residue motif adjacent to the cytoplasm-PM interface that supports an interaction between the proteins. This interaction has been quantified by two-hybrid analysis and is required for assembly and trafficking of the complex to the PM and for the approximately 13% maximum FRET efficiency determined. In contrast, the Fet3p transmembrane domain (TM) can be exchanged with the TM domain from the vacuolar ferroxidase, Fet5p, with no loss of assembly and trafficking. A carboxyl-terminal interaction between the vacuolar proteins, Fet5p and Fth1p, also was quantified. As a measure of the specificity of interaction, no interaction between heterologous ferroxidase permease pairs was observed. Also, whereas FRET was quantified between fluorescent fusions of the copper permease (monomers), Ctr1p, none was observed between Fet3p and Ctr1p. The results are consistent with a (minimal) heterodimer model of the Fet3p.Ftr1p complex that supports the trafficking of iron from Fet3p to Ftr1p for iron permeation across the yeast PM.
Collapse
Affiliation(s)
- Arvinder Singh
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Scott Severance
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Navjot Kaur
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - William Wiltsie
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214
| | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The University at Buffalo, Buffalo, New York 14214.
| |
Collapse
|
36
|
Overton MC, Chinault SL, Blumer KJ. Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 4:1963-70. [PMID: 16339714 PMCID: PMC1317502 DOI: 10.1128/ec.4.12.1963-1970.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mark C Overton
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
37
|
Calebiro D, de Filippis T, Lucchi S, Covino C, Panigone S, Beck-Peccoz P, Dunlap D, Persani L. Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Hum Mol Genet 2005; 14:2991-3002. [PMID: 16135555 DOI: 10.1093/hmg/ddi329] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TSH resistance is one of the causes of congenital hypothyroidism with thyroid gland in situ. We recently identified families with dominant transmission of partial TSH resistance due to heterozygous inactivating mutations in TSH receptor (TSHR) gene. Although we documented a poor routing of TSHR mutants to the cell membrane, the mechanism responsible for dominant inheritance of partial TSH resistance remained unexplained. We therefore co-transfected Cos-7 cells with wild-type TSHR and mutant receptors found in these patients. A variable impairment of cAMP response to bTSH stimulation was observed, suggesting that inactive TSHR mutants can exert a dominant negative effect on wild-type TSHR. We then generated chimeric constructs of wild-type or inactive TSHR mutants fused to different reporters. By fluorescence microscopy and immunoblotting, we documented an intracellular entrapment, mainly in the endoplasmic reticulum, and reduced maturation of wild-type TSHR in the presence of inactive TSHR mutants. Finally, fluorescence resonance energy transfer and co-immunoprecipitation experiments were performed to study the molecular interactions between wild-type and mutant TSHRs. The results are in agreement with the presence of oligomers formed by wild-type and mutant receptors in the endoplasmic reticulum. Such physical interaction represents the molecular basis for the dominant negative effect of inactive TSHR mutants. These findings provide an explanation for the dominant transmission of partial TSH resistance. This is the first report linking dominant negative mutations of a G protein-coupled receptor to an abnormal endocrine phenotype in heterozygous patients.
Collapse
|
38
|
Pfleger KDG, Eidne KA. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005; 385:625-37. [PMID: 15504107 PMCID: PMC1134737 DOI: 10.1042/bj20041361] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GPCRs (G-protein-coupled receptors) play an extremely important role in transducing extracellular signals across the cell membrane with high specificity and sensitivity. They are central to many of the body's endocrine and neurotransmitter pathways, and are consequently a major drug target. It is now clear that GPCRs interact with a range of proteins, including other GPCRs. Identifying and elucidating the function of such interactions will significantly enhance our understanding of cellular function, with the promise of new and improved pharmaceuticals. Biophysical techniques involving resonance energy transfer, namely FRET (fluorescence resonance energy transfer) and BRET (bioluminescence resonance energy transfer), now enable us to monitor the formation of dynamic GPCR-protein complexes in living cells, in real time. Their use has firmly established the concept of GPCR oligomerization, as well as demonstrating GPCR interactions with GPCR kinases, beta-arrestins, adenylate cyclase and a subunit of an inwardly rectifying K+ channel. The present review examines recent technological advances and experimental applications of FRET and BRET, discussing particularly how they have been adapted to extract an ever-increasing amount of information about the nature, specificity, stoichiometry, kinetics and agonist-dependency of GPCR-protein interactions.
Collapse
Affiliation(s)
- Kevin D G Pfleger
- Molecular Endocrinology Research Group/7TM Receptor Laboratory, Western Australian Institute for Medical Research, The University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Perth, WA 6009.
| | | |
Collapse
|
39
|
Pietilä EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petäjä-Repo UE. Inefficient Maturation of the Rat Luteinizing Hormone Receptor. J Biol Chem 2005; 280:26622-9. [PMID: 15901736 DOI: 10.1074/jbc.m413815200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that the folding and maturation of monomeric proteins and assembly of multimeric protein complexes in the endoplasmic reticulum (ER) may be inefficient not only for mutants that carry changes in the primary structure but also for wild type proteins. In the present study, we demonstrate that the rat luteinizing hormone receptor, a G protein-coupled receptor, is one of these proteins that matures inefficiently and appears to be very prone to premature degradation. A substantial portion of the receptors in stably transfected human embryonic kidney 293 cells existed in immature form of M(r) 73,000, containing high mannose-type N-linked glycans. In metabolic pulse-chase studies, only approximately 20% of these receptor precursors were found to gain hormone binding ability and matured to a form of M(r) 90,000, containing bi- and multiantennary sialylated N-linked glycans. The rest had a propensity to form disulfide-bonded complexes with a M(r) 120,000 protein in the ER membrane and were eventually targeted for degradation in proteasomes. The number of membrane-bound receptor precursors increased when proteasomal degradation was inhibited, and no cytosolic receptor forms were detected, suggesting that retrotranslocation of the misfolded/incompletely folded receptors is tightly coupled to proteasomal function. Furthermore, a proteasomal blockade was found to increase the number of receptors that were capable of hormone binding. Thus, these results raise the interesting possibility that luteinizing hormone receptor expression at the cell surface may be controlled at the ER level by regulating the number of newly synthesized proteins that will mature and escape the ER quality control and premature degradation.
Collapse
Affiliation(s)
- E Maritta Pietilä
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Presley JF. Imaging the secretory pathway: The past and future impact of live cell optical techniques. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:259-72. [PMID: 15921767 DOI: 10.1016/j.bbamcr.2005.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/21/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
Classically, the secretory pathway has been studied using a combination of electron microscopic, biochemical and genetic approaches. In the last 20 years with the arrival of molecular biology and epitope tagging, fluorescence microscopy has become more important than previously. Moreover, with the common availability of Green Fluorescent Protein (GFP) and confocal microscopes in the last 10 years, live cell imaging has become a major experimental approach. This review highlights the impact of the recent introduction of single-cell quantitative time-lapse imaging and photobleach techniques on the study of the secretory pathway, and the potential impact of those optical techniques which may play a significant future role in the study of the Golgi apparatus and the secretory pathway. Particular attention is paid to techniques (Fluorescence Resonance Energy Transfer, Fluorescence Correlation Spectroscopy) which can monitor protein-protein interactions in living cells.
Collapse
Affiliation(s)
- John F Presley
- McGill University, Department of Anatomy and Cell Biology, 3640 University, Montreal, QC, Canada H3A 2B2.
| |
Collapse
|
41
|
Elliott C, Müller J, Miklis M, Bhat R, Schulze-Lefert P, Panstruga R. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 2005; 385:243-54. [PMID: 15352871 PMCID: PMC1134693 DOI: 10.1042/bj20040993] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We performed a structure-function analysis of the plasma membrane-localized plant-specific barley (Hordeum vulgare) MLO (powdery-mildew-resistance gene o) protein. Invariant cysteine and proline residues, located either in extracellular loops or transmembrane domains that have been conserved in MLO proteins for more than 400 million years, were found to be essential for MLO functionality and/or stability. Similarly to many metazoan G-protein-coupled receptors known to function as homo- and hetero-oligomers, FRET (fluorescence resonance energy transfer) analysis revealed evidence for in planta MLO dimerization/oligomerization. Domain-swap experiments with closely related wheat and rice as well as diverged Arabidopsis MLO isoforms demonstrated that the identity of the C-terminal cytoplasmic tail contributes to MLO activity. Likewise, analysis of a progressive deletion series revealed that integrity of the C-terminus determines both MLO accumulation and functionality. A series of domain swaps of cytoplasmic loops with the wheat (Triticum aestivum) orthologue, TaMLO-B1, provided strong evidence for co-operative loop-loop interplay either within the protein or between MLO molecules. Our data indicate extensive intramolecular co-evolution of cytoplasmic domains in the evolutionary history of the MLO protein family.
Collapse
Affiliation(s)
- Candace Elliott
- *The Sainsbury Laboratory, John Innes Centre, Colney, Norwich, NR4 7UH, U.K
| | - Judith Müller
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Marco Miklis
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Riyaz A. Bhat
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Paul Schulze-Lefert
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Ralph Panstruga
- †Max-Planck-Institut für Züchtungsforschung, Department of Plant Pathogen Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Klco JM, Wiegand CB, Narzinski K, Baranski TJ. Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol 2005; 12:320-6. [PMID: 15768031 DOI: 10.1038/nsmb913] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 02/07/2005] [Indexed: 11/09/2022]
Abstract
More than 90% of G protein-coupled receptors (GPCRs) contain a disulfide bridge that tethers the second extracellular loop (EC2) to the third transmembrane helix. To determine the importance of EC2 and its disulfide bridge in receptor activation, we subjected this region of the complement factor 5a receptor (C5aR) to random saturation mutagenesis and screened for functional receptors in yeast. The cysteine forming the disulfide bridge was the only conserved residue in the EC2-mutated receptors. Notably, approximately 80% of the functional receptors exhibited potent constitutive activity. These results demonstrate an unexpected role for EC2 as a negative regulator of C5a receptor activation. We propose that in other GPCRs, EC2 might serve a similar role by stabilizing the inactive state of the receptor.
Collapse
Affiliation(s)
- Jeffery M Klco
- Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Giguère V, Gallant MA, de Brum-Fernandes AJ, Parent JL. Role of extracellular cysteine residues in dimerization/oligomerization of the human prostacyclin receptor. Eur J Pharmacol 2005; 494:11-22. [PMID: 15194446 DOI: 10.1016/j.ejphar.2004.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/15/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022]
Abstract
Prostacyclin activation of prostanoid IP receptors may result in pain sensation, inflammatory responses, inhibition of platelet aggregation, and vasodilation in vascular tissue. The prostanoid IP receptor is a G-protein-coupled receptor. In the present study, we investigated the determinants responsible, at least in part, for the prostacyclin receptor (IP) dimerization/oligomerization. Using co-immunoprecipitation of differentially tagged IP expressed in COS-7 cells, we demonstrate that IP can form dimers and oligomers. Treatment of IP-expressing cells with the stable agonist carbaprostacyclin failed to alter the ratios of oligomeric/dimeric/monomeric forms of the receptor, suggesting that IP dimerization/oligomerization is an agonist-independent process. The reducing agents dithiothreitol and 2-mercaptoethanol were highly efficient in converting the receptor from its oligomeric form to the monomeric state, indicating the involvement of disulfide bonds in IP oligomerization. Immunoblotting of the osteoblastic MG-63 cell line lysates with an anti-IP specific antibody revealed the presence of endogenous IP oligomers which were converted to dimers and monomers upon treatment with dithiothreitol. Individual substitutions of the four extracellular IP Cys residues (Cys(5), Cys(92), Cys(165) and Cys(170)) for Ser resulted in greatly decreased receptor protein expression in COS-7 cells. The C92-170S double mutant showed receptor protein expression level similar to the individual mutants. However, expression of the C92-165S and C165-170S mutants was drastically reduced, suggesting that there was formation of disulfide bonds between Cys(5) and Cys(165), and between Cys(92) and Cys(170). The Cys receptor mutants showed altered oligomer/dimer/monomer ratios. Dimerization/oligomerization likely occurs intracellularly since these Cys receptor mutants could still form dimers/oligomers despite their lack of expression at the cell surface.
Collapse
Affiliation(s)
- Vincent Giguère
- Division of Rheumatology, Faculty of Medecine and Clinical Research Center, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
44
|
Hansen JL, Sheikh SP. Functional consequences of 7TM receptor dimerization. Eur J Pharm Sci 2004; 23:301-17. [PMID: 15567283 DOI: 10.1016/j.ejps.2004.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/11/2004] [Indexed: 12/31/2022]
Abstract
7TM receptors work as signaling platforms that activate multiple signalling systems at the intracellular face of the plasma membrane. It is an emerging concept that 7TM receptors form homo- and hetero-dimers or -oligomers in vitro and in vivo. Numerous studies suggest dimerization is important for receptor function including agonist/antagonist affinity, efficacy, trafficking, and specificity of signal transduction, yet it remains unknown whether dimerization is a prerequisite for 7TM receptor signaling. The current review provides an overview of the biochemical support for 7TM homodimerization, followed by a discussion of the characteristics of homodimerization, with focus on dimer organization, and the functional consequences of dimerization. Heterodimerization will not generally be discussed in this review although we have included a few examples to illustrate specific points, and a table that summarises the current literature on this subject.
Collapse
Affiliation(s)
- Jakob Lerche Hansen
- Laboratory of Molecular Cardiology, The Heart Centre and Copenhagen Heart Arrhythmia Research Centre (CHARC), Copenhagen University Hospital, Faculty of Health, University of Copenhagen, 20 Juliane Mariesvej, Denmark.
| | | |
Collapse
|
45
|
Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004; 5:30-4. [PMID: 14710183 PMCID: PMC1298963 DOI: 10.1038/sj.embor.7400052] [Citation(s) in RCA: 474] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 11/04/2003] [Indexed: 11/09/2022] Open
Abstract
The classical idea that G-protein-coupled receptors (GPCRs) function as monomeric entities has been unsettled by the emerging concept of GPCR dimerization. Recent findings have indicated not only that many GPCRs exist as homodimers and heterodimers, but also that their oligomeric assembly could have important functional roles. Several studies have shown that dimerization occurs early after biosynthesis, suggesting that it has a primary role in receptor maturation. G-protein coupling, downstream signalling and regulatory processes such as internalization have also been shown to be influenced by the dimeric nature of the receptors. In addition to raising fundamental questions about GPCR function, the concept of dimerization could be important in the development and screening of drugs that act through this receptor class. In particular, the changes in ligand-binding and signalling properties that accompany heterodimerization could give rise to an unexpected pharmacological diversity that would need to be considered.
Collapse
Affiliation(s)
- Sonia Terrillon
- Department of Biochemistry, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Michel Bouvier
- Department of Biochemistry, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
- Tel: +1 514 343 6372; Fax: +1 514 343 2210;
| |
Collapse
|
46
|
Milligan G. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 2004; 21:397-405. [PMID: 14998570 DOI: 10.1016/j.ejps.2003.11.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 11/13/2003] [Accepted: 11/13/2003] [Indexed: 11/22/2022]
Abstract
Bioluminescence (BRET)- and fluorescence resonance energy transfer (FRET) techniques have become integral approaches in studies of protein-protein interactions in living cells. They rely on non-radiative transfer of energy between donor and acceptor species that can be appended to the proteins of interest. These techniques display exquisite dependence on distance and orientation between the energy transfer partners. This means they are well suited to measure both small conformational changes in response to ligand binding between partner proteins that remain within a complex or more extensive translocations of proteins between cellular compartments that occur in response to cellular challenge. Introduction of both energy donor and acceptor into a single polypeptide can also allow the detection of ligand-induced conformational switches in monomeric proteins in the millisecond time scale. Many of these approaches are amenable to high throughput screening and the drug discovery process. G protein-coupled receptors (GPCRs) represent a key drug target class. Specific applications of resonance energy transfer techniques to the identification of ligands for this class of protein are highlighted to illustrate general principles.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
47
|
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 2004; 564:281-288. [PMID: 15111110 PMCID: PMC1393389 DOI: 10.1016/s0014-5793(04)00194-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane.
Collapse
Affiliation(s)
- Dimitrios Fotiadis
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Yan Liang
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, PL-02109 Warsaw, Poland
| | - David A Saperstein
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
| | - Andreas Engel
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Hansen JL, Theilade J, Haunsø S, Sheikh SP. Oligomerization of Wild Type and Nonfunctional Mutant Angiotensin II Type I Receptors Inhibits Gαq Protein Signaling but Not ERK Activation. J Biol Chem 2004; 279:24108-15. [PMID: 15056658 DOI: 10.1074/jbc.m400092200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.
Collapse
Affiliation(s)
- Jakob Lerche Hansen
- Laboratory of Molecular Cardiology, the Heart Centre and Copenhagen Heart Arrhythmia Research Centre, Copenhagen University Hospital Section 9312 and the Faculty of Health, University of Copenhagen, 20 Juliane Mariesvej, Copenhagen DK-2100, Denmark
| | | | | | | |
Collapse
|
49
|
Abstract
It is now generally accepted that G protein-coupled receptors (GPCRs) can exist as dimers or as part of larger oligomeric complexes. Increasing evidence suggests that a dimer is the minimal functional structure, but considerable variation exists between reports of the effects of agonist ligands on quaternary structure. Many studies have intimated the existence of heterodimeric GPCR pairings. Key questions that remain to be addressed effectively include the prevalence and relevance of these in native tissues and the implications of heterodimerization for pharmacology and, potentially, for drug design.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Davidson Building, University of Glasgow, Glasgow G12 8QQ Scotland, UK.
| |
Collapse
|
50
|
Abstract
Chemotaxis is an important cellular response common in biology. In many chemotaxing cells the signal that regulates movement is initiated by G protein-coupled receptors on the cell surface that bind specific chemoattractants. These receptors share important structural similarities with other G protein-coupled receptors, including rhodopsin, which currently serves as the best starting point for modeling their structures. However, the chemotaxis receptors also share a number of relatively unique structural features that are less common in other GPCRs. The chemoattractant ligands of chemotaxis receptors exhibit a broad variety of sizes and chemical properties, ranging from small molecules and peptides to protein ligands. As a result, different chemotaxis receptors have evolved specialized mechanisms for the early steps of ligand binding and receptor activation. The mechanism of transmembrane signaling is currently under intensive study and several alternate mechanisms proposing different conformational rearrangements of the transmembrane helices have been proposed. Some chemotaxis receptors are proposed to form dimers, and in certain cases dimer formation is proposed to play a role in transmembrane signaling. In principle the structural and dynamical changes that occur during transmembrane signaling could be specialized for different receptors, or could be broadly conserved. Extensive mutagenesis studies have been carried out, and have begun to identify critical residues involved in ligand binding, receptor activation, and transmembrane signaling.
Collapse
Affiliation(s)
- Aaron F Miller
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|