1
|
Nadin SB, Cuello-Carrión FD, Cayado-Gutiérrez N, Fanelli MA. Overview of Wnt/β-Catenin Pathway and DNA Damage/Repair in Cancer. BIOLOGY 2025; 14:185. [PMID: 40001953 PMCID: PMC11851563 DOI: 10.3390/biology14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The Wnt/β-catenin pathway takes part in important cellular processes in tumor cells, such as gene expression, adhesion, and survival. The canonical pathway is activated in several tumors, and β-catenin is its major effector. The union of Wnt to the co-receptor complex causes the inhibition of GSK3β activity, thus preventing the phosphorylation and degradation of β-catenin, which accumulates in the cytoplasm, to subsequently be transported to the nucleus to associate with transcription factors. The relationship between Wnt/β-catenin and DNA damage/repair mechanisms has been a focus for the last few years. Studying the Wnt/β-catenin network interactions with DNA damage/repair proteins has become a successful research field. This review provides an overview of the participation of Wnt/β-catenin in DNA damage/repair mechanisms and their future implications as targets for cancer therapy.
Collapse
Affiliation(s)
- Silvina B. Nadin
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Mendoza 5500, Argentina
| | - F. Darío Cuello-Carrión
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| | - Niubys Cayado-Gutiérrez
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
- Cátedra de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Mariel A. Fanelli
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| |
Collapse
|
2
|
Shawkatova I, Durmanova V, Javor J. Alzheimer's Disease and Porphyromonas gingivalis: Exploring the Links. Life (Basel) 2025; 15:96. [PMID: 39860036 PMCID: PMC11766648 DOI: 10.3390/life15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly Porphyromonas gingivalis, has garnered significant attention. P. gingivalis, a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis. This review examines evidence connecting P. gingivalis to hallmark AD features, such as amyloid β accumulation, tau hyperphosphorylation, neuroinflammation, and other neuropathological features consistent with AD. Virulence factors, such as gingipains and lipopolysaccharides, were shown to be implicated in blood-brain barrier disruption, neuroinflammation, and neuronal damage. P. gingivalis-derived outer membrane vesicles may serve to disseminate virulence factors to brain tissues. Indirect mechanisms, including systemic inflammation triggered by chronic periodontal infections, are also supposed to exacerbate neurodegenerative processes. While the exact pathways remain uncertain, studies detecting P. gingivalis virulence factors and its other components in AD-affected brains support their possible role in disease pathogenesis. This review underscores the need for further investigation into P. gingivalis-mediated mechanisms and their interplay with host responses. Understanding these interactions could provide critical insights into novel strategies for reducing AD risk through periodontal disease management.
Collapse
Affiliation(s)
- Ivana Shawkatova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia; (V.D.); (J.J.)
| | | | | |
Collapse
|
3
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Liccardo D, Valletta A, Spagnuolo G, Vinciguerra C, Lauria MR, Perrotta A, Del Giudice C, De Luca F, Rengo G, Rengo S, Rengo C, Cannavo A. Porphyromonas gingivalis virulence factors induce toxic effects in SH-SY5Y neuroblastoma cells: GRK5 modulation as a protective strategy. J Biotechnol 2024; 393:7-16. [PMID: 39033880 DOI: 10.1016/j.jbiotec.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer's disease (AD), remain unclear. This study assessed the effects of Pg's virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels. In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Maria Rosaria Lauria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessia Perrotta
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Francesca De Luca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; Istituti Clinici Scientifici Maugeri IRCCS - Scientific Institute of Telese Terme (BN), Italy
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carlo Rengo
- Dental School of Periodontology, University of Naples Federico II, Napoli 80127, Italy.
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
5
|
Song M, Zhuge Y, Tu Y, Liu J, Liu W. The Multifunctional Role of KCNE2: From Cardiac Arrhythmia to Multisystem Disorders. Cells 2024; 13:1409. [PMID: 39272981 PMCID: PMC11393857 DOI: 10.3390/cells13171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The KCNE2 protein is encoded by the kcne2 gene and is a member of the KCNE protein family, also known as the MinK-related protein 1 (MiRP1). It is mostly present in the epicardium of the heart and gastric mucosa, and it is also found in the thyroid, pancreatic islets, liver and lung, among other locations, to a lesser extent. It is involved in numerous physiological processes because of its ubiquitous expression and partnering promiscuity, including the modulation of voltage-dependent potassium and calcium channels involved in cardiac action potential repolarization, and regulation of secretory processes in multiple epithelia, such as gastric acid secretion, thyroid hormone synthesis, generation and secretion of cerebrospinal fluid. Mutations in the KCNE2 gene or aberrant expression of the protein may play a critical role in cardiovascular, neurological, metabolic and multisystem disorders. This article provides an overview of the advancements made in understanding the physiological functions in organismal homeostasis and the pathophysiological consequences of KCNE2 in multisystem diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| | - Wenjuan Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| |
Collapse
|
6
|
Mandlik DS, Mandlik SK, S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer's disease: a novel therapeutic target. Int J Neurosci 2024; 134:603-619. [PMID: 36178363 DOI: 10.1080/00207454.2022.2130297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is an extremely popular neurodegenerative condition associated with dementia, responsible for around 70% of the cases. There are presently 50 million people living with dementia in the world, but this number is anticipated to increase to 152 million by 2050, posing a substantial socioeconomic encumbrance. Despite extensive research, the precise mechanisms that cause AD remain unidentified, and currently, no therapy is available. Numerous signalling paths related to AD neuropathology, including glycogen synthase kinase 3-β (GSK-3β), have been investigated as potential targets for the treatment of AD in current years.GSK-3β is a proline-directed serine/threonine kinase that is linked to a variety of biological activities, comprising glycogen metabolism to gene transcription. GSK-3β is also involved in the pathophysiology of sporadic as well as familial types of AD, which has led to the development of the GSK3 theory of AD. GSK-3β is a critical performer in the pathology of AD because dysregulation of this kinase affects all the main symbols of the disease such as amyloid formation, tau phosphorylation, neurogenesis and synaptic and memory function. The current review highlights present-day knowledge of GSK-3β-related neurobiology, focusing on its role in AD pathogenesis signalling pathways. It also explores the possibility of targeting GSK-3β for the management of AD and offers an overview of the present research work in preclinical and clinical studies to produce GSK-3β inhibitors.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Arulmozhi S
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| |
Collapse
|
7
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Demirel D, Ozkaya FC, Ebrahim W, Sokullu E, Sahin ID. Aspergillus Carneus metabolite Averufanin induced cell cycle arrest and apoptotic cell death on cancer cell lines via inducing DNA damage. Sci Rep 2023; 13:6460. [PMID: 37081051 PMCID: PMC10119153 DOI: 10.1038/s41598-023-30775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Current treatment methods include hormone therapy, γ-radiation, immunotherapy, and chemotherapy. Although chemotherapy is the most effective treatment, there are major obstacles posed by resistance mechanisms of cancer cells and side-effects of the drugs, thus the search for novel anti-cancer compounds, especially from natural sources, is crucial for cancer pharmaceutics research. One natural source worthy of investigation is fungal species. In this study, the cytotoxicity of 5 metabolic compounds isolated from filamentous fungus Aspergillus Carneus. Arugosin C, Averufin, Averufanin, Nidurifin and Versicolorin C were analyzed using NCI-SRB assay on 10 different cell lines of breast cancer, ovarian cancer, glioblastoma and non-tumorigenic cell lines. Averufanin showed highest cytotoxicity with lowest IC50 concentrations especially on breast cancer cells. Therefore, Averufanin was further investigated to enlighten cell death and molecular mechanisms of action involved. Cell cycle analysis showed increase in SubG1 phase suggesting apoptosis induction which was further confirmed by Annexin V and Caspase 3/7 Assays. H2A.X staining revealed accumulation of DNA damage in cells treated with Averufanin and finally western blot analysis validated DNA damage response and downstream effects of Averufanin treatment in various signaling pathways. Consequently, this study shows that Averufanin compound induces cell cycle arrest and cell death via apoptosis through causing DNA damage and can be contemplated and further explored as a new therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Deren Demirel
- Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Ferhat Can Ozkaya
- Aliaga Industrial Zone Technology Transfer Office, Aliaga, 35800, İzmir, Turkey
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Emel Sokullu
- Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey.
- Koc University, School of Medicine, Sariyer, 34450, Istanbul, Turkey.
| | - Irem Durmaz Sahin
- Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey.
- Koc University, School of Medicine, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
9
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
10
|
Sollazzo M, De Luise M, Lemma S, Bressi L, Iorio M, Miglietta S, Milioni S, Kurelac I, Iommarini L, Gasparre G, Porcelli AM. Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS J 2022; 289:8003-8019. [PMID: 34606156 PMCID: PMC10078660 DOI: 10.1111/febs.16218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023]
Abstract
Mitochondria act as key organelles in cellular bioenergetics and biosynthetic processes producing signals that regulate different molecular networks for proliferation and cell death. This ability is also preserved in pathologic contexts such as tumorigenesis, during which bioenergetic changes and metabolic reprogramming confer flexibility favoring cancer cell survival in a hostile microenvironment. Although different studies epitomize mitochondrial dysfunction as a protumorigenic hit, genetic ablation or pharmacological inhibition of respiratory complex I causing a severe impairment is associated with a low-proliferative phenotype. In this scenario, it must be considered that despite the initial delay in growth, cancer cells may become able to resume proliferation exploiting molecular mechanisms to overcome growth arrest. Here, we highlight the current knowledge on molecular responses activated by complex I-defective cancer cells to bypass physiological control systems and to re-adapt their fitness during microenvironment changes. Such adaptive mechanisms could reveal possible novel molecular players in synthetic lethality with complex I impairment, thus providing new synergistic strategies for mitochondrial-based anticancer therapy.
Collapse
Affiliation(s)
- Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Licia Bressi
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Iorio
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sara Milioni
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Interdepartmental Center for Industrial Research (CIRI) Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
11
|
Elmadbouh OHM, Pandol SJ, Edderkaoui M. Glycogen Synthase Kinase 3β: A True Foe in Pancreatic Cancer. Int J Mol Sci 2022; 23:14133. [PMID: 36430630 PMCID: PMC9696080 DOI: 10.3390/ijms232214133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3β is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3β creating confusion about the benefit of targeting GSK-3β for treating cancer. In this mini-review, we focus on the role of GSK-3β in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3β are not relevant to pancreatic cancer, and we argue why GSK-3β is, indeed, a very promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Omer H. M. Elmadbouh
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mouad Edderkaoui
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Li Y, Li X, Xu S, Zhao Y, Pang M, Zhang X, Wang X, Wang Y. 1,25-D3 attenuates cerebral ischemia injury by regulating mitochondrial metabolism via the AMPK/AKT/GSK3β pathway. Front Aging Neurosci 2022; 14:1015453. [PMID: 36325190 PMCID: PMC9618954 DOI: 10.3389/fnagi.2022.1015453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The brain injury caused by cerebral ischemia-reperfusion is related to mitochondrial damage. Maintaining the normal function of mitochondria, promoting angiogenesis, protecting neuronal cells, and resisting oxidative stress are the keys to functional recovery after acute ischemic stroke. In this study, we established a middle cerebral artery occlusion (MCAO) model and investigated the effects of 1α,25-dihydroxyvitamin D3 (VitD or 1,25-D3) on mitochondrial function via the adenosine 5'-monophosphate-activated protein kinase (AMPK)/protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway in rats with cerebral ischemia-reperfusion injury. The neurological function and infarct size were measured in each group. Hematoxylin-eosin, neuronal nucleus, and Nissl staining procedures were conducted to observe the morphology and number of the cerebral cortical neurons. Western blotting was then used to analyze p-AMPK, vitamin D receptor (VDR), p-GSK-3β, p-AKT, P53, cytochrome C (CytC), TGF-β, and vascular endothelial growth factor (VEGF) in mitochondria. Immunofluorescence staining was used to observe the expression of CytC and caspase-3. Succinate dehydrogenase, ATPase, reactive oxygen species, and malondialdehyde were detected by kits. RT-qPCR was used to analyze TGF-β, VEGF, P53, and CytC mRNA. The results revealed that the cerebral infarct volume, neurological function score, apoptotic protein P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde were significantly increased in MCAO rats. 1,25-D3 reduced the infarct size and neurological function score, activated VDR, upregulated TGF-β, p-AMPK, p-AKT, p-GSK-3β, VEGF, ATP, and succinate dehydrogenase, and downregulated P53, CytC, caspase-3, reactive oxygen species, and malondialdehyde. As an antagonist of VDRs, pyridoxal-5-phosphate could partially block the neuroprotective effect of 1,25-D3. In conclusion, 1,25-D3 activated AMPK/AKT/GSK-3β signaling and VDRs, inhibited P53, CytC, and caspase-3, increased TGF-β and VEGF, regulated mitochondrial metabolism, reduced neuronal apoptosis, promoted vascular growth, and exerted neuroprotective effects. These findings suggest that this signaling pathway may be an effective target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yutian Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuangli Xu
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yingzhe Zhao
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Meng Pang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaojun Zhang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
- Xuejian Wang
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yanqiang Wang ;
| |
Collapse
|
13
|
Wan X, Chen S, Li P, Zhao T, Xie S, Fang Y. Sinensetin protects against pulmonary fibrosis via inhibiting Wnt/β-Catenin signaling pathway. Tissue Cell 2022; 78:101866. [DOI: 10.1016/j.tice.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
|
14
|
Mehta PM, Gimenez G, Walker RJ, Slatter TL. Reduction of lithium induced interstitial fibrosis on co-administration with amiloride. Sci Rep 2022; 12:14598. [PMID: 36028651 PMCID: PMC9418221 DOI: 10.1038/s41598-022-18825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term administration of lithium is associated with chronic interstitial fibrosis that is partially reduced with exposure to amiloride. We examined potential pathways of how amiloride may reduce interstitial fibrosis. Amiloride was administered to a rat model of lithium induced interstitial fibrosis over a long term (6 months), as well as for short terms of 14 and 28 days. Kidney cortical tissue was subjected to RNA sequencing and microRNA expression analysis. Gene expression changes of interest were confirmed using immunohistochemistry on kidney tissue. Pathways identified by RNA sequencing of kidney tissue were related to 'promoting inflammation' for lithium and 'reducing inflammation' for amiloride. Validation of candidate genes found amiloride reduced inflammatory components induced by lithium including NF-κB/p65Ser536 and activated pAKTSer473, and increased p53 mediated regulatory function through increased p21 in damaged tubular epithelial cells. Amiloride also reduced the amount of Notch1 positive PDGFrβ pericytes and infiltrating CD3 cells in the interstitium. Thus, amiloride attenuates a multitude of pro-inflammatory components induced by lithium. This suggests amiloride could be repurposed as a possible anti-inflammatory, anti-fibrotic agent to prevent or reduce the development of chronic interstitial fibrosis.
Collapse
Affiliation(s)
- Paulomi M Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
15
|
Xu B, Li F, Zhang W, Su Y, Tang L, Li P, Joshi J, Yang A, Li D, Wang Z, Wang S, Xie J, Gu H, Zhu W. Identification of metabolic pathways underlying FGF1 and CHIR99021-mediated cardioprotection. iScience 2022; 25:104447. [PMID: 35707727 PMCID: PMC9189130 DOI: 10.1016/j.isci.2022.104447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Acute myocardial infarction is a leading cause of death worldwide. We have previously identified two cardioprotective molecules — FGF1 and CHIR99021— that confer cardioprotection in mouse and pig models of acute myocardial infarction. Here, we aimed to determine if improved myocardial metabolism contributes to this cardioprotection. Nanofibers loaded with FGF1 and CHIR99021 were intramyocardially injected to ischemic myocardium of adult mice immediately following surgically induced myocardial infarction. Animals were euthanized 3 and 7 days later. Our data suggested that FGF1/CHIR99021 nanofibers enhanced the heart’s capacity to utilize glycolysis as an energy source and reduced the accumulation of branched-chain amino acids in ischemic myocardium. The impact of FGF1/CHIR99021 on metabolism was more obvious in the first three days post myocardial infarction. Taken together, these findings suggest that FGF1/CHIR99021 protects the heart against ischemic injury via improving myocardial metabolism which may be exploited for treatment of acute myocardial infarction in humans. FGF1/CHIR confer cardioprotection in myocardial infarction animals FGF1/CHIR enhance the capability of ischemic hearts to produce energy via glycolysis FGF1/CHIR reduce the abundance of branched chain amino acids in ischemic hearts This study reveals a novel approach to correct metabolic disorders in ischemic hearts
Collapse
Affiliation(s)
- Bing Xu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259.,Department of Cardiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fan Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259.,Department of Kinesiology, South China Normal University, Guangzhou 510631, China
| | - Wenjing Zhang
- Center for Translational Science, Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Yajuan Su
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ling Tang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Aaron Yang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| | - Zhao Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Jingwei Xie
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haiwei Gu
- Center for Translational Science, Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, USA 85259
| |
Collapse
|
16
|
Maschio DA, Hernandes LHP, Alvares LE, Marques-Souza H, Collares-Buzato CB. Differential expression of regulators of the canonical Wnt pathway during the compensatory beta-cell hyperplasia in prediabetic mice. Biochem Biophys Res Commun 2022; 611:183-189. [DOI: 10.1016/j.bbrc.2022.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
17
|
Obukhova L, Nikiforova O, Kontorshchikova C, Medyanik I, Orlinskaya N, Grishin A, Kontorshchikov M, Shchelchkova N. Carbohydrate Metabolism Parameters of Adult Glial Neoplasms According to Immunohistochemical Profile. Biomedicines 2022; 10:biomedicines10051007. [PMID: 35625744 PMCID: PMC9138280 DOI: 10.3390/biomedicines10051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
This research aimed to investigate the interrelationship of carbohydrate metabolism parameters and immunohistochemical characteristics of glial tumors. Tumor tissue, peritumoral area, and adjacent noncancerous tissue fragments of 20 patients with gliomas of varying degrees of anaplasia were analyzed. The greatest differences in the carbohydrate metabolism compared to adjacent noncancerous tissues were identified in the tumor tissue: reduction in the levels of lactate and glycogen synthase kinase-3β. Significant differences with adjacent noncancerous tissues for the peritumoral zone were not found. The activity of the carbohydrate metabolism enzymes was different depending on the immunohistochemical glioma profile, especially from Ki 67 level. Bioinformatic analysis of the interactions of immunohistochemical markers of gliomas and carbohydrate metabolism enzymes using the databases of STRING, BioGrid, and Signor revealed the presence of biologically significant interactions with glycogen synthase kinase 3β, hexokinase, glucose-6-phosphate dehydrogenase, and transketolase. The established interconnection of glycolysis with methylation of the promoter of O-6-methylguanine-DNA-methyltransferase (MGMT) of gliomas can be used to increase chemotherapy efficiency.
Collapse
|
18
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Fang Y, Chen B, Liu Z, Gong AY, Gunning WT, Ge Y, Malhotra D, Gohara AF, Dworkin LD, Gong R. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J Clin Invest 2022; 132:141848. [PMID: 35166234 PMCID: PMC8843754 DOI: 10.1172/jci141848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
As life expectancy continues to increase, clinicians are challenged by age-related renal impairment that involves podocyte senescence and glomerulosclerosis. There is now compelling evidence that lithium has a potent antiaging activity that ameliorates brain aging and increases longevity in Drosophila and Caenorhabditis elegans. As the major molecular target of lithium action and a multitasking protein kinase recently implicated in a variety of renal diseases, glycogen synthase kinase 3β (GSK3β) is overexpressed and hyperactive with age in glomerular podocytes, correlating with functional and histological signs of kidney aging. Moreover, podocyte-specific ablation of GSK3β substantially attenuated podocyte senescence and glomerular aging in mice. Mechanistically, key mediators of senescence signaling, such as p16INK4A and p53, contain high numbers of GSK3β consensus motifs, physically interact with GSK3β, and act as its putative substrates. In addition, therapeutic targeting of GSK3β by microdose lithium later in life reduced senescence signaling and delayed kidney aging in mice. Furthermore, in psychiatric patients, lithium carbonate therapy inhibited GSK3β activity and mitigated senescence signaling in urinary exfoliated podocytes and was associated with preservation of kidney function. Thus, GSK3β appears to play a key role in podocyte senescence by modulating senescence signaling and may be an actionable senostatic target to delay kidney aging.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Chen
- Division of Nephrology, Department of Medicine and.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Yan Ge
- Division of Nephrology, Department of Medicine and
| | | | | | - Lance D Dworkin
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine and.,Center for Hypertension and Precision Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.,Division of Kidney Disease and Hypertension, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
20
|
Poloznikov A, Nikulin S, Bolotina L, Kachmazov A, Raigorodskaya M, Kudryavtseva A, Bakhtogarimov I, Rodin S, Gaisina I, Topchiy M, Asachenko A, Novosad V, Tonevitsky A, Alekseev B. 9-ING-41, a Small Molecule Inhibitor of GSK-3β, Potentiates the Effects of Chemotherapy on Colorectal Cancer Cells. Front Pharmacol 2021; 12:777114. [PMID: 34955846 PMCID: PMC8696016 DOI: 10.3389/fphar.2021.777114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and lethal types of cancer. Although researchers have made significant efforts to study the mechanisms underlying CRC drug resistance, our knowledge of this disease is still limited, and novel therapies are in high demand. It is urgent to find new targeted therapy considering limited chemotherapy options. KRAS mutations are the most frequent molecular alterations in CRC. However, there are no approved K-Ras targeted therapies for these tumors yet. GSK-3β is demonstrated to be a critically important kinase for the survival and proliferation of K-Ras–dependent pancreatic cancer cells. In this study, we tested combinations of standard-of-care therapy and 9-ING-41, a small molecule inhibitor of GSK-3β, in CRC cell lines and patient-derived tumor organoid models of CRC. We demonstrate that 9-ING-41 inhibits the growth of CRC cells via a distinct from chemotherapy mechanism of action. Although molecular biomarkers of 9-ING-41 efficacy are yet to be identified, the addition of 9-ING-41 to the standard-of-care drugs 5-FU and oxaliplatin could significantly enhance growth inhibition in certain CRC cells. The results of the transcriptomic analysis support our findings of cell cycle arrest and DNA repair deficiency in 9-ING-41–treated CRC cells. Notably, we find substantial similarity in the changes of the transcriptomic profile after inhibition of GSK-3β and suppression of STK33, another critically important kinase for K-Ras–dependent cells, which could be an interesting point for future research. Overall, the results of this study provide a rationale for the further investigation of GSK-3 inhibitors in combination with standard-of-care treatment of CRC.
Collapse
Affiliation(s)
- Andrey Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Larisa Bolotina
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Andrei Kachmazov
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| | | | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ildar Bakhtogarimov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Rodin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, United States
| | - Maxim Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Victor Novosad
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia.,Scientific Research Centre Bioclinicum, Moscow, Russia.,Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Boris Alekseev
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
Kumari S, Singh A, Singh AK, Yadav Y, Bajpai S, Kumar P, Upadhyay AD, Shekhar S, Dwivedi S, Dey AB, Dey S. Circulatory GSK-3β: Blood-Based Biomarker and Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2021; 85:249-260. [PMID: 34776454 DOI: 10.3233/jad-215347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the progressive brain disorder which degenerates brain cells connection and causes memory loss. Although AD is irreversible, it is not impossible to arrest or slow down the progression of the disease. However, this would only be possible if the disease is diagnosed at an early stage, and early diagnosis requires clear understanding of the pathogenesis at molecular level. Overactivity of GSK-3β and p53 accounts for tau hyperphosphorylation and the formation of amyloid-β plaques. OBJECTIVE Here, we explored GSK-3β and p53 as blood-based biomarkers for early detection of AD. METHODS The levels of GSK-3β, p53, and their phosphorylated states were measured using surface plasmon resonance and verified using western blot in serum from AD, mild cognitive impairment (MCI), and geriatric-control (GC) subjects. The neurotoxic SH-SY5Y cell line was treated with antioxidant Emblica Officinalis (EO) for rescue effect. RESULTS GSK-3β, p53, and their phosphorylated states were significantly over expressed (p > 0.001) in AD and MCI compared to GC and can differentiate AD and MCI from GC. The expression level of GSK-3β and p53 proteins were found to be downregulated in a dose-dependent manner after the treatment with EO in amyloid-b-induced neurotoxic cells. CONCLUSION These proteins can serve as potential blood markers for the diagnosis of AD and EO can suppress their level. This work has translational value and clinical utility in the future.
Collapse
Affiliation(s)
- Shiwani Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ambica Singh
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Yudhishthir Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Bajpai
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Shekhar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Sun CP, Zhang XY, Zhou JJ, Huo XK, Yu ZL, Morisseau C, Hammock BD, Ma XC. Inhibition of sEH via stabilizing the level of EETs alleviated Alzheimer's disease through GSK3β signaling pathway. Food Chem Toxicol 2021; 156:112516. [PMID: 34411643 DOI: 10.1016/j.fct.2021.112516] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by dementia. Inhibition of soluble epoxide hydrolase (sEH) regulates inflammation involving in central nervous system (CNS) diseases. However, the exactly mechanism of sEH in AD is still unclear. In this study, we evaluated the vital role of sEH in amyloid beta (Aβ)-induced AD mice, and revealed a possible molecular mechanism for inhibition of sEH in the treatment of AD. The results showed that the sEH expression and activity were remarkably increased in the hippocampus of Aβ-induced AD mice. Chemical inhibition of sEH by TPPU, a selective sEH inhibitor, alleviated spatial learning and memory deficits, and elevated levels of neurotransmitters in Aβ-induced AD mice. Furthermore, inhibition of sEH could ameliorate neuroinflammation, neuronal death, and oxidative stress via stabilizing the in vivo level of epoxyeicosatrienoic acids (EETs), especially 8,9-EET and 14,15-EET, further resulting in the anti-AD effect through the regulation of GSK3β-mediated NF-κB, p53, and Nrf2 signaling pathways. These findings revealed the underlying mechanism of sEH as a potential therapeutic target in treatment of AD.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xin-Yue Zhang
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jun-Jun Zhou
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhen-Long Yu
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States.
| | - Xiao-Chi Ma
- The Second Affiliated Hospital, College of Pharmacy, Institute of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| |
Collapse
|
23
|
Tufekci KU, Alural B, Tarakcioglu E, San T, Genc S. Lithium inhibits oxidative stress-induced neuronal senescence through miR-34a. Mol Biol Rep 2021; 48:4171-4180. [PMID: 34052966 DOI: 10.1007/s11033-021-06430-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Neuronal senescence, triggered by telomere shortening, oncogene activation, DNA damage, or oxidative stress, has been associated with neurodegenerative diseases' pathogenesis. Therefore, preventing neuronal senescence could be a novel treatment strategy for neurodegenerative diseases. Lithium (Li), the first-line treatment against bipolar disorder, has been shown to have neuroprotective effects in clinical, pre-clinical, and in vitro studies. Li can protect cells from senescence, and its effect on neuronal senescence was investigated in our study. Furthermore, we also investigated the effects of Li on the senescence-associated miR-34a/Sirt1/p53 pathway. In this study, hydrogen peroxide was used as an inducer for the "stress-induced premature senescence" model. In the senescence model, we have assessed Li's effects on senescence by analyzing β-galactosidase activity, Sudan Black B, and senescence-associated heterochromatin foci (SAHF) stainings, and on cell cycle arrest by BrdU staining. Furthermore, expression levels of senescence and cell cycle arrest-related proteins (p53, p21, p16INK4a, and SIRT1) by western blotting. Finally, the effects of Li on senescence-associated miR-34a levels were measured by quantitative PCR. We show via Sudan Black B staining, β-Gal activity assay, and by detecting SAHF, Li protects against senescence in neuronal cells. Then, Li's effect on signaling has also been determined on pathways involved in senescence and cell cycle arrest. Moreover, we have observed that Li has a modulatory effect on miR-34a expression. Therefore, we posit that Li suppresses senescence in neuronal cells and that this effect is mediated through miR-34a/Sirt1/p53 axis.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Healthcare Sevices, Vocational School of Health Services, Izmir Democracy University, 35290, Izmir, Turkey
| | - Begum Alural
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Emre Tarakcioglu
- Izmir Biomedicine and Genome Center, Balcova, 35330, Izmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tugba San
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Balcova, 35330, Izmir, Turkey. .,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey. .,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
24
|
Moore NS, Mans RA, McCauley MK, Allgood CS, Barksdale KA. Critical Effects on Akt Signaling in Adult Zebrafish Brain Following Alterations in Light Exposure. Cells 2021; 10:cells10030637. [PMID: 33809219 PMCID: PMC8000057 DOI: 10.3390/cells10030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Evidence from human and animal studies indicate that disrupted light cycles leads to alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and generalized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the optic tectum, a significant visual processing center with extensive telencephalon connections. The expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly decreased in optic tectum of adult zebrafish brain following four days of altered light exposure. Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environmental enrichment showed significant increase in pSer473Akt, which was significantly attenuated by four days of altered light exposure. These data show for the first time that unpredictable light exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.
Collapse
|
25
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
26
|
Sahranavard T, Carbone F, Montecucco F, Xu S, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of potassium in atherosclerosis. Eur J Clin Invest 2021; 51:e13454. [PMID: 33216974 DOI: 10.1111/eci.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory condition with a leading prevalence worldwide. Endothelial dysfunction leads to low-density lipoprotein trafficking into subendothelial space and the subsequent form of oxidized LDL (ox-LDL) within intimal layer, perpetuating the vicious cycle of endothelial dysfunction. K+ exerts beneficial effects in vascular wall by reducing LDL oxidization, vascular smooth muscle cells (VSMCs) proliferation, and free radical generation. K+ also modulates vascular tone through a regulatory effect on cell membrane potential. MATERIALS AND METHODS The most relevant papers on the association between 'potassium channels' and 'atherosclerosis' were selected among those deposited on PubMed from 1990 to 2020. RESULTS Here, we provide a short narrative review that elaborates on the role of K+ in atherosclerosis. This review also update the current knowledge about potential pharmacological agents targeting K+ channels with a special focus on pleiotropic activities of agents such as statins, sulfonylureas and dihydropyridines. CONCLUSION In this review, the mechanism of different K+ channels on vascular endothelium will be summarized, mainly focusing on their pathophysiological role in atherosclerosis and potential therapeutic application.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
27
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
28
|
He R, Du S, Lei T, Xie X, Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 2020; 44:2373-2385. [PMID: 33125126 PMCID: PMC7610307 DOI: 10.3892/or.2020.7817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
Collapse
Affiliation(s)
- Rui He
- Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Tiantian Lei
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China
| | - Xiaofang Xie
- Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yi Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
- Center of Translational Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
29
|
The roles of resveratrol on cardiac mitochondrial function in cardiac diseases. Eur J Nutr 2020; 60:29-44. [PMID: 32372266 DOI: 10.1007/s00394-020-02256-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Left ventricular (LV) dysfunction is commonly associated with a variety of health conditions including acute myocardial infarction and obesity/diabetes. In addition, administration of several pharmacological agents such as anticancer, antiviral, and immunosuppressive drugs has been shown to be related with LV dysfunction. The molecular mechanism responsible for LV dysfunction has been extensively studied, and it has been proposed that the overproduction of reactive oxygen species (ROS) plays a crucial role in the regulation of this function. Mitochondria require the balance between ROS production and antioxidants to maintain their appropriate function and to prevent excessive ROS production. Thus, the excessive production of ROS and the reduced scavenging process under any pathological conditions could disrupt mitochondrial function, leading to energy depletion with subsequent cell death. Therefore, maintenance of the balance between oxidative stress and antioxidants is essential. Resveratrol, a stilbene, has been investigated extensively, and potentially used to treat or prevent various cardiovascular diseases. Resveratrol directly upregulates antioxidative capacity by increasing antioxidant genes such as heme oxygenase-1, superoxide dismutase, catalase, and glutathione. In this review, accumulated data from in vitro, ex vivo, and in vivo studies regarding the effects of resveratrol on cardiac mitochondrial function in cardiac pathologies are comprehensively summarized and discussed. Since there is no conclusive available clinical study regarding the effects of resveratrol on cardiac mitochondrial function, this review also aims to encourage more clinical investigations to confirm findings from basic research. This comprehensive review will provide insight regarding the potential mechanistic roles of resveratrol in preventing and/or treating patients with cardiovascular diseases to improve LV function and their health status.
Collapse
|
30
|
Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020; 164:107900. [DOI: 10.1016/j.neuropharm.2019.107900] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/14/2019] [Accepted: 11/30/2019] [Indexed: 11/23/2022]
|
31
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
32
|
Zhang W, Tocmo R, Parkin KL. Synergistic effects of S-alkenylmercaptocysteine (CySSR) species derived from Allium tissue and selenium on inducing apoptosis in ER− breast cancer cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Guo Y, Wei L, Zhou Y, Lu N, Tang X, Li Z, Wang X. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic Biol Med 2020; 146:119-129. [PMID: 31669347 DOI: 10.1016/j.freeradbiomed.2019.10.413] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Energy metabolism plays important roles in the growth and survival of cancer cells. Here, we find a newly synthesized flavonoid named GL-V9, which inhibits glycolysis and induces apoptosis of human breast cancer cell lines, and investigate the underlying mechanism. Results show that hexokinase II (HKII) plays important roles in the anticancer effects of GL-V9. GL-V9 not only downregulates the expression of HKII in MDA-MB-231 and MCF-7 cells, but also induces dissociation of HKII from voltage-dependent anion channel (VDAC) in mitochondria, resulting in glycolytic inhibition and mitochondrial-mediated apoptosis. The dissociation of mitochondrial HKII is attributed to GSK-3β-induced phosphorylation of mitochondrial VDAC. Our in vivo experiments also show that GL-V9 significantly inhibits the growth of human breast cancer due to activation of GSK-3β and inactivation of AKT. Thus, GL-V9 induces cytotoxicity in breast cancer cells via disrupting the mitochondrial binding of HKII. Our works demonstrate the significance of metabolic regulators in cancer growth and offer a fresh insight into the molecular basis for the development of GL-V9 as a candidate for breast carcinoma treatment.
Collapse
Affiliation(s)
- Yongjian Guo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoqing Tang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
34
|
Sahin ID, Jönsson JM, Hedenfalk I. Crizotinib and PARP inhibitors act synergistically by triggering apoptosis in high-grade serous ovarian cancer. Oncotarget 2019; 10:6981-6996. [PMID: 31857852 PMCID: PMC6916751 DOI: 10.18632/oncotarget.27363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant and most lethal histological type of epithelial ovarian cancer. During the last few years, several new treatment options with PARP inhibitors have emerged. The FDA has approved the PARP inhibitor olaparib (Lynparza™) as maintenance treatment after first-line platinum-containing chemotherapy and olaparib, niraparib (Zejula™) and rucaparib (Rubraca™) are approved as maintenance therapies in the recurrent, platinum-sensitive setting; nevertheless, development of resistance limits their efficacy. In this study, new combinatorial treatment strategies targeting key signaling pathways were explored to enhance the activity of PARP inhibitors in HGSOC. Carboplatin, olaparib, niraparib, the PI3K inhibitor LY294002 and the c-Met inhibitor crizotinib were used for this investigation. PARP inhibitors and carboplatin alone and in combination caused accumulation of DNA double-strand breaks and G2/M cell cycle arrest. In contrast, crizotinib alone or in combination with PARP inhibitors induced accumulation of cells in sub-G1. Crizotinib together with either of the PARP inhibitors was more strongly synergistic than combinations with a PARP inhibitor and carboplatin or the PI3K inhibitor. Sequential combination of crizotinib and a PARP inhibitor resulted in activation of ATM/CHK2 and inhibition of c-Met pathways, contributing to a decrease in RAD51 levels and induction of caspase-3 dependent apoptotic cell death and suggesting that the combination of crizotinib with a PARP inhibitor may be considered and further explored as a new therapeutic strategy in HGSOC.
Collapse
Affiliation(s)
- Irem Durmaz Sahin
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- School of Medicine, Koç University, Istanbul, Turkey
| | - Jenny-Maria Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
35
|
Rouhani M, Ramshini S, Omidi M. The Psychiatric Drug Lithium Increases DNA Damage and Decreases Cell Survival in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines Expos ed to Ionizing Radiation. Curr Mol Pharmacol 2019; 12:301-310. [DOI: 10.2174/1874467212666190503151753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Background:
Breast cancer is the most common cancer among women. Radiation therapy
is used for treating almost every stage of breast cancer. A strategy to reduce irradiation side effects and
to decrease the recurrence of cancer is concurrent use of radiation and radiosensitizers. We studied the
effect of the antimanic drug lithium on radiosensitivity of estrogen-receptor (ER)-positive MCF-7 and
ER-negative, invasive, and radioresistant MDA-MB-231 breast cancer cell lines.
Methods:
MCF-7 and MDA-MB-231 breast cancer cell lines were treated with 30 mM and 20 mM
concentrations of lithium chloride (LiCl), respectively. These concentrations were determined by
MTT viability assay. Growth curves were depicted and comet assay was performed for control and
LiCl-treated cells after exposure to X-ray. Total and phosphorylated inactive levels of glycogen
synthase kinase-3beta (GSK-3β) protein were determined by ELISA assay for control and treated
cells.
Results:
Treatment with LiCl decreased cell proliferation after exposure to X-ray as indicated by
growth curves of MCF-7 and MDA-MB-231 cell lines within six days following radiation. Such
treatment increased the amount of DNA damages represented by percent DNA in Tails of comets at
0, 1, 4, and even 24 hours after radiation in both studied cell lines. The amount of active GSK-3β
was increased in LiCl-treated cells in ER-positive and ER-negative breast cancer cell lines.
Conclusion:
Treatment with LiCl that increased the active GSK-3β protein, increased DNA damages
and decreased survival independent of estrogen receptor status in breast cancer cells exposed to
ionizing radiation.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Ramshini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Omidi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
36
|
An expanding GSK3 network: implications for aging research. GeroScience 2019; 41:369-382. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
The last few decades of longevity research have been very exciting. We now know that longevity and healthspan can be manipulated across species, from unicellular eukaryotes to nonhuman primates, and that while aging itself is inevitable, how we age is malleable. Numerous dietary, genetic, and pharmacological studies now point to links between metabolism and growth regulation as a central aspect in determining longevity and, perhaps more importantly, health with advancing age. Here, we focus on a relatively new player in aging studies GSK3, glycogen synthase kinase, a key factor in growth and metabolism whose name fails to convey the extensive breadth of its role in cellular adaptation. First, we provide a brief overview of GSK3, touching on those aspects that are likely relevant to aging. Then, we outline the role of GSK3 in cellular functions including growth signaling, cell fate, and metabolism. Next, we describe evidence demonstrating a direct role for GSK3 in a range of age-related diseases, despite the fact that they differ considerably in their etiology and pathology. Finally, we discuss the role that GSK3 may play in normative aging and how GSK3 might be a suitable target to oppose age-related disease vulnerability.
Collapse
|
37
|
Liu Y, Huang Y, Ding J, Liu N, Peng S, Wang J, Wang F, Zhang Y. Targeting Akt by SC66 triggers GSK-3β mediated apoptosis in colon cancer therapy. Cancer Cell Int 2019; 19:124. [PMID: 31168297 PMCID: PMC6509835 DOI: 10.1186/s12935-019-0837-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Colon cancer is one of the three common malignant tumors, with lower 5 years survival rate. Akt is an important therapeutic target, while SC66 is a novel allosteric AKT inhibitor, which enhances the therapeutic effect in several types of cancer. However, the molecular mechanisms of targeting AKT by SC66 during colon cancer therapy are not well understood. Methods The biological role of GSK-3β in colon cancer growth suppression induced by SC66 was detected in vitro and in vivo. Hoechst 33342 and crystal violet staining were used to determine whether targeting AKT affected apoptosis and cell proliferation. The CCK8 assay was utilized to analyze cell viability. The expression levels of Akt, GSK-3β, Bax, Bcl-xL, p53 and PUMA were measured by immune blotting. Xenograft mouse model was established to study the antitumor effect of SC66 in vivo. Results Our results show that SC66 induced significantly colon cancer cell apoptosis, accompanied with Akt inactivation. After AKT inhibition, activated GSK-3β interacted with Bax directly, leading to Bax oligomerization and activation. Knocking down GSK-3β abrogated SC66-triggered Bax activation and apoptosis, which was enhanced by over-expressed GSK-3β. In addition, the expression level of Bcl-xL was down-regulated while p53 had no function during SC66-induced apoptosis. Furthermore, colon cancer growth was suppressed by SC66 therapy in vivo. Conclusion Taken together, these data indicated that the novel small molecule AKT inhibitor SC66 shows visible antitumor effects via the AKT/GSK-3β/Bax axis in vitro and in vivo. Our results provide a rational basis for the development of targeting-GSK-3β, which may serve as a potential biomarker and yield meaningful benefits for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yeying Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Yuan Huang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Jie Ding
- 3Department of Emergency Surgery, The Second Military Medical University, Shanghai, China
| | - Nannan Liu
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Shuang Peng
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China
| | - Feng Wang
- 2Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, College of Biology, Hunan University, No. 1, Denggao Road, Changsha, China.,4Shenzhen Institute, Hunan University, Shenzhen, China
| |
Collapse
|
38
|
Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol Cell Biochem 2019; 458:49-59. [DOI: 10.1007/s11010-019-03529-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
|
39
|
Deng S, Nie ZG, Peng PJ, Liu Y, Xing S, Long LS, Peng H. Decrease of GSK3β Ser-9 Phosphorylation Induced Osteoblast Apoptosis in Rat Osteoarthritis Model. Curr Med Sci 2019; 39:75-80. [DOI: 10.1007/s11596-019-2002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Indexed: 12/16/2022]
|
40
|
Wen J, Yan H, He M, Zhang T, Mu X, Wang H, Zhang H, Xia G, Wang C. GSK-3β protects fetal oocytes from premature death via modulating TAp63 expression in mice. BMC Biol 2019; 17:23. [PMID: 30866939 PMCID: PMC6417224 DOI: 10.1186/s12915-019-0641-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
Background Female mammals have a limited reproductive lifespan determined by the size of the primordial follicle pool established perinatally. Over two thirds of fetal oocytes are abolished via programmed cell death during early folliculogenesis. However, the underlying mechanisms governing fetal oocyte attrition remain largely elusive. Results Here, we demonstrate that glycogen synthase kinase-3 beta (GSK-3β) is indispensable for fetal oocyte maintenance during meiotic prophase I in mice. In vitro inhibition of GSK-3β activity or in vivo conditional deletion of Gsk-3β in the germline led to a dramatic loss of fetal oocytes via apoptosis, which subsequently resulted in a reduced capacity of the primordial follicle pool. Inhibition of GSK-3β also impeded meiotic progression in fetal oocytes and led to a deficiency in DNA double-strand break (DSB) repair associated with premature upregulation of Tap63, the major genome guardian of the female germline, following GSK-3β inhibition in fetal ovaries. Mechanistically, we demonstrated that aberrant nuclear translocation of β-catenin was responsible for the abnormal expression of TAp63 and global fetal oocyte attrition following GSK-3β inhibition. Conclusions In summary, GSK-3β was essential for sustaining fetal oocyte survival and folliculogenesis via fine-tuning the cytoplasmic-nuclear translocation of β-catenin, which in turn modulates timely TAp63 expression during meiotic prophase I in mice. Our study provides a perspective on the physiological regulatory role of DNA damage checkpoint signaling in fetal oocyte guardianship and female fertility. Electronic supplementary material The online version of this article (10.1186/s12915-019-0641-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, 361005, Fujian, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, 750021, Ningxia, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
41
|
Rana S, Datta R, Chaudhuri RD, Chatterjee E, Chawla-Sarkar M, Sarkar S. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway. Antioxid Redox Signal 2019; 30:713-732. [PMID: 29631413 DOI: 10.1089/ars.2017.7371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. RESULTS Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. INNOVATION Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. CONCLUSION PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.
Collapse
Affiliation(s)
- Santanu Rana
- 1 Department of Zoology, University of Calcutta, Kolkata, India
| | - Ritwik Datta
- 1 Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | - Mamta Chawla-Sarkar
- 2 Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
42
|
Conte M, Armani A, Conte G, Serra A, Franceschi C, Mele M, Sandri M, Salvioli S. Muscle-specific Perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy. J Cachexia Sarcopenia Muscle 2019; 10:95-110. [PMID: 30288961 PMCID: PMC6438344 DOI: 10.1002/jcsm.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Perilipin2 (Plin2) belongs to a family of five highly conserved proteins, known for their role in lipid storage. Recent data indicate that Plin2 has an important function in cell metabolism and is involved in several human pathologies, including liver steatosis and Type II diabetes. An association between Plin2 and lower muscle mass and strength has been found in elderly and inactive people, but its function in skeletal muscle is still unclear. Here, we addressed the role of Plin2 in adult muscle by gain and loss of function experiments. METHODS By mean of in vivo Plin2 down-regulation (shPlin2) and overexpression (overPlin2) in murine tibialis anterior muscle, we analysed the effects of Plin2 genetic manipulations on myofiber size and lipid composition. An analysis of skeletal muscle lipid composition was also performed in vastus lateralis samples from young and old patients undergoing hip surgery. RESULTS We found that Plin2 down-regulation was sufficient to induce a 30% increase of myofiber cross-sectional area, independently of mTOR pathway. Alterations of lipid content and modulation of genes involved in lipid synthesis occurred in hypertrophic muscles. In particular, we showed a decrease of triglycerides, ceramides, and phosphatidylcoline:phosphatidylethanolamine ratio, a condition known to impact negatively on muscle function. Plin2 overexpression did not change fibre size; however, lipid composition was strongly affected in a way that is similar to that observed in human samples from old patients. CONCLUSIONS Altogether these data indicate that Plin2 is a critical mediator for the control of muscle mass, likely, but maybe not exclusively, through its critical role in the regulation of intracellular lipid content and composition.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Armani
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | | | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res 2019; 11:625-636. [PMID: 30666159 PMCID: PMC6331075 DOI: 10.2147/cmar.s191353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Adriamycin (ADR) is widely used in the clinical chemotherapy against breast cancer. But its efficacy is strongly limited due to the acquisition of multidrug resistance (MDR). Therefore, acquisition of the resistance to ADR is still a major cause of chemotherapy failure in breast cancer patients. Peptidylarginine deiminase IV (PAD4) is reported to target non-histone proteins for citrullination, regulate their substrate activities, and thereby play critical roles in maintaining cell phenotype in breast cancer cells. However, whether PAD4 is involved in the development of MDR in breast cancer is poorly understood. Materials and methods We examined the expression of PAD family members, including PAD4 in ADR-resistant MCF-7 cells compared with the parental control cells by real-time PCR and Western blotting analyses. Rescue of PAD4 expression in MCF-7/ADR cells was performed to assess whether PAD4 could restore the sensitivity of MCF-7/ADR cells to ADR treatment with cell counting kit-8, flow cytometry, TUNEL, nuclear and cytoplasmic extract preparations, and immunofluorescence staining analyses. Results Both PAD2 and PAD4 were significantly decreased in ADR-resistant cells. However, only PAD4 overexpression can increase the sensitivity of MCF-7/ADR cells to ADR treatment and decrease MDR1 gene expression. Overexpression of PAD4 in MCF-7/ADR cells inhibited cell proliferation by inducing cell apoptosis. Under ADR treatment, overexpression of PAD4 promoted nuclear accumulation of glycogen synthase kinase-3β and p53, which further activated proapoptotic gene expression and downregulated MDR1 expression. Moreover, PAD4 activity was required for activating proapoptotic gene transcripts. Conclusion We demonstrate the previously unappreciated role of PAD4 in reversing ADR resistance in MCF-7/ADR cells and help establish PAD4 as a candidate biomarker of prognosis and chemotherapy target for MDR in breast cancers.
Collapse
Affiliation(s)
- Qianqian Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Chao Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Lixia Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
44
|
Gowthami N, Sunitha B, Kumar M, Keshava Prasad T, Gayathri N, Padmanabhan B, Srinivas Bharath M. Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. J Chem Neuroanat 2019; 95:13-28. [PMID: 29499254 DOI: 10.1016/j.jchemneu.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
|
45
|
Sizemore ST, Zhang M, Cho JH, Sizemore GM, Hurwitz B, Kaur B, Lehman NL, Ostrowski MC, Robe PA, Miao W, Wang Y, Chakravarti A, Xia F. Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Res 2018; 28:1090-1102. [PMID: 30297868 PMCID: PMC6218445 DOI: 10.1038/s41422-018-0086-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Resistance to genotoxic therapies is a primary cause of treatment failure and tumor recurrence. The underlying mechanisms that activate the DNA damage response (DDR) and allow cancer cells to escape the lethal effects of genotoxic therapies remain unclear. Here, we uncover an unexpected mechanism through which pyruvate kinase M2 (PKM2), the highly expressed PK isoform in cancer cells and a master regulator of cancer metabolic reprogramming, integrates with the DDR to directly promote DNA double-strand break (DSB) repair. In response to ionizing radiation and oxidative stress, ATM phosphorylates PKM2 at T328 resulting in its nuclear accumulation. pT328-PKM2 is required and sufficient to promote homologous recombination (HR)-mediated DNA DSB repair through phosphorylation of CtBP-interacting protein (CtIP) on T126 to increase CtIP's recruitment at DSBs and resection of DNA ends. Disruption of the ATM-PKM2-CtIP axis sensitizes cancer cells to a variety of DNA-damaging agents and PARP1 inhibition. Furthermore, increased nuclear pT328-PKM2 level is associated with significantly worse survival in glioblastoma patients. Combined, these data advocate the use of PKM2-targeting strategies as a means to not only disrupt cancer metabolism but also inhibit an important mechanism of resistance to genotoxic therapies.
Collapse
Affiliation(s)
- Steven T Sizemore
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ju Hwan Cho
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Gina M Sizemore
- Department of Cancer Biology & Genetics, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Brian Hurwitz
- Department of Neurological Surgery, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Balveen Kaur
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Department of Neurological Surgery, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Norman L Lehman
- Department of Pathology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Michael C Ostrowski
- Department of Cancer Biology & Genetics, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Rudolf Magnus Brain Institute, University Medical Center of Utrecht, Utrecht, The Netherlands
- Departments of Neurosurgery and Human Genetics, University of Liege, Liege, Belgium
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
46
|
Pan Y, Li P, Jia R, Wang M, Yin Z, Cheng A. Regulation of Apoptosis During Porcine Circovirus Type 2 Infection. Front Microbiol 2018; 9:2086. [PMID: 30233552 PMCID: PMC6131304 DOI: 10.3389/fmicb.2018.02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis by removing unnecessary or damaged cells. It contains three signaling pathways: the mitochondria-mediated pathway, the death receptor pathway and the endoplasmic reticulum pathway. The importance of apoptosis in host defenses is stressed by the observation that multiple viruses have evolved various strategies to inhibit apoptosis, thereby blunting the host immune responses and promoting viral propagation. Porcine Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed cell death. In this article, we review the latest research progress of the apoptosis mechanisms during infection with PCV2, including several proteins of PCV2 regulate apoptosis via interacting with host proteins and multiple signaling pathways involved in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and prevention of PCV2.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Pengfei Li
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
47
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
48
|
Yang LJ, Zhou M, Huang LB, Yang WR, Yang ZB, Jiang SZ, Ge JS. Zearalenone-Promoted Follicle Growth through Modulation of Wnt-1/β-Catenin Signaling Pathway and Expression of Estrogen Receptor Genes in Ovaries of Postweaning Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7899-7906. [PMID: 29986586 DOI: 10.1021/acs.jafc.8b02101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Feedstuffs are severely contaminated by zearalenone (ZEA) worldwide. A specific dietary level of ZEA could cause malformations of the reproductive organs of sows, false estrus, decreased litter size, and abortion. However, the underlying mechanisms are still not clear. The objectives of the present study were to assess the effects of ZEA on morphology, distribution, and expression of estrogen receptors (ERα and ERβ) in the ovaries of postweaning piglets. Furthermore, the relationship between ERs/glycogen synthase kinase (GSK)-3β-dependent pathways mediated by ZEA and the Wnt-1/β-catenin signaling pathway was examined. Forty healthy weaning piglets were allocated to the following four treatment groups: piglets fed with basal diet only (control), and ZEA0.5, ZEA1.0, and ZEA1.5, which were fed basal diets supplemented with ZEA at 0.5, 1.0, and 1.5 mg·kg-1, respectively. Then, the expression of GSK-3β, ERα, ERβ, and Wnt-1/β-catenin were examined histomorphologically and immunohistochemically. Results showed that the proportion of primordial follicles (PrF's) decreased ( p < 0.001) but that of atretic primordial follicles (APFs) increased ( p < 0.001) with increasing dietary ZEA levels. More interestingly, the immunopositivity of ERβ in the ovaries was stronger than that of ERα with the same treatment. The relative mRNA and protein expression levels of ERα, ERβ, Wnt-1, β-catenin, and GSK-3β in the ovaries of postweaning gilts increased linearly ( p < 0.05) as dietary ZEA concentrations increased. Moreover, the accumulation of Wnt-1 and β-catenin in the ovaries indicated that ZEA activated the Wnt-1/β-catenin pathway, mediated by ERs/GSK-3β. Our results strongly suggested that ovarian follicles in the ZEA (0.5-1.5 mg·kg-1)-treated groups were highly proliferative state, indicating that ZEA promoted ovarian development. The results also suggested that ZEA activates the ERs/GSK-3β-dependent Wnt-1/β-catenin signaling pathway, indicating its important role in accelerating development of the ovaries.
Collapse
Affiliation(s)
- Li-Jie Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Min Zhou
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Li-Bo Huang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Wei-Ren Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Zai-Bin Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Shu-Zhen Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Jin-Shan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd. , No. 226 Gongye 2 Road , Feicheng City , Shandong Province 271600 , P.R. China
| |
Collapse
|
49
|
Regulation of apoptotic and inflammatory signaling pathways in hepatocellular carcinoma via Caesalpinia gilliesii galactomannan. Mol Cell Biochem 2018; 451:173-184. [PMID: 30030776 DOI: 10.1007/s11010-018-3404-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
A polysaccharide characterized as galactomannan (GMann) with a molecular weight of 117.76 kDa was isolated from the aqueous extract of Caesalpinia gilliesii (C. gilliesii) seeds then assessed for antiproliferative potential against human hepatocellular carcinoma cell line (HepG2). Further, HCC was induced in Wister albino rats by Diethylnitrosamine (DEN) ip injection (200 mg/kg bw), and CCl4 orally (2 ml/kg bw) for two months then subjected to GMann orally treatment (2 mg/kg bw) for one month. In results, isolated GMann is constituted of sugars (89.99 ± 2.3%), moisture (6.89 ± 0.45%), ash (0.06 ± 0.2%), and protein (2.81%) and composed mainly of mannose and galactose in ratio M/G 3.79. In vitro study, data revealed a concentration-dependent potency of GMann to induce cell death of HepG2 cells with IC50 value of 0.375 µg/ml. Mechanistic studies revealed the potential of GMann to arrest cell cycle at G2/M phase with induction of apoptosis. Biochemical results in vivo showed a significant reduction in serum transaminases (ALT and AST) as well as hepatic malondialdehyde (MDA) and nitric oxide (NOx). Molecular analysis declared a significant down-regulation in mRNA gene expression of both nuclear factor kappa-B (NF-κB) and tumor necrosis factor (TNF-α). Furthermore, a significant down-regulation in the cellular oncogene-fos (C-fos) and marked up-regulation in Glycogen synthase kinase-3 (GSK-3β) level were observed. These results were supported with histopathological investigation. Whereas GMann improved inflammatory and apoptotic markers, it could be a promising new therapeutic agent for HCC suppression and this warrant further development as a possible drug candidate for HCC.
Collapse
|
50
|
Xing B, Brink LE, Maers K, Sullivan ML, Bodnar RJ, Stolz DB, Cambi F. Conditional depletion of GSK3b protects oligodendrocytes from apoptosis and lessens demyelination in the acute cuprizone model. Glia 2018; 66:1999-2012. [PMID: 29761559 DOI: 10.1002/glia.23453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 02/04/2023]
Abstract
Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.
Collapse
Affiliation(s)
- Bin Xing
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Lauren E Brink
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Kelly Maers
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Mara L Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard J Bodnar
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Franca Cambi
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania.,Department of Neurology/PIND, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, Pennsylvania.,Department of Neurology, University of Kentucky, 800 Rose St, Lexington, Kentucky
| |
Collapse
|