1
|
Deguchi E, Lin S, Hirayama D, Matsuda K, Tanave A, Sumiyama K, Tsukiji S, Otani T, Furuse M, Sorkin A, Matsuda M, Terai K. Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters in collective cell migration of epithelial cells. Cell Rep 2024; 43:114986. [PMID: 39546398 PMCID: PMC11717429 DOI: 10.1016/j.celrep.2024.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Canonical epidermal growth factor (EGF) receptor (EGFR) activation involves the binding of seven EGFR ligands (EGFRLs); however, their extracellular dynamics remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding, we show that epiregulin (EREG), a low-affinity EGFRL, rapidly and efficiently activates EGFR in Madin-Darby canine kidney (MDCK) epithelial cells and mouse epidermis. During collective cell migration, EGFR and extracellular signal-regulated kinase (ERK) activation waves propagate in an a disintegrin and metalloprotease 17 (ADAM17) sheddase- and EGFRL-dependent manner. Upon induced EGFRL shedding, low-affinity ligands EREG and amphiregulin (AREG) mediate faster and broader ERK waves than high-affinity ligands. Tight/adherens junction integrity is essential for ERK activation propagation, suggesting that tight intercellular spaces prefer the low-affinity EGFRLs for efficient signal transmission. In EREG-deficient mice, ERK wave propagation and cell migration were impaired during skin wound repair. We additionally show that heparin-binding EGF-like growth factor (HBEGF) primarily promotes surrounding cell motility. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
Collapse
Affiliation(s)
- Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhao Lin
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daiki Hirayama
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-0061, Japan
| | - Tetsuhisa Otani
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Tokyo, Japan; Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Medicine, Tokushima University, Shinkura-cho, Tokushima 770-8501, Japan.
| |
Collapse
|
2
|
Deguchi E, Lin S, Hirayama D, Matsuda K, Tanave A, Sumiyama K, Tsukiji S, Otani T, Furuse M, Sorkin A, Matsuda M, Terai K. Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters during collective cell migration of epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614853. [PMID: 39399773 PMCID: PMC11468830 DOI: 10.1101/2024.09.25.614853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Epidermal growth factor receptor ligands (EGFRLs) consist of seven proteins. In stark contrast to the amassed knowledge concerning the epidermal growth factor receptors themselves, the extracellular dynamics of individual EGFRLs remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding of EGFRLs, we show that EREG, a low-affinity EGFRL, exhibits the most rapid and efficient activation of EGFR in confluent epithelial cells and mouse epidermis. In Madin-Darby canine kidney (MDCK) renal epithelial cells, EGFR- and ERK-activation waves propagate during collective cell migration in an ADAM17 sheddase- and EGFRL-dependent manner. Upon induction of EGFRL shedding, radial ERK activation waves were observed in the surrounding receiver cells. Notably, the low-affinity ligands EREG and AREG mediated faster and broader ERK waves than the high-affinity ligands. The integrity of tight/adherens junctions was essential for the propagation of ERK activation, implying that the tight intercellular spaces prefer the low-affinity EGFRL to the high-affinity ligands for efficient signal transmission. To validate this observation in vivo , we generated EREG-deficient mice expressing the ERK biosensor and found that ERK wave propagation and cell migration were impaired during skin wound repair. In conclusion, we have quantitatively demonstrated the distinctions among EGFRLs in shedding, diffusion, and target cell activation in physiological contexts. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.
Collapse
|
3
|
Pastor-Alonso O, Durá I, Bernardo-Castro S, Varea E, Muro-García T, Martín-Suárez S, Encinas-Pérez JM, Pineda JR. HB-EGF activates EGFR to induce reactive neural stem cells in the mouse hippocampus after seizures. Life Sci Alliance 2024; 7:e202201840. [PMID: 38977310 PMCID: PMC11231495 DOI: 10.26508/lsa.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Irene Durá
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Sara Bernardo-Castro
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Emilio Varea
- Faculty of Biology, University of Valencia, Valencia, Spain
| | - Teresa Muro-García
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Juan Manuel Encinas-Pérez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Ikerbasque, The Basque Foundation for Science, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Jose Ramon Pineda
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| |
Collapse
|
4
|
Piñera-Moreno R, Reyes-López FE, Goldstein M, Santillán-Araneda MJ, Robles-Planells B, Arancibia-Carvallo C, Vallejos-Vidal E, Cuesta A, Esteban MÁ, Tort L. Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream ( Sparus aurata L.) Subjected to Mechanical Damage. Animals (Basel) 2024; 14:1815. [PMID: 38929434 PMCID: PMC11200434 DOI: 10.3390/ani14121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been studied in gilthead sea bream. Thus, this study investigated the modulation of peripheral neuro-endocrine and tissue repair markers at the transcriptional level in the skin of teleost fish subjected to mechanical damage above or below the lateral line (dorsal and ventral lesions, respectively). Samples were evaluated using RT-qPCR at 2-, 4-, and 20-days post-injury. Fish with a ventral lesion presented a trend of progressive increase in the expressions of corticotropin-releasing hormone (crh), pro-opiomelanocortin-A (pomca), proenkephalin-B (penkb), cholecystokinin (cck), oxytocin (oxt), angiotensinogen (agt), and (less pronounced) somatostatin-1B (sst1b). By contrast, fish with a dorsal lesion registered no significant increase or biological trend for the genes evaluated at the different sampling times. Collectively, the results show a rapid and more robust response of neuro-endocrine and tissue repair markers in the injuries below than above the lateral line, which could be attributable to their proximity to vital organs.
Collapse
Affiliation(s)
- Rocío Piñera-Moreno
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Felipe E. Reyes-López
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Merari Goldstein
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - María Jesús Santillán-Araneda
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Bárbara Robles-Planells
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Camila Arancibia-Carvallo
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Eva Vallejos-Vidal
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, La Florida 8250122, Chile
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
5
|
Xu SQ, Sie ZY, Hsu JI, Tan KT. Small Plasma Membrane-Targeted Fluorescent Dye for Long-Time Imaging and Protein Degradation Analyses. Anal Chem 2023; 95:15549-15555. [PMID: 37816133 DOI: 10.1021/acs.analchem.3c01980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Plasma membrane (PM)-targeted fluorescent dyes have become an important tool to visualize morphological and dynamic changes in the cell membrane. However, most of these PM dyes are either too large and thus might potentially perturb the membrane and affect its functions or exhibit a short retention time on the cell membrane. The rapid internalization problem is particularly severe for PM dyes based on cationic and neutral hydrophobic fluorescent dyes, which can be easily transported into the cells by transmembrane potential and passive diffusion mechanisms. In this paper, we report a small but highly specific PM fluorescent dye, PM-1, which exhibits a very long retention time on the plasma membrane with a half-life of approximately 15 h. For biological applications, we demonstrated that PM-1 can be used in combination with protein labeling probes to study ectodomain shedding and endocytosis processes of cell surface proteins and successfully demonstrated that native transmembrane human carbonic anhydrase IX (hCAIX) is degraded via the ectodomain shedding mechanism. In contrast, hCAIX undergoes endocytic degradation in the presence of sheddase inhibitors. We believe that PM-1 can be a versatile tool to provide detailed insights into the dynamic processes of the cell surface proteins.
Collapse
Affiliation(s)
- Shun-Qiang Xu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Zong-Yan Sie
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Jung-I Hsu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
6
|
Kamentseva RS, Kharchenko MV, Gabdrahmanova GV, Kotov MA, Kosheverova VV, Kornilova ES. EGF, TGF- α and Amphiregulin Differently Regulate Endometrium-Derived Mesenchymal Stromal/Stem Cells. Int J Mol Sci 2023; 24:13408. [PMID: 37686213 PMCID: PMC10487484 DOI: 10.3390/ijms241713408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
The prototypical receptor tyrosine kinase epidermal growth factor receptor (EGFR) is regulated by a set of its ligands, which determines the specificity of signaling and intracellular fate of the receptor. The EGFR signaling system is well characterized in immortalized cell lines such as HeLa derived from tumor tissues, but much less is known about EGFR function in untransformed multipotent stromal/stem cells (MSCs). We compared the effect of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and amphiregulin (AREG) on physiological responses in endometrial MSCs (enMSC) and HeLa cells. In addition, using Western blotting and confocal microscopy, we studied the internalization and degradation of EGFR stimulated by the three ligands in these cell lines. We demonstrated that unlike HeLa, EGF and TGF-α, but not AREG, stimulated enMSC proliferation and prevented decidual differentiation in an EGFR-dependent manner. In HeLa cells, EGF targeted EGFR for degradation, while TGF-α stimulated its recycling. Surprisingly, in enMSC, both ligands caused EGFR degradation. In both cell lines, AREG-EGFR internalization was not registered. In HeLa cells, EGFR was degraded within 2 h, restoring its level in 24 h, while in enMSC, degradation took more than 4-8 h, and the low EGFR level persisted for several days. This indicates that EGFR homeostasis in MSCs may differ significantly from that in immortalized cell lines.
Collapse
Affiliation(s)
- Rimma Sergeevna Kamentseva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Marianna Viktorovna Kharchenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Gulnara Vladikovna Gabdrahmanova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Michael Alexandrovich Kotov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Hlopina St. 11, St. Petersburg 195251, Russia
| | - Vera Vladislavovna Kosheverova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
| | - Elena Sergeevna Kornilova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia; (M.V.K.); (V.V.K.); (E.S.K.)
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
7
|
Long A, Liu Y, Fang X, Jia L, Li Z, Hu J, Wu S, Chen C, Huang P, Wang Y. Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796. Cell Res 2023; 33:273-287. [PMID: 36806353 PMCID: PMC10066382 DOI: 10.1038/s41422-023-00782-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
The intestine is responsible for nutrient absorption and orchestrates metabolism in different organs during feeding, a process which is partly controlled by intestine-derived hormones. However, it is unclear whether the intestine plays an important role in metabolism during fasting. Here we have identified a novel hormone, famsin, which is secreted from the intestine and promotes metabolic adaptations to fasting. Mechanistically, famsin is shed from a single-pass transmembrane protein, Gm11437, during fasting and then binds OLFR796, an olfactory receptor, to activate intracellular calcium mobilization. This famsin-OLFR796 signaling axis promotes gluconeogenesis and ketogenesis for energy mobilization, and torpor for energy conservation during fasting. In addition, neutralization of famsin by an antibody improves blood glucose profiles in diabetic models, which identifies famsin as a potential therapeutic target for treating diabetes. Therefore, our results demonstrate that communication between the intestine and other organs by a famsin-OLFR796 signaling axis is critical for metabolic adaptations to fasting.
Collapse
Affiliation(s)
- Aijun Long
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiyuan Li
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiang Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Chen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Huang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Łukaszewicz-Zając M, Dulewicz M, Mroczko B. A Disintegrin and Metalloproteinase (ADAM) Family: Their Significance in Malignant Tumors of the Central Nervous System (CNS). Int J Mol Sci 2021; 22:ijms221910378. [PMID: 34638718 PMCID: PMC8508774 DOI: 10.3390/ijms221910378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the considerable advances in diagnostic methods in medicine, central nervous system (CNS) tumors, particularly the most common ones-gliomas-remain incurable, with similar incidence rates and mortality. A growing body of literature has revealed that degradation of the extracellular matrix by matrix metalloproteinases (MMPs) might be involved in the pathogenesis of CNS tumors. However, the subfamily of MMPs, known as disintegrin and metalloproteinase (ADAM) proteins are unique due to both adhesive and proteolytic activities. The objective of our review is to present the role of ADAMs in CNS tumors, particularly their involvement in the development of malignant gliomas. Moreover, we focus on the diagnostic and prognostic significance of selected ADAMs in patients with these neoplasms. It has been proven that ADAM12, ADAMTS4 and 5 are implicated in the proliferation and invasion of glioma cells. In addition, ADAM8 and ADAM19 are correlated with the invasive activity of glioma cells and unfavorable survival, while ADAM9, -10 and -17 are associated with tumor grade and histological type of gliomas and can be used as prognostic factors. In conclusion, several ADAMs might serve as potential diagnostic and prognostic biomarkers as well as therapeutic targets for malignant CNS tumors. However, future research on ADAMs biology should be performed to elucidate new strategies for tumor diagnosis and treatment of patients with these malignancies.
Collapse
Affiliation(s)
- Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-8318785; Fax: +48-85-8318585
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, 15-269 Bialystok, Poland;
| |
Collapse
|
9
|
Morgis RA, Haan K, Schrey JM, Zimmerman RM, Hersperger AR. The epidermal growth factor ortholog of ectromelia virus activates EGFR/ErbB1 and demonstrates mitogenic function in vitro. Virology 2021; 564:1-12. [PMID: 34560573 DOI: 10.1016/j.virol.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022]
Abstract
Many poxviruses produce proteins that are related to epidermal growth factor (EGF). Prior genome sequencing of ectromelia virus revealed a gene predicted to produce a protein with homology to EGF, which we refer to as ectromelia growth factor (ECGF). ECGF is truncated relative to vaccinia growth factor (VGF) because the former lacks a transmembrane domain. We show these proteins can experience differential N-linked glycosylation. Despite these differences, both proteins maintain the six conserved cysteine residues important for the function of EGF. Since ECGF has not been characterized, our objective was to determine if it can act as a growth factor. We added ECGF to cultured cells and found that the EGF receptor becomes activated, S-phase was induced, doubling time decreased, and in vitro wound healing occurred faster compared to untreated cells. In summary, we demonstrate that ECGF can act as a mitogen in a similar manner as VGF.
Collapse
Affiliation(s)
| | - Kaylyn Haan
- Department of Biology, Albright College, Reading, PA, USA
| | - Julie M Schrey
- Department of Biology, Albright College, Reading, PA, USA
| | | | | |
Collapse
|
10
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Duan B, Liu Y, Hu H, Shi FG, Liu YL, Xue H, Yun XY, Yan MY, Han XR, Chen AF, Wang Y, Li ZH. Notch1-ADAM8 positive feed-back loop regulates the degradation of chondrogenic extracellular matrix and osteoarthritis progression. Cell Commun Signal 2019; 17:134. [PMID: 31640732 PMCID: PMC6805603 DOI: 10.1186/s12964-019-0443-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is one of the most prevalent joint disease, and there are still no effective therapeutic agents or clinical methods for the cure of this disease to date. The degradation of cartilage extracellular matrix (ECM) is a major cause of OA. Method IL-1β was used to induce chondrogenic degradation. Q-PCR and Western blotting were used to detect mRNA and protein level, respectively. ELISA was used to detect the secreted TNF-α and IL-6 level. Immunofluorescence was used to detect the protein level of Aggrecan, Collagen II and ki67. TUNEL and flow cytometry were used to examine cell apoptosis of chondrocytes. ChIP and luciferase assay were used to study molecular gene regulation. Osteoarthritic animal model and Safranin-O staining were used to determine the in vivo OA phenotype. Results The expression of ADAM8 was up-regulated in osteoarthritic chondrocytes. Knockdown of ADAM8 suppressed the OA phenotype in the in vitro OA cell model. ADAM8 regulated OA progression through the activation of EGFR/ERK/NF-κB signaling pathway. Inhibition of Notch signaling suppressed OA phenotype in the in vitro OA cell model. Notch signaling regulated the gene expression of ADAM8 directly via Hes1. Notch1-ADAM8 positive feedback loop promoted the progression of OA in vivo. Conclusion Notch1-ADAM8 feed-back loop regulates the degradation of chondrogenic extracellular matrix and osteoarthritis progression.
Collapse
Affiliation(s)
- Biao Duan
- Reproductive Center, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou, 314000, People's Republic of China.,Inner Mongolia Medical University, Jinshan District, Hohhot, 010110, People's Republic of China
| | - Yan Liu
- Department of Orthopedics, Inner Mongolia Medical University Third Affiliated Hospital, No.20 Shaoxian Road, Kundulun District, Baotou, 014000, People's Republic of China
| | - He Hu
- Department of Orthopedics, Inner Mongolia People's Hospital, No.20 Zhaowuda Road, Saihan District, Hohhot, 010017, People's Republic of China
| | - Fu-Guo Shi
- Department of Chinese medicine, Preventive health center of Baotou steel group, Aerding Street, Kundulun District, Baotou, 014000, People's Republic of China
| | - Ya-Long Liu
- Department of Orthopedics, Yangling Demonstration District Hospital, No.8 Houji Road, Yangling District, Xianyan, 712100, People's Republic of China
| | - Hao Xue
- Department of Pediatric Orthopedics, Fourth Hospital of Baotou, Aogen Road, Qingshan District, Baotou, 014010, People's Republic of China
| | - Xin-Yu Yun
- Department of Orthopedics, Inner Mongolia Medical University Third Affiliated Hospital, No.20 Shaoxian Road, Kundulun District, Baotou, 014000, People's Republic of China
| | - Ming-Yu Yan
- Department of Orthopedics, Inner Mongolia Medical University Third Affiliated Hospital, No.20 Shaoxian Road, Kundulun District, Baotou, 014000, People's Republic of China
| | - Xi-Rui Han
- Department of Orthopedics, Peking University Third Hospital, No.10 Courtyard, Chedaogou, Haidian District, Beijing, 100083, People's Republic of China
| | - An-Fu Chen
- Department of Orthopedics, Peking University Third Hospital, No.10 Courtyard, Chedaogou, Haidian District, Beijing, 100083, People's Republic of China
| | - Yong Wang
- Department of Orthopedics, Peking University Third Hospital, No.10 Courtyard, Chedaogou, Haidian District, Beijing, 100083, People's Republic of China
| | - Zhe-Hai Li
- Inner Mongolia Medical University, Jinshan District, Hohhot, 010110, People's Republic of China. .,Department of Orthopedics, Peking University Third Hospital, No.10 Courtyard, Chedaogou, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
Haxho F, Neufeld RJ, Szewczuk MR. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget 2018; 7:40860-40881. [PMID: 27029067 PMCID: PMC5130050 DOI: 10.18632/oncotarget.8396] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Several of the growth factors and their receptor tyrosine kinases (RTK) such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and insulin are promising candidate targets for cancer therapy. Indeed, tyrosine kinase inhibitors (TKI) have been developed to target these growth factors and their receptors, and have demonstrated dramatic initial responses in cancer therapy. Yet, most patients ultimately develop TKI drug resistance and relapse. It is essential in the clinical setting that the targeted therapies are to circumvent multistage tumorigenesis, including genetic mutations at the different growth factor receptors, tumor neovascularization, chemoresistance of tumors, immune-mediated tumorigenesis and the development of tissue invasion and metastasis. Here, we identify a novel receptor signaling platform linked to EGF, NGF, insulin and TOLL-like receptor (TLR) activations, all of which are known to play major roles in tumorigenesis. The importance of these findings signify an innovative and promising entirely new targeted therapy for cancer. The role of mammalian neuraminidase-1 (Neu1) in complex with matrix metalloproteinase-9 and G protein-coupled receptor tethered to RTKs and TLRs is identified as a major target in multistage tumorigenesis. Evidence exposing the link connecting growth factor-binding and immune-mediated tumorigenesis to this novel receptor-signaling paradigm will be reviewed in its current relationship to cancer.
Collapse
Affiliation(s)
- Fiona Haxho
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Myron R Szewczuk
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Chen R, Jin G, McIntyre TM. The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 2017; 292:10112-10122. [PMID: 28455445 DOI: 10.1074/jbc.m116.771642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets are the sole source of EGF in circulation, yet how EGF is stored or released from stimulated cells is undefined. In fact, we found platelets did not store EGF, synthesized as a single 6-kDa domain in pro-EGF, but rather expressed intact pro-EGF precursor on granular and plasma membranes. Activated platelets released high-molecular-weight (HMW)-EGF, produced by a single cleavage between the EGF and the transmembrane domains of pro-EGF. We synthesized a fluorogenic peptide encompassing residues surrounding the putative sessile arginyl residue and found stimulated platelets released soluble activity that cleaved this pro-EGF1020-1027 peptide. High throughput screening identified chymostatins, bacterial peptides with a central cyclic arginyl structure, as inhibitors of this activity. In contrast, the matrix metalloproteinase/TACE (tumor necrosis factor-α-converting enzyme) inhibitor GM6001 was ineffective. Stimulated platelets released the soluble protease ADAMDEC1, recombinant ADAMDEC1 hydrolyzed pro-EGF1020-1027, and this activity was inhibited by chymostatin and not GM6001. Biotinylating platelet surface proteins showed ADAMDEC1 hydrolyzed surface pro-EGF to HMW-EGF that stimulated HeLa EGF receptor (EGFR) reporter cells and EGFR-dependent tumor cell migration. This proteolysis was inhibited by chymostatin and not GM6001. Metabolizing pro-EGF Arg1023 to citrulline with recombinant polypeptide arginine deiminase 4 (PAD4) abolished ADAMDEC1-catalyzed pro-EGF1020-1027 peptidolysis, while pretreating intact platelets with PAD4 suppressed ADAMDEC1-, thrombin-, or collagen-induced release of HMW-EGF. We conclude that activated platelets release ADAMDEC1, which hydrolyzes pro-EGF to soluble HMW-EGF, that HMW-EGF is active, that proteolytic cleavage of pro-EGF first occurs at the C-terminal arginyl residue of the EGF domain, and that proteolysis is the regulated and rate-limiting step in generating soluble EGF bioactivity from activated platelets.
Collapse
Affiliation(s)
- Rui Chen
- From the Departments of Cellular and Molecular Medicine and
| | - Ge Jin
- the Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106
| | - Thomas M McIntyre
- From the Departments of Cellular and Molecular Medicine and .,Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland 44195 Ohio and
| |
Collapse
|
14
|
Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS One 2017; 12:e0174780. [PMID: 28350885 PMCID: PMC5370147 DOI: 10.1371/journal.pone.0174780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoko Inamura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
15
|
DeSantis-Rodrigues A, Chang YC, Hahn RA, Po IP, Zhou P, Lacey CJ, Pillai A, C Young S, Flowers RA, Gallo MA, Laskin JD, Gerecke DR, Svoboda KKH, Heindel ND, Gordon MK. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure. Invest Ophthalmol Vis Sci 2016; 57:1687-98. [PMID: 27058125 PMCID: PMC4829087 DOI: 10.1167/iovs.15-17269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial-stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial-stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. METHODS Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3-100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. RESULTS Nitrogen mustard-induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial-stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial-stromal attachment. CONCLUSIONS Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial-stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial-stromal separation.
Collapse
Affiliation(s)
- Andrea DeSantis-Rodrigues
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Yoke-Chen Chang
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Rita A Hahn
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Iris P Po
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Peihong Zhou
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - C Jeffrey Lacey
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Abhilash Pillai
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Michael A Gallo
- Department of Environmental and Occupational Health, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Marion K Gordon
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
16
|
Puls F, Hofvander J, Magnusson L, Nilsson J, Haywood E, Sumathi VP, Mangham DC, Kindblom LG, Mertens F. FN1-EGF gene fusions are recurrent in calcifying aponeurotic fibroma. J Pathol 2016; 238:502-7. [PMID: 26691015 DOI: 10.1002/path.4683] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 11/06/2022]
Abstract
Calcifying aponeurotic fibroma (CAF) is a soft tissue neoplasm with a predilection for the hands and feet in children and adolescents. Its molecular basis is unknown. We used chromosome banding analysis, fluorescence in situ hybridization (FISH), mRNA sequencing (RNA-seq), RT-PCR, and immunohistochemistry to characterize a series of CAFs. An insertion ins(2;4)(q35;q25q?) was identified in the index case. Fusion of the FN1 and EGF genes, mapping to the breakpoint regions on chromosomes 2 and 4, respectively, was detected by RNA-seq and confirmed by RT-PCR in the index case and two additional cases. FISH on five additional tumours identified FN1-EGF fusions in all cases. CAFs analysed by RT-PCR showed that FN1 exon 23, 27 or 42 was fused to EGF exon 17 or 19. High-level expression of the entire FN1 gene in CAF suggests that strong FN1 promoter activity drives inappropriate expression of the biologically active portion of EGF, which was detected immunohistochemically in 8/9 cases. The FN1-EGF fusion, which has not been observed in any other neoplasm, appears to be the main driver mutation in CAF. Although further functional studies are required to understand the exact pathogenesis of CAF, the composition of the chimera suggests an autocrine/paracrine mechanism of transformation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Florian Puls
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Jakob Hofvander
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| | - Elaine Haywood
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Vaiyapuri P Sumathi
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - D Chas Mangham
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK.,Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Lars-Gunnar Kindblom
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK
| | - Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 2015; 4:e05178. [PMID: 25668746 PMCID: PMC4337632 DOI: 10.7554/elife.05178] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/09/2015] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. DOI:http://dx.doi.org/10.7554/eLife.05178.001 Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles. DOI:http://dx.doi.org/10.7554/eLife.05178.002
Collapse
Affiliation(s)
- Toru Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihisa Fujita
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Honda Naoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Aoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Abdulkhalek S, Geen OD, Brodhagen L, Haxho F, Alghamdi F, Allison S, Simmons DJ, O'Shea LK, Neufeld RJ, Szewczuk MR. Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma. Clin Transl Med 2014; 3:28. [PMID: 26932374 PMCID: PMC4884043 DOI: 10.1186/s40169-014-0028-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Snail, a transcriptional factor and repressor of E-cadherin is well known for its role in cellular invasion. It can regulate epithelial to mesenchymal transition (EMT) during embryonic development and in epithelial cells. Snail also mediates tumor progression and metastases. Silencing of Snail and its associate member Slug in human A2780 ovarian epithelial carcinoma cell line was investigated to identify its role in tumor neovascularization. METHODS Live cell sialidase, WST-1 cell viability and immunohistochemistry assays were used to evaluate sialidase activity, cell survival and the expression levels of tumor E-cadherin, N-cadherin, VE-cadherin, and host endothelial CD31+(PECAM-1) cells in archived paraffin-embedded ovarian A2780, A2780 Snail shRNA GIPZ lentiviral knockdown (KD) and A2780 Slug shRNA GIPZ lentiviral KD tumors grown in RAGxCγ double mutant mice. RESULTS Oseltamivir phosphate (OP), anti-Neu1 antibodies and MMP-9 specific inhibitor blocked Neu1 activity associated with epidermal growth factor (EGF) stimulated A2780 ovarian epithelial carcinoma cells. Silencing Snail in A2780 cells abrogated the Neu1 activity following EGF stimulation of the cells compared to A2780 and A2780 Slug KD cells. OP treatment of A2780 and cisplatin-resistant A2780cis cells reproducibly and dose-dependently abated the cell viability with a LD50 of 7 and 4 μm, respectively, after 48 h of incubation. Heterotopic xenografts of A2780 and A2780 Slug KD tumors developed robust and bloody tumor vascularization in RAG2xCγ double mutant mice. OP treatment at 50 mg/kg daily intraperitoneally did not significantly impede A2780 tumor growth rate but did cause a significant reduction of lung metastases compared with the untreated and OP 30mg/kg cohorts. Silencing Snail in A2780 tumor cells completely abrogated tumor vascularization, tumor growth and spread to the lungs in RAGxCγ double mutant mice. A2780 and A2780 Slug KD tumors expressed high levels of human N- and VE-cadherins, and host CD31+ endothelial cells, while A2780 Snail KD tumors expressed E-cadherin and reduced host CD31+ cells. OP 50mg/kg cohort tumors had reduced numbers of host CD31+ cells compared to a higher expression levels of CD31+ cells in tumors from the untreated control and OP 30mg/kg cohorts. CONCLUSION Snail transcriptional factor is an important intermediate player in human ovarian tumor neovascularization.
Collapse
Affiliation(s)
- Samar Abdulkhalek
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
- Present address: Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | - Olivia D Geen
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Lacey Brodhagen
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Fiona Haxho
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Farah Alghamdi
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
- Present address: The King Fahd Armed Forces Hospital, Serology, Jeddah, Saudi Arabia.
| | - Stephanie Allison
- Chemical Engineering, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Duncan J Simmons
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Leah K O'Shea
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
- Present address: Mississauga Academy of Medicine, University of Toronto Mississauga, North Terrence Donnelly Health Sciences Complex, Mississauga, L5L 1C6, ON, Canada.
| | - Ronald J Neufeld
- Chemical Engineering, Queen's University, Kingston, K7L 3N6, ON, Canada.
| | - Myron R Szewczuk
- Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, ON, Canada.
| |
Collapse
|
19
|
Weber DA, Sumagin R, McCall IC, Leoni G, Neumann PA, Andargachew R, Brazil JC, Medina-Contreras O, Denning TL, Nusrat A, Parkos CA. Neutrophil-derived JAML inhibits repair of intestinal epithelial injury during acute inflammation. Mucosal Immunol 2014; 7:1221-32. [PMID: 24621992 PMCID: PMC4340686 DOI: 10.1038/mi.2014.12] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil transepithelial migration (TEM) during acute inflammation is associated with mucosal injury. Using models of acute mucosal injury in vitro and in vivo, we describe a new mechanism by which neutrophils infiltrating the intestinal mucosa disrupt epithelial homeostasis. We report that junctional adhesion molecule-like protein (JAML) is cleaved from neutrophil surface by zinc metalloproteases during TEM. Neutrophil-derived soluble JAML binds to the epithelial tight junction protein coxsackie-adenovirus receptor (CAR) resulting in compromised barrier and inhibition of wound repair, through decreased epithelial proliferation. The deleterious effects of JAML on barrier and wound repair are reversed with an anti-JAML monoclonal antibody that inhibits JAML-CAR binding. JAML released from transmigrating neutrophils across inflamed epithelia may thus promote recruitment of leukocytes and aid in clearance of invading microorganisms. However, sustained release of JAML under pathologic conditions associated with persistence of large numbers of infiltrated neutrophils would compromise intestinal barrier and inhibit mucosal healing. Thus, targeting JAML-CAR interactions may improve mucosal healing responses under conditions of dysregulated neutrophil recruitment.
Collapse
Affiliation(s)
- Dominique A. Weber
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ronen Sumagin
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ingrid C. McCall
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Philipp A. Neumann
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Rakieb Andargachew
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Jennifer C. Brazil
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Oscar Medina-Contreras
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Timothy L. Denning
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Charles A. Parkos
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
20
|
Holley AK, Xu Y, Noel T, Bakthavatchalu V, Batinic-Haberle I, St Clair DK. Manganese superoxide dismutase-mediated inside-out signaling in HaCaT human keratinocytes and SKH-1 mouse skin. Antioxid Redox Signal 2014; 20:2347-60. [PMID: 24635018 PMCID: PMC4005487 DOI: 10.1089/ars.2013.5204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS Inside-out signaling occurs when changes in organellar activity lead to alterations in cell signaling that culminate at the cell surface. Mitochondria are vital signaling platforms in cells that participate in radiation-induced inside-out signaling. However, the importance of the reactive oxygen species (ROS)-scavenging ability of mitochondria through manganese superoxide dismutase (MnSOD) is not established. Here, we used MnSOD heterozygous knockout and transgenic SKH-1 hairless, albino mice and MnSOD knockdown and overexpressing HaCaT human keratinocytes to study the effects of MnSOD on ultraviolet (UV) radiation-induced inside-out signaling. RESULTS AND INNOVATION There is an inverse correlation between MnSOD expression and UV-induced activation of epidermal growth factor receptor (EGFR), as determined by phosphorylation at Tyr1068, both in vitro and in vivo, which correlates with increased ROS production (as measured by dihydroethidium fluorescence). EGFR activation is dependent on Nox4 expression and Src kinase activation, with Src activation upstream of Nox4 in regulation of EGFR activation. Enhanced EGFR activation in MnSOD knockdown cells is abrogated by treatment with the SOD mimetic MnTnBuOE-2-PyP(5+). CONCLUSIONS Our data demonstrate that the ROS-scavenging ability of mitochondria, through the expression of MnSOD, is important for UV-induced inside-out signaling. Decreased MnSOD expression enhances UV-induced activation of different oncogenic signaling pathways through an inside-out signaling-mediated mechanism. Inhibition of inside-out signaling by MnTnBuOE-2-PyP(5+) mimics the effect of endogenous MnSOD, suggesting that pharmacological intervention by SOD mimetics could play an important role in the prevention of aberrant cell signaling, which may contribute to carcinogenesis and may prove valuable for the treatment or prevention of cancer in the future.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | | | |
Collapse
|
21
|
Beidler CB, Petrovan RJ, Conner EM, Boyles JS, Yang DD, Harlan SM, Chu S, Ellis B, Datta-Mannan A, Johnson RL, Stauber A, Witcher DR, Breyer MD, Heuer JG. Generation and activity of a humanized monoclonal antibody that selectively neutralizes the epidermal growth factor receptor ligands transforming growth factor-α and epiregulin. J Pharmacol Exp Ther 2014; 349:330-43. [PMID: 24518034 DOI: 10.1124/jpet.113.210765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
At least seven distinct epidermal growth factor (EGF) ligands bind to and activate the EGF receptor (EGFR). This activation plays an important role in the embryo and in the maintenance of adult tissues. Importantly, pharmacologic EGFR inhibition also plays a critical role in the pathophysiology of diverse disease states, especially cancer. The roles of specific EGFR ligands are poorly defined in these disease states. Accumulating evidence suggests a role for transforming growth factor α (TGFα) in skin, lung, and kidney disease. To explore the role of Tgfa, we generated a monoclonal antibody (mAb41) that binds to and neutralizes human Tgfa with high affinity (KD = 36.5 pM). The antibody also binds human epiregulin (Ereg) (KD = 346.6 pM) and inhibits ligand induced myofibroblast cell proliferation (IC50 values of 0.52 and 1.12 nM for human Tgfa and Ereg, respectively). In vivo, a single administration of the antibody to pregnant mice (30 mg/kg s.c. at day 14 after plug) or weekly administration to neonate mice (20 mg/kg s.c. for 4 weeks) phenocopy Tgfa knockout mice with curly whiskers, stunted growth, and expansion of the hypertrophic zone of growth plate cartilage. Humanization of this monoclonal antibody to a human IgG4 antibody (LY3016859) enables clinical development. Importantly, administration of the humanized antibody to cynomolgus monkeys is absent of the skin toxicity observed with current EGFR inhibitors used clinically and no other pathologies were noted, indicating that neutralization of Tgfa could provide a relatively safe profile as it advances in clinical development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Epidermal Growth Factor/metabolism
- Epiregulin
- ErbB Receptors/metabolism
- Humans
- Immunoglobulin G/immunology
- Macaca fascicularis
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myofibroblasts/cytology
- Myofibroblasts/drug effects
- Myofibroblasts/metabolism
- Protein Binding
- Transforming Growth Factor alpha/genetics
- Transforming Growth Factor alpha/metabolism
Collapse
|
22
|
Yayama K, Sasahara T, Ohba H, Funasaka A, Okamoto H. Orthovanadate-induced vasocontraction is mediated by the activation of Rho-kinase through Src-dependent transactivation of epidermal growth factor receptor. Pharmacol Res Perspect 2014; 2:e00039. [PMID: 25505586 PMCID: PMC4184709 DOI: 10.1002/prp2.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 01/26/2023] Open
Abstract
Orthovanadate (OVA), a protein tyrosine phosphatase (PTPase) inhibitor, exerts contractile effects on smooth muscle in a Rho-kinase-dependent manner, but the precise mechanisms are not elucidated. The aim of this study was to determine the potential roles of Src and epidermal growth factor receptor (EGFR) in the OVA-induced contraction of rat aortas and the phosphorylation of myosin phosphatase target subunit 1 (MYPT1; an index of Rho-kinase activity) in vascular smooth muscle cells (VSMCs). Aortic contraction by OVA was significantly blocked not only by Rho kinase inhibitors Y-27632 [R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cyclohexanecarboxamide] and hydroxyfasudil [1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine] but also by Src inhibitors PP2 [4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine] and Src inhibitor No. 5 [4-(3′-methoxy-6′-chloro-anilino)-6-methoxy-7(morpholino-3-propoxy)-quinazoline], and the EGFR inhibitors AG1478 [4-(3-chloroanilino)-6,7-dimethoxyquinazoline] and EGFR inhibitor 1 [cyclopropanecarboxylic acid-(3-(6-(3-trifluoromethyl-phenylamino)-pyrimidin-4-ylamino)-phenyl)-amide]. OVA induced rapid increases in the phosphorylation of MYPT1 (Thr-853), Src (Tyr-416), and EGFR (Tyr-1173) in VSMCs, and Src inhibitors abolished these effects. OVA-induced Src phosphorylation was abrogated by Src inhibitors, but not affected by inhibitors of EGFR and Rho-kinase. Inhibitors of Src and EGFR, but not Rho-kinase, also blocked OVA-induced EGFR phosphorylation. Furthermore, a metalloproteinase inhibitor TAPI-0 [N-(R)-[2-(hydroxyaminocarbonyl) methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide] and an inhibitor of heparin-binding EGF (CRM 197) not only abrogated the OVA-induced aortic contraction, but also OVA-induced EGFR and MYPT1 phosphorylation, suggesting the involvement of EGFR transactivation. OVA also induced EGFR phosphorylation at Tyr-845, one of residues phosphorylated by Src. These results suggest that OVA-induced vasocontraction is mediated by the Rho-kinase-dependent inactivation of myosin light-chain phosphatase via signaling downstream of Src-induced transactivation of EGFR.
Collapse
Affiliation(s)
- Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hisaaki Ohba
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Funasaka
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University Minatojima 1-1-3, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
23
|
A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cell Signal 2014; 26:1355-68. [PMID: 24583283 DOI: 10.1016/j.cellsig.2014.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/23/2014] [Accepted: 02/23/2014] [Indexed: 12/24/2022]
Abstract
Insulin-induced insulin receptor (IR) tyrosine kinase activation and insulin cell survival responses have been reported to be under the regulation of a membrane associated mammalian neuraminidase-1 (Neu1). The molecular mechanism(s) behind this process is unknown. Here, we uncover a novel Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B G-protein coupled receptor (GPCR), which is essential for insulin-induced IR activation and cellular signaling. Neu1, MMP-9 and neuromedin B GPCR form a complex with IRβ subunit on the cell surface. Oseltamivir phosphate (Tamiflu®), anti-Neu1 antibodies, broad range MMP inhibitors piperazine and galardin (GM6001), MMP-9 specific inhibitor (MMP-9i), and GPCR neuromedin B specific antagonist BIM-23127 dose-dependently inhibited Neu1 activity associated with insulin stimulated rat hepatoma cells (HTCs) that overly express human IRs (HTC-IR). Tamiflu, anti-Neu1 antibodies and MMP-9i attenuated phosphorylation of IRβ and insulin receptor substrate-1 (IRS1) associated with insulin-stimulated cells. Olanzapine, an antipsychotic agent associated with insulin resistance, induced Neu3 sialidase activity in WG544 or 1140F01 human sialidosis fibroblast cells genetically defective in Neu1. Neu3 antagonist 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) and anti-Neu3 antibodies inhibited sialidase activity associated with olanzapine treated murine Neu4 knockout macrophage cells. Olanzapine attenuated phosphorylation of IGF-R and IRS1 associated with insulin-stimulated human wild-type fibroblast cells. Our findings identify a novel insulin receptor-signaling platform that is critically essential for insulin-induced IRβ tyrosine kinase activation and cellular signaling. Olanzapine-induced Neu3 sialidase activity attenuated insulin-induced IGF-R and IRS1 phosphorylation contributing to insulin resistance.
Collapse
|
24
|
Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol 2014; 28:2-11. [PMID: 24513230 DOI: 10.1016/j.semcdb.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Veterans Affairs, Nashville, TN, United States.
| |
Collapse
|
25
|
Gilmour AM, Abdulkhalek S, Cheng TS, Alghamdi F, Jayanth P, O’Shea LK, Geen O, Arvizu LA, Szewczuk MR. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal 2013; 25:2587-603. [DOI: 10.1016/j.cellsig.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/23/2013] [Indexed: 12/14/2022]
|
26
|
McDonald TM, Sumner AJ, Reyes JF, Pascual AS, Uppalapati CK, Cooper KE, Leyva KJ, Hull EE. Matrix metalloproteinases and collective cell migration in 24 h primary zebrafish explant cultures: MMP13 plays an inhibitory role and MMP14 may respond to stretch during reepithelialisation. CELL BIOLOGY INTERNATIONAL REPORTS 2013. [DOI: 10.1002/cbi3.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Timothy M. McDonald
- Biomedical Sciences; College of Health Sciences, Midwestern University; Glendale Arizona 85308 USA
| | - Adam J. Sumner
- College of Dental Medicine; Midwestern University; Glendale Arizona 85308 USA
| | - Jonazary F. Reyes
- Biomedical Sciences; College of Health Sciences, Midwestern University; Glendale Arizona 85308 USA
| | - Agnes S. Pascual
- Biomedical Sciences; College of Health Sciences, Midwestern University; Glendale Arizona 85308 USA
| | - Chandana K. Uppalapati
- Microbiology & Immunology, Arizona College of Osteopathic Medicine; Midwestern University; Glendale Arizona 85308 USA
| | - Kimbal E. Cooper
- Biomedical Sciences; College of Health Sciences, Midwestern University; Glendale Arizona 85308 USA
| | - Kathryn J. Leyva
- Microbiology & Immunology, Arizona College of Osteopathic Medicine; Midwestern University; Glendale Arizona 85308 USA
| | - Elizabeth E. Hull
- Biomedical Sciences; College of Health Sciences, Midwestern University; Glendale Arizona 85308 USA
| |
Collapse
|
27
|
Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses. Cell Signal 2013; 25:2093-105. [PMID: 23827939 DOI: 10.1016/j.cellsig.2013.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/20/2022]
Abstract
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.
Collapse
|
28
|
Golubkov VS, Strongin AY. Insights into ectodomain shedding and processing of protein-tyrosine pseudokinase 7 (PTK7). J Biol Chem 2012; 287:42009-18. [PMID: 23095747 DOI: 10.1074/jbc.m112.371153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP(621)↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | |
Collapse
|
29
|
Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1110-8. [PMID: 22546605 DOI: 10.1016/j.bbamcr.2012.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/23/2022]
Abstract
In human adenocarcinoma, claudin-2 expression is higher than that in normal lung tissue, but the regulatory mechanism of its expression has not been clarified. In human adenocarcinoma A549 cells, claudin-2 level time-dependently increased under the control conditions. In contrast, claudin-1 expression remained constant for 24h. The concentration of epidermal growth factor (EGF) in medium time-dependently increased, which was inhibited by matrix metalloproteinase (MMP) inhibitor II, an inhibitor of MMP-1, 3, 7, and 9. MMP inhibitor II decreased claudin-2 and phosphorylated ERK1/2 (p-ERK1/2) levels, which were recovered by EGF. Both claudin-2 and p-ERK1/2 levels were decreased by EGF neutralizing antibody, EGF receptor (EGFR) siRNA, AG1478, an inhibitor of EGFR, U0126, an inhibitor of MEK, and the exogenous expression of dominant negative-MEK. These results suggest that EGF is secreted from A549 cells by MMP and increases claudin-2 expression mediated via the activation of an EGFR/MEK/ERK pathway. The inhibition of the signaling pathway decreased phosphorylated c-Fos and nuclear c-Fos levels. The introduction of c-Fos siRNA decreased claudin-2 level without affecting claudin-1. The promoter activity of human claudin-2 was decreased by AG1478 and U0126. Furthermore, the activity was decreased by the deletion or mutation of the AP-1 binding site of claudin-2 promoter. Chromatin immunoprecipitation and avidin-biotin conjugated DNA assays showed that c-Fos binds to the AP-1 binding site. We suggest that a secreted EGF up-regulates the transcriptional activity of claudin-2 mediated by the activation of an EGFR/MEK/ERK/c-Fos pathway in A549 cells.
Collapse
|
30
|
Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4. Cell Tissue Res 2012; 348:505-14. [PMID: 22526622 DOI: 10.1007/s00441-012-1396-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/05/2012] [Indexed: 01/04/2023]
Abstract
The human open reading frame C2orf40 encodes esophageal cancer-related gene-4 (Ecrg4), a newly recognized neuropeptide-like precursor protein whose gene expression by cells in vitro, over-expression in mice in vivo, and knock-down in zebrafish affects cell proliferation, migration and senescence, progenitor cell survival and differentiation, and inflammatory function. Unlike traditionally secreted neuropeptide precursors, however, we find that Ecrg4 localizes to the epithelial cell surface and remains tethered after secretion. Here, we used cell surface biotinylation to establish that 14-kDa Ecrg4 localizes to the cell surface of prostate (PC3) or kidney (HEK) epithelial cells after transfection. Accordingly, this Ecrg4 is resistant to washing cells with neutral, high salt (2 M NaCl), acidic (50 mM glycine, pH 2.8), or basic (100 mM Na(2)CO(3), pH 11) buffers. Mutagenesis of Ecrg4 established that cell tethering was mediated by an NH(2)-terminus hydrophobic leader sequence that enabled both trafficking to the surface and tethering. Immunoblotting analyses, however, showed that different cells process Ecrg4 differently. Whereas PC3 cells release cell surface Ecrg4 to generate soluble Ecrg4 peptides of 6-14 kDa, HEK cells do neither, and the 14-kDa precursor resembles a sentinel attached to the cell surface. Because a phorbol ester treatment of PC3 cells stimulated Ecrg4 release from, and processing at, the cell surface, these data are consistent with a multifunctional role for Ecrg4 that is dependent on its cell of origin and the molecular form produced.
Collapse
|
31
|
Dopamine stimulates epidermal growth factor release from adult neural precursor cells derived from the subventricular zone by a disintegrin and metalloprotease. Neuroreport 2012; 22:956-8. [PMID: 22027511 DOI: 10.1097/wnr.0b013e32834d2f65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dopamine plays a key role in the regulation of stem cell turnover and neurogenesis in the subventricular zone. This effect is mediated by dopamine-induced release of epidermal growth factor (EGF), to promote stem cell proliferation in this area. We, therefore, sought to investigate whether a disintegrin and metalloprotease (ADAMs) are implicated in this process, as they have previously been shown to play a role in transactivation of the EGF receptor after stimulation of G protein-coupled receptors. We found that dopamine stimulation of stem cells caused the release of EGF, in agreement with our previous findings. However, the inhibition of ADAMs reversed this effect. Our results support a role for ADAMs in dopamine-induced release of EGF from stem cells in the subventricular zone.
Collapse
|
32
|
Abdulkhalek S, Amith SR, Franchuk SL, Jayanth P, Guo M, Finlay T, Gilmour A, Guzzo C, Gee K, Beyaert R, Szewczuk MR. Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for Toll-like receptor activation and cellular signaling. J Biol Chem 2011; 286:36532-49. [PMID: 21873432 DOI: 10.1074/jbc.m111.237578] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gα(i) subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gα(i)-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling.
Collapse
Affiliation(s)
- Samar Abdulkhalek
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa H. Dopamine-dependent ectodomain shedding and release of epidermal growth factor in developing striatum: target-derived neurotrophic signaling (Part 2). J Neurochem 2011; 118:57-68. [PMID: 21534959 DOI: 10.1111/j.1471-4159.2011.07295.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epidermal growth factor (EGF) and structurally related peptides promote neuronal survival and the development of midbrain dopaminergic neurons; however, the regulation of their production has not been fully elucidated. In this study, we found that the treatment of striatal cells with dopamine agonists enhances EGF release both in vivo and in vitro. We prepared neuron-enriched and non-neuronal cell-enriched cultures from the striatum of rat embryos and challenged those with various neurotransmitters or dopamine receptor agonists. Dopamine and a dopamine D(1) -like receptor agonist (SKF38393) triggered EGF release from neuron-enriched cultures in a dose-dependent manner. A D(2) -like agonist (quinpirole) increased EGF release only from non-neuronal cell-enriched cultures. The EGF release from striatal neurons and non-neuronal cells was concomitant with ErbB1 phosphorylation and/or with the activation of a disintegrin and metalloproteinase and matrix metalloproteinase. The EGF release from neurons was attenuated by an a disintegrin and metalloproteinase/matrix metalloproteinase inhibitor, GM6001, and a calcium ion chelator, BAPTA/AM. Transfection of cultured striatal neurons with alkaline phosphatase-tagged EGF precursor cDNA confirmed that dopamine D(1) -like receptor stimulation promoted both ectodomain shedding of the precursor and EGF release. Therefore, the activation of striatal dopamine receptors induces shedding and release of EGF to provide a retrograde neurotrophic signal to midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Suarez A, Huber RJ, Myre MA, O'Day DH. An extracellular matrix, calmodulin-binding protein from Dictyostelium with EGF-like repeats that enhance cell motility. Cell Signal 2011; 23:1197-206. [PMID: 21402150 DOI: 10.1016/j.cellsig.2011.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/07/2011] [Indexed: 01/16/2023]
Abstract
CyrA is a novel cysteine-rich protein with four EGFL repeats that was isolated using the calmodulin (CaM) binding overlay technique (CaMBOT), suggesting it is a CaM-binding protein (CaMBP). The full-length 63kDa cyrA is cleaved into two major C-terminal fragments, cyrA-C45 and cyrA-C40. A putative CaM-binding domain was detected and both CaM-agarose binding and CaM immunoprecipitation verified that cyrA-C45 and cyrA-C40 each bind to CaM in both a Ca(2+)-dependent and -independent manner. cyrA-C45 was present continuously throughout growth and development but was secreted at high levels during the multicellular slug stage of Dictyostelium development. At this time, cyrA localizes to the extracellular matrix (ECM). ECM purification verified the presence of cyrA-C45. An 18 amino acid peptide (DdEGFL1) from the first EGFL repeat sequence of cyrA (EGFL1) that is present in both cyrA-C45 and -C40 enhances both random cell motility and cAMP-mediated chemotaxis. Here we reveal that the dose-dependent enhancement of motility by DdEGFL1 is related to the time of cell starvation. Addition of DdEGFL1 also inhibits cyrA proteolysis. The status of cyrA as an extracellular CaMBP was further clarified by the demonstration that CaM is secreted during development. Antagonism of CaM with W7 resulted in enhanced cyrA proteolysis suggesting a functional role for extracellular CaM in protecting CaMBPs from proteolysis. cyrA is the first extracellular CaMBP identified in Dictyostelium and since it is an ECM protein with EGF-like repeats that enhance cell motility and it likely also represents the first matricellular protein identified in a lower eukaryote.
Collapse
Affiliation(s)
- Andres Suarez
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010; 293:925-37. [PMID: 20503387 DOI: 10.1002/ar.20757] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
36
|
Choi Y, Chung H, Jung H, Couchman JR, Oh ES. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol 2010; 30:93-9. [PMID: 21062643 DOI: 10.1016/j.matbio.2010.10.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/28/2022]
Abstract
An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation. As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions.
Collapse
Affiliation(s)
- Youngsil Choi
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Mo X, Nguyen NX, Mu FT, Yang W, Luo SZ, Fan H, Andrews RK, Berndt MC, Li R. Transmembrane and trans-subunit regulation of ectodomain shedding of platelet glycoprotein Ibalpha. J Biol Chem 2010; 285:32096-104. [PMID: 20716526 PMCID: PMC2952211 DOI: 10.1074/jbc.m110.111864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 08/16/2010] [Indexed: 12/31/2022] Open
Abstract
Ectodomain shedding of transmembrane proteins may be regulated by their cytoplasmic domains. To date, the effecting cytoplasmic domain and the shed extracellular domain have been in the same polypeptide. In this study, shedding of GPIbα, the ligand-binding subunit of the platelet GPIb-IX complex and a marker for platelet senescence and storage lesion, was assessed in Chinese hamster ovary cells with/without functional GPIbα sheddase ADAM17. Mutagenesis of the GPIb-IX complex, which contains GPIbα, GPIbβ, and GPIX subunits, revealed that the intracellular membrane-proximal calmodulin-binding region of GPIbβ is critical for ADAM17-dependent shedding of GPIbα induced by the calmodulin inhibitor, W7. Perturbing the interaction between GPIbα and GPIbβ subunits further lessened the restraint of GPIbβ on GPIbα shedding. However, contrary to the widely accepted model of calmodulin regulation of ectodomain shedding, the R152E/L153E mutation in the GPIbβ cytoplasmic domain disrupted calmodulin binding to GPIbβ but had little effect on GPIbα shedding. Analysis of induction of GPIbα shedding by membrane-permeable GPIbβ-derived peptides implicated the association of GPIbβ with an unidentified intracellular protein in mediating regulation of GPIbα shedding. Overall, these results provide evidence for a novel trans-subunit mechanism for regulating ectodomain shedding.
Collapse
Affiliation(s)
- Xi Mo
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Nam X. Nguyen
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Fi-tjen Mu
- the Australian Centre for Blood Diseases, Alfred Medical Research & Education Precinct, Monash University, Melbourne 3004, Australia
| | - Wenjun Yang
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Shi-Zhong Luo
- the Beijing Key Laboratory of Bioprocess, School of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huizhou Fan
- the Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, and
| | - Robert K. Andrews
- the Australian Centre for Blood Diseases, Alfred Medical Research & Education Precinct, Monash University, Melbourne 3004, Australia
| | - Michael C. Berndt
- the College of Medicine and Health, University College Cork, Cork, Ireland
| | - Renhao Li
- From the Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
38
|
Thymoquinone-induced Neu4 sialidase activates NFκB in macrophage cells and pro-inflammatory cytokines in vivo. Glycoconj J 2010; 27:583-600. [DOI: 10.1007/s10719-010-9302-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/29/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
39
|
Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for neurotrophin activation of Trk receptors and cellular signaling. Cell Signal 2010; 22:1193-205. [DOI: 10.1016/j.cellsig.2010.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/13/2010] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
|
40
|
Soulez M, Sirois I, Brassard N, Raymond MA, Nicodème F, Noiseux N, Durocher Y, Pshezhetsky AV, Hébert MJ. Epidermal growth factor and perlecan fragments produced by apoptotic endothelial cells co-ordinately activate ERK1/2-dependent antiapoptotic pathways in mesenchymal stem cells. Stem Cells 2010; 28:810-20. [PMID: 20201065 DOI: 10.1002/stem.403] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that mesenchymal stem cells (MSC) are pivotal to vascular repair and neointima formation in various forms of vascular disease. Yet, the mechanisms that allow MSC to resist apoptosis at sites where other cell types, such as endothelial cells (EC), are dying are not well defined. In the present work, we demonstrate that apoptotic EC actively release paracrine mediators which, in turn, inhibit apoptosis of MSC. Serum-free medium conditioned by apoptotic EC increases extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation and inhibits apoptosis (evaluated by Bcl-xL protein levels and poly (ADP-ribose) polymerase cleavage) of human MSC. A C-terminal fragment of perlecan (LG3) released by apoptotic EC is one of the mediators activating this antiapoptotic response in MSC. LG3 interacts with beta1-integrins, which triggers downstream ERK1/2 activation in MSC, albeit to a lesser degree than medium conditioned by apoptotic EC. Hence, other mediators released by apoptotic EC are probably required for induction of the full antiapoptotic phenotype in MSC. Adopting a comparative proteomic strategy, we identified epidermal growth factor (EGF) as a novel mediator of the paracrine component of the endothelial apoptotic program. LG3 and EGF cooperate in triggering beta1-integrin and EGF receptor-dependent antiapoptotic signals in MSC centering on ERK1/2 activation. The present work, providing novel insights into the mechanisms facilitating the survival of MSC in a hostile environment, identifies EGF and LG3 released by apoptotic EC as central antiapoptotic mediators involved in this paracrine response.
Collapse
Affiliation(s)
- Mathilde Soulez
- Centre de recherche, Centre hospitalier de l'Université de Montréal - Hôpital Notre-Dame, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thymoquinone from nutraceutical black cumin oil activates Neu4 sialidase in live macrophage, dendritic, and normal and type I sialidosis human fibroblast cells via GPCR Galphai proteins and matrix metalloproteinase-9. Glycoconj J 2010; 27:329-48. [PMID: 20213245 DOI: 10.1007/s10719-010-9281-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 12/13/2022]
Abstract
Anti-inflammatory activities of thymoquinone (TQ) have been demonstrated in in vitro and in vivo studies. However, the precise mechanism(s) of TQ in these anti-inflammatory activities is not well understood. Using a newly developed assay to detect sialidase activity in live macrophage cells (Glycoconj J doi: 10.1007/s10719-009-9239-8 ), here we show that TQ has no inhibitory effect on endotoxin lipopolysaccharide (LPS) induced sialidase activity in live BMC-2 macrophage cells. In contrast, the parent black seed oil (BSO) and another constituent of BSO para-cymene (p-CY) completely block LPS induced sialidase activity. All of these compounds had no effect on cell viability. On the other hand, TQ induces a vigorous sialidase activity in live BMC-2 macrophage cells in a dose dependent manner as well in live DC-2.4 dendritic cells, HEK-TLR4/MD2, HEK293, SP1 mammary adenocarcinoma cells, human WT and 1140F01 and WG0544 type I sialidosis fibroblast cells. Tamiflu (oseltamivir phosphate) inhibits TQ-induced sialidase activity in live BMC-2 cells with an IC(50) of 0.0194 microM compared to an IC(50) of 19.1 microM for neuraminidase inhibitor DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid). Anti-Neu1, -2 and -3 antibodies have no inhibition of TQ-induced sialidase activity in live BMC-2 and human THP-1 macrophage cells but anti-Neu4 antibodies completely block this activity. There is a vigorous sialidase activity associated with TQ treated live primary bone marrow (BM) macrophage cells derived from WT and hypomorphic cathepsin A mice with a secondary Neu1 deficiency (NeuI KD), but not from Neu4 knockout (Neu4 KO) mice. Pertussis toxin (PTX), a specific inhibitor of Galphai proteins of G-protein coupled receptor (GPCR) and the broad range inhibitors of matrix metalloproteinase (MMP) galardin and piperazine applied to live BMC-2, THP-1 and primary BM macrophage cells completely block TQ-induced sialidase activity. These same inhibitory effects are not observed with the GM1 ganglioside specific cholera toxin subunit B (CTXB) as well as with CTX, tyrosine kinase inhibitor K252a, and the broad range GPCR inhibitor suramin. The specific inhibitor of MMP-9, anti-MMP-9 antibody and anti-Neu4 antibody, but not the specific inhibitor of MMP-3 completely block TQ-induced sialidase activity in live THP-1 cells, which express Neu4 and MMP-9 on the cell surface. Neu4 sialidase activity in cell lysates from TQ-treated live THP-1 cells desialylates natural gangliosides and mucin substrates. RT-PCR and western blot analyses reveal no correlation between mRNA and protein values for Neu3 and Neu4 in human monocytic THP-1 cells, suggesting for the first time a varied post-transcriptional mechanism for these two mammalian sialidases independent of TQ activation. Our findings establish an unprecedented activation of Neu4 sialidase on the cell surface by thymoquinone, which is derived from the nutraceutical black cumin oil. The potentiation of GPCR-signaling by TQ via membrane targeting of Galphai subunit proteins and matrix metalloproteinase-9 activation may be involved in the activation process of Neu4 sialidase on the cell surface.
Collapse
|
42
|
Seo M, Juhnn YS. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes. Biochem Biophys Res Commun 2010; 393:190-5. [PMID: 20117092 DOI: 10.1016/j.bbrc.2010.01.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/19/2022]
Abstract
Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the alpha subunit of Gq protein (Galphaq) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active Galphaq (GalphaqQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of Galphaq with shRNA in HaCaT human keratinocytes. Galphaq was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipase C (PLC), protein kinase Cdelta (PKCdelta), and matrix metaloprotease-2 (MMP-2). Moreover, GalphaqQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that Galphaq mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKCdelta and MMP-2 in HaCaT cells.
Collapse
Affiliation(s)
- MiRan Seo
- Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine, Republic of Korea
| | | |
Collapse
|
43
|
Esper RM, Loeb JA. Neurotrophins induce neuregulin release through protein kinase Cdelta activation. J Biol Chem 2009; 284:26251-60. [PMID: 19648576 PMCID: PMC2785313 DOI: 10.1074/jbc.m109.002915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/28/2009] [Indexed: 12/20/2022] Open
Abstract
Proper, graded communication between different cell types is essential for normal development and function. In the nervous system, heart, and for some cancer cells, part of this communication requires signaling by soluble and membrane-bound factors produced by the NRG1 gene. We have previously shown that glial-derived neurotrophic factors activate a rapid, localized release of soluble neuregulin from neuronal axons that can, in turn promote proper axoglial development (Esper, R. M., and Loeb, J. A. (2004) J. Neurosci. 24, 6218-6227). Here we elucidate the mechanism of this localized, regulated release by implicating the delta isoform of protein kinase C (PKC). Blocking the PKC delta isoform with either rottlerin, a selective antagonist, or small interference RNA blocks the regulated release of neuregulin from both transfected cells and primary neuronal cultures. PKC activation also leads to the rapid phosphorylation of the pro-NRG1 cytoplasmic tail on serine residues adjacent to the membrane-spanning segment, that, when mutated markedly reduce the rate of NRG1 activity release. These findings implicate this specific PKC isoform as an important factor for the cleavage and neurotrophin-regulated release of soluble NRG1 forms that have important effects in nervous system development and disease.
Collapse
Affiliation(s)
- Raymond M. Esper
- the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Jeffrey A. Loeb
- From the Department of Neurology and
- the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
44
|
Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod 2009; 15:399-409. [PMID: 19443606 DOI: 10.1093/molehr/gap031] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fully grown mammalian oocytes are arrested at the first meiotic prophase until a surge of gonadotrophin at the mid-cycle. The actions of gonadotrophins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), on oocyte meiotic resumption are believed to be mediated in large part through increasing the production of cyclic adenosine 3',5'-monophosphate and subsequent activation of mitogen-activated protein kinase (MAPK) in its surrounding cumulus granulosa cells. Recent findings indicate that gonadotrophins-induced epidermal growth factor-like growth factors, meiosis activating sterol and gonadal steroid hormones, possibly via protein kinase A II and protein kinase C pathways, are involved in the activation of MAPK. Another second messenger cyclic guanosine 3',5'-monophosphate induced by nitric oxide or natriuretic peptides system mediates the function of gonadotrophins during oocyte meiotic resumption. FSH and LH induced pathways may either directly overlap or each hormone may utilize redundant pathways in oocyte maturation. A detailed appreciation of different FSH and LH-activated signaling pathways in mammalian oocytes will be needed in understanding their actions in follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | |
Collapse
|
45
|
Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F. Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. THE JOURNAL OF IMMUNOLOGY 2008; 181:7002-13. [PMID: 18981120 DOI: 10.4049/jimmunol.181.10.7002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several cytokines and growth factors are released by proteolytic cleavage of a membrane-anchored precursor, through the action of ADAM (a disintegrin and metalloprotease) metalloproteases. The activity of these proteases is regulated through largely unknown mechanisms. In this study we show that Ab engagement of several tetraspanins (CD9, CD81, CD82) increases epidermal growth factor and/or TNF-alpha secretion through a mechanism dependent on ADAM10. The effect of anti-tetraspanin mAb on TNF-alpha release is rapid, not relayed by intercellular signaling, and depends on an intact MEK/Erk1/2 pathway. It is also associated with a concentration of ADAM10 in tetraspanin-containing patches. We also show that a large fraction of ADAM10 associates with several tetraspanins, indicating that ADAM10 is a component of the "tetraspanin web." These data show that tetraspanins regulate the activity of ADAM10 toward several substrates, and illustrate how membrane compartmentalization by tetraspanins can control the function of cell surface proteins such as ectoproteases.
Collapse
|
46
|
Huang YZ, Pan E, Xiong ZQ, McNamara JO. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 2008; 57:546-58. [PMID: 18304484 DOI: 10.1016/j.neuron.2007.11.026] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/19/2007] [Accepted: 11/28/2007] [Indexed: 10/21/2022]
Abstract
The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.
Collapse
Affiliation(s)
- Yang Z Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
47
|
Chung HS, Yoon CS, Kwon MJ, Kim MK, Lee SH, Ko KS, Rhee BD, Park JH. Cloning of Novel Epidermal Growth Factor (EGF) Plasmid for Gene Therapy on Diabetic Foot Ulcer. KOREAN DIABETES JOURNAL 2008. [DOI: 10.4093/kdj.2008.32.2.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hye Sook Chung
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
| | - Chang Shin Yoon
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
| | - Min Jeong Kwon
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Mi Kyung Kim
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Maryknoll General Hospital, Korea
| | - Soon Hee Lee
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Kyung Soo Ko
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Byung Doo Rhee
- Department of Internal Medicine, Inje College of Medicine, Korea
| | - Jeong Hyun Park
- Molecular Therapy Lab, Paik Memorial Institute for Clinical Research, Korea
- Department of Internal Medicine, Inje College of Medicine, Korea
| |
Collapse
|
48
|
Tsang SW, Nguyen CQ, Hall DH, Chow KL. mab-7 encodes a novel transmembrane protein that orchestrates sensory ray morphogenesis in C. elegans. Dev Biol 2007; 312:353-66. [PMID: 17959165 DOI: 10.1016/j.ydbio.2007.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 09/08/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The tapered sensory rays of the male Caenorhabditis elegans are important for successful male/hermaphrodite copulation. A group of ram (ray morphology abnormal) genes encoding modifying enzymes and transmembrane protein have been reported as key regulators controlling ray morphogenesis. Here we report the characterization of another component essential for this morphogenetic process encoded by mab-7. This gene is active in the hypodermis, structural cells, the body seam and several head neurons. It encodes a novel protein with a hydrophobic region at the N-terminus, an EGF-like motif, an ShKT motif and a long C-terminal tail. All these domains are shown to be critical to MAB-7 activity except the EGF-like domain, which appears to be regulatory and dispensable. MAB-7 is shown to be a type II membrane protein, tethered on the cell surface by the N-terminal transmembrane domain with the remainder of the protein exposed to the extracellular matrix. Since ectopic mab-7 expression in any ray cell or even in touch neurons of non-ray lineage can rescue the mutant phenotype, mab-7 is probably acting non-autonomously. It may facilitate intercellular communication among ray cells to augment normal ray morphogenesis.
Collapse
Affiliation(s)
- S W Tsang
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
49
|
Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul Surf 2007; 2:76-91. [PMID: 17216081 DOI: 10.1016/s1542-0124(12)70146-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Tears are a complex fluid consisting of three layers, each of which is secreted by a different set of tissues or glands. The aqueous portion of the tear film is produced predominantly by the lacrimal gland. Dry eye syndromes are diseases in which the amount and composition of tears are altered, which can lead to ocular surface damage. There are many causes for dry eye syndromes. One such cause is the alteration in the functions of nerves innervating the lacrimal gland and the ocular surface. The autoimmune disease Sjogren syndrome can deleteriously affect the innervation of the lacrimal gland. Damage to the sensory nerves in the ocular surface, specifically the cornea, as a result of refractive surgery and normal aging, prevents the normal reflex arc to the lacrimal gland. Both defects can result in decreased tear secretion and dry eye syndromes. This review will discuss the current information regarding neurally-stimulated protein, water, and electrolyte secretion from the lacrimal gland and delineate how nerve dysfunction resulting from a variety of causes decreases secretion from this gland.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
50
|
Moss ML, Rasmussen FH. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal Biochem 2007; 366:144-8. [PMID: 17548045 DOI: 10.1016/j.ab.2007.04.043] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/05/2007] [Accepted: 04/26/2007] [Indexed: 11/19/2022]
Abstract
In this paper we describe novel fluorescent substrates for the human ADAM family members ADAM17, ADAM10, ADAM8, and ADAM12 that have good specificity constants and are useful for high-throughput screening of inhibitors. The fluorescence resonance energy transfer substrates contain a 4-(4-dimethylaminophenylazo)benzoyl and 5-carboxyfluorescein (Dabcyl/Fam) pair and are based on known cleavage sequences in precursor tumor necrosis factor-alpha (TNF-alpha) and CD23. The precursor TNF-alpha-based substrate, Dabcyl-Leu-Ala-Gln-Ala-Homophe-Arg-Ser-Lys(Fam)-NH2, is a good substrate for all the ADAMs tested, including ADAM12 for which there is no reported fluorescent substrate. The CD23-based substrate, Dabcyl-His-Gly-Asp-Gln-Met-Ala-Gln-Lys-Ser-Lys(Fam)-NH2, is more selective, being hydrolyzed efficiently only by ADAM8 and ADAM10. The substrates were used to obtain inhibition constants for four inhibitors that are commonly used in shedding assays: TMI-1, GM6001, GW9471, and TAPI-2. The Wyeth Aerst compound, TMI-1, is a potent inhibitor against all of the ADAMs tested and is slow binding against ADAM17.
Collapse
|