1
|
Shoara AA, Slavkovic S, Neves MAD, Bhoria P, Prifti V, Chen P, Donaldson LW, Beckett AN, Johnson PE, Ni H. Structural analyses of apolipoprotein A-IV polymorphisms Q360H and T347S elucidate the inhibitory effect against thrombosis. J Biol Chem 2025; 301:108392. [PMID: 40074081 PMCID: PMC12017984 DOI: 10.1016/j.jbc.2025.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is an abundant lipid-binding protein in blood plasma. We previously reported that apoA-IV, as an endogenous inhibitor, competitively binds platelet αIIbβ3 integrin from its N-terminal residues, reducing the potential risk of thrombosis. This study aims to investigate how the apoA-IVQ360H and apoA-IVT347S mutations affect the structure and function of apoA-IV. These mutations are linked to increased risk of cardiovascular diseases because of multiple single-nucleotide polymorphisms in the C-terminal region of apoA-IV. We postulate that the structural hindrance caused by the C-terminal motifs may impede the binding of apoA-IV to platelets at its N-terminal binding site. However, the mechanistic impact of Q360H and T347S polymorphisms on this intermolecular interaction and their potential contribution to the development of cardiovascular disease have not been adequately investigated. To address this, recombinant forms of human apoA-IVWT, apoA-IVQ360H, and apoA-IVT347S variants were produced, and the structural stability, dimerization, and molecular dynamics of the C terminus were examined utilizing biophysical techniques, including fluorescence anisotropy, fluorescence spectrophotometry, circular dichroism, and biolayer interferometry methods. Our results showed a decreased fraction of α-helix structure in apoA-IVQ360H and apoA-IVT347S compared with the WT, and the inhibitory effect of dimerized apoA-IV on platelet aggregation was reduced in apoA-IVQ360H and apoA-IVT347S variants. Binding kinetics of examined apoA-IV polymorphisms to platelet αIIbβ3 suggest a potential mechanism for increased risk of cardiovascular diseases in individuals with apoA-IVQ360H and apoA-IVT347S polymorphisms.
Collapse
Affiliation(s)
- Aron A Shoara
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel A D Neves
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Preeti Bhoria
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Viktor Prifti
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pingguo Chen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrew N Beckett
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - Heyu Ni
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Lee G, Kim RS, Lee SB, Lee S, Tsai FT. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans 2022; 50:1725-1736. [PMID: 36454589 PMCID: PMC9784670 DOI: 10.1042/bst20220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.
Collapse
Affiliation(s)
- Grace Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Rebecca S. Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sauer RT, Fei X, Bell TA, Baker TA. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Crit Rev Biochem Mol Biol 2022; 57:188-204. [PMID: 34923891 PMCID: PMC9871882 DOI: 10.1080/10409238.2021.1979461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.
Collapse
Affiliation(s)
- Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tristan A. Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298:101781. [PMID: 35245501 PMCID: PMC9035409 DOI: 10.1016/j.jbc.2022.101781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Vos MR, Piraino B, LaBreck CJ, Rahmani N, Trebino CE, Schoenle M, Peti W, Camberg JL, Page R. Degradation of the E. coli antitoxin MqsA by the proteolytic complex ClpXP is regulated by zinc occupancy and oxidation. J Biol Chem 2021; 298:101557. [PMID: 34974059 PMCID: PMC8808172 DOI: 10.1016/j.jbc.2021.101557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remains unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent, zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP mediated degradation.
Collapse
Affiliation(s)
- Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA; Graduate Program in Molecular Biology and Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Benjamin Piraino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher J LaBreck
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Negar Rahmani
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Catherine E Trebino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Marta Schoenle
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jodi L Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
8
|
Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex. Nat Commun 2021; 12:281. [PMID: 33436616 PMCID: PMC7804408 DOI: 10.1038/s41467-020-20553-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
A functional association is uncovered between the ribosome-associated trigger factor (TF) chaperone and the ClpXP degradation complex. Bioinformatic analyses demonstrate conservation of the close proximity of tig, the gene coding for TF, and genes coding for ClpXP, suggesting a functional interaction. The effect of TF on ClpXP-dependent degradation varies based on the nature of substrate. While degradation of some substrates are slowed down or are unaffected by TF, surprisingly, TF increases the degradation rate of a third class of substrates. These include λ phage replication protein λO, master regulator of stationary phase RpoS, and SsrA-tagged proteins. Globally, TF acts to enhance the degradation of about 2% of newly synthesized proteins. TF is found to interact through multiple sites with ClpX in a highly dynamic fashion to promote protein degradation. This chaperone-protease cooperation constitutes a unique and likely ancestral aspect of cellular protein homeostasis in which TF acts as an adaptor for ClpXP.
Collapse
|
9
|
The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development. mBio 2020; 11:mBio.02016-20. [PMID: 32873765 PMCID: PMC7468207 DOI: 10.1128/mbio.02016-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets. Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia, ClpX is encoded within an operon 3′ to clpP2. We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro. Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2. Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation.
Collapse
|
10
|
Gatsogiannis C, Balogh D, Merino F, Sieber SA, Raunser S. Cryo-EM structure of the ClpXP protein degradation machinery. Nat Struct Mol Biol 2019; 26:946-954. [PMID: 31582852 PMCID: PMC6783313 DOI: 10.1038/s41594-019-0304-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
Abstract
The ClpXP machinery is a two component protease complex performing
targeted protein degradation in bacteria and mitochondria. The complex consists
of the AAA+ chaperone ClpX and the peptidase ClpP. The hexameric ClpX utilizes
the energy of ATP binding and hydrolysis to engage, unfold and translocate
substrates into the catalytic chamber of tetradecameric ClpP where they are
degraded. Formation of the complex involves a symmetry mismatch, since hexameric
AAA+ rings bind axially to the opposing stacked heptameric rings of the
tetradecameric ClpP. Here we present the cryo-EM structure of ClpXP from
Listeria monocytogenes. We unravel the heptamer-hexamer
binding interface and provide novel insights into the ClpX-ClpP crosstalk and
activation mechanism. The comparison with available crystal structures of ClpP
and ClpX in different states allows us to understand important aspects of
ClpXP’s complex mode of action and provides a structural framework for
future pharmacological applications.
Collapse
Affiliation(s)
- Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dora Balogh
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
11
|
Rotanova TV, Andrianova AG, Kudzhaev AM, Li M, Botos I, Wlodawer A, Gustchina A. New insights into structural and functional relationships between LonA proteases and ClpB chaperones. FEBS Open Bio 2019; 9:1536-1551. [PMID: 31237118 PMCID: PMC6722904 DOI: 10.1002/2211-5463.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
LonA proteases and ClpB chaperones are key components of the protein quality control system in bacterial cells. LonA proteases form a unique family of ATPases associated with diverse cellular activities (AAA+ ) proteins due to the presence of an unusual N-terminal region comprised of two domains: a β-structured N domain and an α-helical domain, including the coiled-coil fragment, which is referred to as HI(CC). The arrangement of helices in the HI(CC) domain is reminiscent of the structure of the H1 domain of the first AAA+ module of ClpB chaperones. It has been hypothesized that LonA proteases with a single AAA+ module may also contain a part of another AAA+ module, the full version of which is present in ClpB. Here, we established and tested the structural basis of this hypothesis using the known crystal structures of various fragments of LonA proteases and ClpB chaperones, as well as the newly determined structure of the Escherichia coli LonA fragment (235-584). The similarities and differences in the corresponding domains of LonA proteases and ClpB chaperones were examined in structural terms. The results of our analysis, complemented by the finding of a singular match in the location of the most conserved axial pore-1 loop between the LonA NB domain and the NB2 domain of ClpB, support our hypothesis that there is a structural and functional relationship between two coiled-coil fragments and implies a similar mechanism of engagement of the pore-1 loops in the AAA+ modules of LonAs and ClpBs.
Collapse
Affiliation(s)
- Tatyana V. Rotanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Anna G. Andrianova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Arsen M. Kudzhaev
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
- Basic Science Program, Leidos Biomedical ResearchFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Istvan Botos
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMDUSA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography LaboratoryNational Cancer InstituteFrederickMDUSA
| |
Collapse
|
12
|
Selectivity among Anti-σ Factors by Mycobacterium tuberculosis ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors. J Bacteriol 2019; 201:JB.00748-18. [PMID: 30617240 DOI: 10.1128/jb.00748-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/01/2019] [Indexed: 11/20/2022] Open
Abstract
Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.
Collapse
|
13
|
Martínez-Lumbreras S, Alfano C, Evans NJ, Collins KM, Flanagan KA, Atkinson RA, Krysztofinska EM, Vydyanath A, Jackter J, Fixon-Owoo S, Camp AH, Isaacson RL. Structural and Functional Insights into Bacillus subtilis Sigma Factor Inhibitor, CsfB. Structure 2018; 26:640-648.e5. [PMID: 29526435 PMCID: PMC5890618 DOI: 10.1016/j.str.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 02/06/2018] [Indexed: 11/23/2022]
Abstract
Global changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σG and σE, during spore formation by Bacillus subtilis. CsfB assembles into a symmetrical homodimer, with each monomer bound to a single Zn2+ ion via a treble-clef zinc finger fold. Directed mutagenesis indicates that dimer formation is critical for CsfB-mediated inhibition of both σG and σE, and we have characterized these interactions in vitro. This work represents an advance in our understanding of how CsfB mediates inhibition of two alternative sigma factors to drive developmental gene expression in a bacterium.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacillus subtilis/chemistry
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Binding Sites
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Multimerization
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sigma Factor/antagonists & inhibitors
- Sigma Factor/chemistry
- Sigma Factor/genetics
- Sigma Factor/metabolism
- Spores, Bacterial/chemistry
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Zinc/chemistry
- Zinc/metabolism
Collapse
Affiliation(s)
| | - Caterina Alfano
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Structural Biology and Biophysics Unit, Fondazione Ri.MED, Via Bandiera, 11, 90133 Palermo, Italy
| | - Nicola J Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katherine M Collins
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Kelly A Flanagan
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Ewelina M Krysztofinska
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Anupama Vydyanath
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Sarah Fixon-Owoo
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
14
|
Bittner LM, Arends J, Narberhaus F. Mini review: ATP-dependent proteases in bacteria. Biopolymers 2017; 105:505-17. [PMID: 26971705 DOI: 10.1002/bip.22831] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016.
Collapse
Affiliation(s)
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
15
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
16
|
ClpP-independent function of ClpX interferes with telithromycin resistance conferred by Msr(A) in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:3611-4. [PMID: 25801573 DOI: 10.1128/aac.04367-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
The ABCF family protein Msr(A) confers high resistance to macrolides but only low resistance to ketolides in staphylococci. Mutations in conserved functional regions of ClpX as well as deletion of clpX significantly increased Msr(A)-mediated resistance to the ketolide antibiotic telithromycin. ClpX is the chaperone component of the ClpXP two-component proteolytic system. Nevertheless, no changes in resistance were observed in a clpP knockout strain expressing msr(A), demonstrating that ClpX affects Msr(A) independently of ClpP.
Collapse
|
17
|
MOIRAE: A computational strategy to extract and represent structural information from experimental protein templates. Soft comput 2013. [DOI: 10.1007/s00500-013-1087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
19
|
Lowth BR, Kirstein-Miles J, Saiyed T, Brötz-Oesterhelt H, Morimoto RI, Truscott KN, Dougan DA. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J Struct Biol 2012; 179:193-201. [PMID: 22710082 DOI: 10.1016/j.jsb.2012.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/14/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The mitochondrial matrix of mammalian cells contains several different ATP-dependent proteases, including CLPXP, some of which contribute to protein maturation and quality control. Currently however, the substrates and the physiological roles of mitochondrial CLPXP in humans, has remained elusive. Similarly, the mechanism by which these ATP-dependent proteases recognize their substrates currently remains unclear. Here we report the characterization of a Walker B mutation in human CLPX, in which the highly conserved glutamate was replaced with alanine. This mutant protein exhibits improved interaction with the model unfolded substrate casein and several putative physiological substrates in vitro. Although this mutant lacks ATPase activity, it retains the ability to mediate casein degradation by hCLPP, in a fashion similar to the small molecule ClpP-activator, ADEP. Our functional dissection of hCLPX structure, also identified that most model substrates are recognized by the N-terminal domain, although some substrates bypass this step and dock, directly to the pore-1 motif. Collectively these data reveal, that despite the difference between bacterial and human CLPXP complexes, human CLPXP exhibits a similar mode of substrate recognition and is deregulated by ADEPs.
Collapse
Affiliation(s)
- Bradley R Lowth
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Thibault G, Houry WA. Role of the N-Terminal Domain of the Chaperone ClpX in the Recognition and Degradation of Lambda Phage Protein O. J Phys Chem B 2012; 116:6717-24. [DOI: 10.1021/jp212024b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Thibault
- Department
of Biochemistry, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto,
Ontario M5S 1A8, Canada
| | - Walid A. Houry
- Department
of Biochemistry, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto,
Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Abstract
The specific self-association of proteins to form homodimers and higher order oligomers is an extremely common event in biological systems. In this chapter we review the prevalence of protein oligomerization and discuss the likely origins of this phenomenon. We also outline many of the functional advantages conferred by the dimerization or oligomerization of a wide range of different proteins and in a variety of biological roles, that are likely to have placed a selective pressure on biological systems to evolve and maintain homodimerization/oligomerization interfaces.
Collapse
|
22
|
Baker TA, Sauer RT. ClpXP, an ATP-powered unfolding and protein-degradation machine. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:15-28. [PMID: 21736903 PMCID: PMC3209554 DOI: 10.1016/j.bbamcr.2011.06.007] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/23/2022]
Abstract
ClpXP is a AAA+ protease that uses the energy of ATP binding and hydrolysis to perform mechanical work during targeted protein degradation within cells. ClpXP consists of hexamers of a AAA+ ATPase (ClpX) and a tetradecameric peptidase (ClpP). Asymmetric ClpX hexamers bind unstructured peptide tags in protein substrates, unfold stable tertiary structure in the substrate, and then translocate the unfolded polypeptide chain into an internal proteolytic compartment in ClpP. Here, we review our present understanding of ClpXP structure and function, as revealed by two decades of biochemical and biophysical studies.
Collapse
Affiliation(s)
- Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| |
Collapse
|
23
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
24
|
Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles 2011; 15:191-202. [PMID: 21210168 DOI: 10.1007/s00792-010-0343-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn(2+) in related NTPases. Using atomic absorption spectroscopy, indeed Zn(2+) was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn(2+). Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.
Collapse
|
25
|
Chowdhury T, Chien P, Ebrahim S, Sauer RT, Baker TA. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species. Protein Sci 2010; 19:242-54. [PMID: 20014030 DOI: 10.1002/pro.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ClpXP, an AAA+ protease, plays key roles in protein-quality control and many regulatory processes in bacteria. The N-terminal domain of the ClpX component of ClpXP is involved in recognition of many protein substrates, either directly or by binding the SspB adaptor protein, which delivers specific classes of substrates for degradation. Despite very limited sequence homology between the E. coli and C. crescentus SspB orthologs, each of these adaptors can deliver substrates to the ClpXP enzyme from the other bacterial species. We show that the ClpX N domain recognizes different sequence determinants in the ClpX-binding (XB) peptides of C. crescentus SspBalpha and E. coli SspB. The C. crescentus XB determinants span 10 residues and involve interactions with multiple side chains, whereas the E. coli XB determinants span half as many residues with only a few important side chain contacts. These results demonstrate that the N domain of ClpX functions as a highly versatile platform for peptide recognition, allowing the emergence during evolution of alternative adaptor-binding specificities. Our results also reveal highly conserved residues in the XB peptides of both E. coli SspB and C. crescentus SspBalpha that play no detectable role in ClpX-binding or substrate delivery.
Collapse
Affiliation(s)
- Tahmeena Chowdhury
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2009; 139:744-56. [PMID: 19914167 DOI: 10.1016/j.cell.2009.09.034] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/21/2009] [Accepted: 09/09/2009] [Indexed: 11/18/2022]
Abstract
ClpX is a AAA+ machine that uses the energy of ATP binding and hydrolysis to unfold native proteins and translocate unfolded polypeptides into the ClpP peptidase. The crystal structures presented here reveal striking asymmetry in ring hexamers of nucleotide-free and nucleotide-bound ClpX. Asymmetry arises from large changes in rotation between the large and small AAA+ domains of individual subunits. These differences prevent nucleotide binding to two subunits, generate a staggered arrangement of ClpX subunits and pore loops around the hexameric ring, and provide a mechanism for coupling conformational changes caused by ATP binding or hydrolysis in one subunit to flexing motions of the entire ring. Our structures explain numerous solution studies of ClpX function, predict mechanisms for pore elasticity during translocation of irregular polypeptides, and suggest how repetitive conformational changes might be coupled to mechanical work during the ATPase cycle of ClpX and related molecular machines.
Collapse
Affiliation(s)
- Steven E Glynn
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Cranz-Mileva S, Imkamp F, Kolygo K, Maglica Z, Kress W, Weber-Ban E. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand. J Mol Biol 2008; 378:412-24. [PMID: 18358489 DOI: 10.1016/j.jmb.2008.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 11/18/2022]
Abstract
ClpA is an Hsp100 chaperone that uses the chemical energy of ATP to remodel various protein substrates to prepare them for degradation. It comprises two AAA+ modules and the N-domain, which is attached N-terminally to the first AAA+ module through a linker. On the basis of cryo-electron microscopic and X-ray crystallographic data it has been suggested that the linker confers mobility to the N-domain. In order to define the role of the N-domain in ClpAP-dependent substrate degradation we have generated a Delta N variant at the protein level by introducing a protease cleavage site. The ClpA molecule generated in this way lacks the N-domain and the associated linker but is impaired only slightly in the processing of substrates that are degraded independently of ClpS. In fact, it shows increased catalytic efficiency in the degradation of ssrA-tagged GFP compared to ClpAwt. The role of the linker attaching the N-domain to the bulk of the molecule was probed by characterizing variants with different lengths of the linker. The degradation efficiency of a ClpS-dependent N-end rule substrate, FRliGFP, is reduced for linkers that are shorter or longer than natural linkers but remains the same for the variant where the linker is replaced by an engineered sequence of equivalent length. These results suggest that the flexible attachment of the N-domains to ClpA allows their recruitment to the pore on demand for certain substrates, while allowing them to move out of the way for substrates binding directly to the pore.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Institute of Molecular Biology & Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Ye J, Cho SH, Fuselier J, Li W, Beckwith J, Rapoport TA. Crystal structure of an unusual thioredoxin protein with a zinc finger domain. J Biol Chem 2007; 282:34945-51. [PMID: 17913712 DOI: 10.1074/jbc.m704044200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacteria have two cytoplasmic thioredoxins, thioredoxin-1 and -2, encoded by the trxA and trxC genes, respectively. Both thioredoxins have the highly conserved WCGPC motif and function as disulfide-bond reductases. However, thioredoxin-2 has unique features: it has an N-terminal motif that binds a zinc ion, and its transcription is under the control of OxyR, which allows it to be up-regulated under oxidative stress. Here, we report the crystal structure of thioredoxin-2 from Rhodobacter capsulatus. The C-terminal region of thioredoxin-2 forms a canonical thioredoxin fold with a central beta-sheet consisting of five strands and four flanking alpha-helices on either side. The N-terminal zinc finger is composed of four short beta-strands (S1-S4) connected by three short loops (L1-L3). The four cysteines are at loops L1 and L3 and form a tetragonal binding site for a zinc ion. The zinc finger is close to the first beta-strand and first alpha-helix of the thioredoxin fold. Nevertheless, the zinc finger may not directly affect the oxidoreductase activity of thioredoxin-2 because the zinc finger is not near the active site of a protomer and because thioredoxin-2 is a monomer in solution. On the basis of structural similarity to the zinc fingers in Npl4 and Vps36, we propose that the N-terminal zinc finger of thioredoxin-2 mediates protein-protein interactions, possibly with its substrates or chaperones.
Collapse
Affiliation(s)
- Jiqing Ye
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
McGinness KE, Bolon DN, Kaganovich M, Baker TA, Sauer RT. Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery. J Biol Chem 2007; 282:11465-73. [PMID: 17317664 DOI: 10.1074/jbc.m610671200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SspB is a dimeric adaptor protein that increases the rate at which ssrA-tagged substrates are degraded by tethering them to the ClpXP protease. Each SspB subunit consists of a folded domain that forms the dimer interface and a flexible C-terminal tail. Ternary delivery complexes are stabilized by three sets of tethering interactions. The C-terminal XB peptide of each SspB subunit binds ClpX, the body of SspB binds one part of the ssrA-tag sequence, and ClpX binds another part of the tag. To test the functional importance of these tethering interactions, we engineered monomeric SspB variants and dimeric variants with different length linkers between the SspB body and the XB peptide and employed substrates with degradation tags that bind ClpX weakly and/or contain extensions between the binding sites for SspB and ClpX. We find that monomeric SspB variants can enhance ClpXP degradation of a subset of substrates, that doubling the number of tethering interactions stimulates degradation via changes in Km and Vmax, and that major alterations in the length of the 48-residue SspB linker cause only small changes in the efficiency of substrate delivery. These results indicate that the properties of the degradation tag and the number of SspB.ClpX tethering interactions are the major factors that determine the extent to which the substrate and ClpX are engaged in ternary delivery complexes.
Collapse
Affiliation(s)
- Kathleen E McGinness
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 2007; 367:514-26. [PMID: 17258768 DOI: 10.1016/j.jmb.2007.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 11/30/2022]
Abstract
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.
Collapse
Affiliation(s)
- Eun Young Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R, Houry WA. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Proc Natl Acad Sci U S A 2006; 103:17724-9. [PMID: 17090685 PMCID: PMC1693814 DOI: 10.1073/pnas.0601505103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp ATPases are a unique group of ATP-dependent chaperones supporting targeted protein unfolding and degradation in concert with their respective proteases. ClpX is a representative member of these ATPases; it consists of two domains, a zinc-binding domain (ZBD) that forms dimers and a AAA+ ATP-binding domain that arranges into a hexamer. Analysis of the binding preferences of these two domains in ClpX revealed that both domains preferentially bind to hydrophobic residues but have different sequence preferences, with the AAA+ domain preferentially recognizing a wider range of specific sequences than ZBD. As part of this analysis, the binding site of the ClpX dimeric cofactor, SspB2, on ZBD in ClpX was determined by NMR and mutational analysis. The SspB C terminus was found to interact with a hydrophobic patch on the surface of ZBD. The affinity of SspB2 toward ZBD2 and the geometry of the SspB2-ZBD2 complex were investigated by using the newly developed quantitative optical biosensor method of dual polarization interferometry. The data suggest a model for the interaction between SspB2 and the ClpX hexamer.
Collapse
Affiliation(s)
- Guillaume Thibault
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jovana Yudin
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Philip Wong
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Vladimir Tsitrin
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Remco Sprangers
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Rongmin Zhao
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Walid A. Houry
- One King's College Circle, Medical Sciences Building, Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Thibault G, Tsitrin Y, Davidson T, Gribun A, Houry WA. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. EMBO J 2006; 25:3367-76. [PMID: 16810315 PMCID: PMC1523177 DOI: 10.1038/sj.emboj.7601223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 06/13/2006] [Indexed: 11/09/2022] Open
Abstract
The ClpXP ATPase-protease complex is a major component of the protein quality control machinery in the cell. A ClpX subunit consists of an N-terminal zinc binding domain (ZBD) and a C-terminal AAA+ domain. ClpX oligomerizes into a hexamer with the AAA+ domains forming the base of the hexamer and the ZBDs extending out of the base. Here, we report that ClpX switches between a capture and a feeding conformation. ZBDs in ClpX undergo large nucleotide-dependent block movement towards ClpP and into the AAA+ ring. This motion is modulated by the ClpX cofactor, SspB. Evidence for this movement was initially obtained by the surprising observation that an N-terminal extension on ClpX is clipped by bound ClpP in functional ClpXP complexes. Protease-protection, crosslinking, and light scattering experiments further support these findings.
Collapse
Affiliation(s)
- Guillaume Thibault
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yulia Tsitrin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Toni Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anna Gribun
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8. Tel.: +1 416 946 7141; Fax: +1 416 978 8548; E-mail:
| |
Collapse
|
33
|
Hinnerwisch J, Reid BG, Fenton WA, Horwich AL. Roles of the N-domains of the ClpA Unfoldase in Binding Substrate Proteins and in Stable Complex Formation with the ClpP Protease. J Biol Chem 2005; 280:40838-44. [PMID: 16207718 DOI: 10.1074/jbc.m507879200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hexameric cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding and translocation of recognized substrate proteins into the coaxially associated serine protease ClpP. Each subunit of ClpA is composed of an N-terminal domain of approximately 150 amino acids at the top of the cylinder followed by two AAA+ domains. In earlier studies, deletion of the N-domain was shown to have no effect on the rate of unfolding of substrate proteins bearing a C-terminal ssrA tag, but it did reduce the rate of degradation of these proteins (Lo, J. H., Baker, T. A., and Sauer, R. T. (2001) Protein Sci. 10, 551-559; Singh, S. K., Rozycki, J., Ortega, J., Ishikawa, T., Lo, J., Steven, A. C., and Maurizi, M. R. (2001) J. Biol. Chem. 276, 29420-29429). Here we demonstrate, using both fluorescence resonance energy transfer to measure the arrival of substrate at ClpP and competition between wild-type and an inactive mutant form of ClpP, that this effect on degradation is caused by diminished stability of the ClpA-ClpP complex during translocation and proteolysis, effectively disrupting the targeting of unfolded substrates to the protease. We have also examined two larger ssrA-tagged substrates, CFP-GFP-ssrA and luciferase-ssrA, and observed different behaviors. CFP-GFP-ssrA is not efficiently unfolded by the truncated chaperone whereas luciferase-ssrA is, suggesting that the former requires interaction with the N-domains, likely via the body of the protein, to stabilize its binding. Thus, the N-domains play a key allosteric role in complex formation with ClpP and may also have a critical role in recognizing certain tag elements and binding some substrate proteins.
Collapse
Affiliation(s)
- Jörg Hinnerwisch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
34
|
Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem 2005; 6:222-56. [PMID: 15678420 DOI: 10.1002/cbic.200400313] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the most precisely regulated processes in living cells is intracellular protein degradation. The main component of the degradation machinery is the 20S proteasome present in both eukaryotes and prokaryotes. In addition, there exist other proteasome-related protein-degradation machineries, like HslVU in eubacteria. Peptides generated by proteasomes and related systems can be used by the cell, for example, for antigen presentation. However, most of the peptides must be degraded to single amino acids, which are further used in cell metabolism and for the synthesis of new proteins. Tricorn protease and its interacting factors are working downstream of the proteasome and process the peptides into amino acids. Here, we summarise the current state of knowledge about protein-degradation systems, focusing in particular on the proteasome, HslVU, Tricorn protease and its interacting factors and DegP. The structural information about these protein complexes opens new possibilities for identifying, characterising and elucidating the mode of action of natural and synthetic inhibitors, which affects their function. Some of these compounds may find therapeutic applications in contemporary medicine.
Collapse
Affiliation(s)
- Michael Groll
- Adolf-Butenandt-Institut Physiological Chemistry, LMU München, Butenandtstrasse 5, Gebäude B, 81377 München, Germany.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The type II secretion system is a macromolecular assembly that facilitates the extracellular translocation of folded proteins in gram-negative bacteria. EpsE, a member of this secretion system in Vibrio cholerae, contains a nucleotide-binding motif composed of Walker A and B boxes that are thought to participate in binding and hydrolysis of ATP and displays structural homology to other transport ATPases. Here we demonstrate that purified EpsE is an Mg2+-dependent ATPase and define optimal conditions for the hydrolysis reaction. EpsE displays concentration-dependent activity, which may suggest that the active form is oligomeric. Size exclusion chromatography showed that the majority of purified EpsE is monomeric; however, detailed analyses of specific activities obtained following gel filtration revealed the presence of a small population of active oligomers. We further report that EpsE binds zinc through a tetracysteine motif near its carboxyl terminus, yet metal displacement assays suggest that zinc is not required for catalysis. Previous studies describing interactions between EpsE and other components of the type II secretion pathway together with these data further support the hypothesis that EpsE functions to couple energy to the type II apparatus, thus enabling secretion.
Collapse
Affiliation(s)
- Jodi L Camberg
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | |
Collapse
|
36
|
Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AHA, Baumeister W, De Mot R, Zwickl P. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 2004; 146:155-65. [PMID: 15037247 DOI: 10.1016/j.jsb.2003.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Revised: 10/17/2003] [Indexed: 11/18/2022]
Abstract
Deletion mutants of the Rhodococcus erythropolis ARC AAA ATPase were generated and characterized by biochemical analysis and electron microscopy. Based on sequence comparisons the ARC protein was divided into three consecutive regions, the N-terminal coiled coil, the central ARC-specific inter domain and the C-terminal AAA domain. When the ARC AAA domain was expressed separately it formed aggregates of undefined structure. However, when the AAA domain was expressed in conjunction with the preceeding inter domain, but without the N-terminal coiled coil, high-molecular weight-complexes were formed (ARC-DeltaCC) which showed an N-ethylmaleimide-sensitive ATPase activity. In 2D crystallization experiments the ARC-DeltaCC particles yielded crystals nearly identical to those formed by the wild-type ARC complexes. Thus, the N-terminal coiled coil, which was proposed to have a role in the assembly of and/or interaction between the eukaryotic AAA ATPases in the 26S proteasome, is neither essential for assembly nor for ATP hydrolysis of the ARC ATPase. The N-terminal domain of related AAA ATPases mediates the interaction with substrates or co-factors, suggesting a regulatory function for the N-terminal coiled coil of the ARC ATPase. Surprisingly, the mutant ARC protein ARC-DeltaAAA consisting of the N-terminal coiled coil and the central inter domain, but deleted for the C-terminal AAA domain, was shown to form a dodecameric complex with sixfold symmetry. This suggests an important role of the inter domain for the ordered assembly of the ARC ATPase.
Collapse
Affiliation(s)
- Xujia Zhang
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The self-association of proteins to form dimers and higher-order oligomers is a very common phenomenon. Recent structural and biophysical studies show that protein dimerization or oligomerization is a key factor in the regulation of proteins such as enzymes, ion channels, receptors and transcription factors. In addition, self-association can help to minimize genome size, while maintaining the advantages of modular complex formation. Oligomerization, however, can also have deleterious consequences when nonnative oligomers associated with pathogenic states are generated. Specific protein dimerization is integral to biological function, structure and control, and must be under substantial selection pressure to be maintained with such frequency throughout biology.
Collapse
Affiliation(s)
- Neelan J Marianayagam
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
38
|
Bolon DN, Wah DA, Hersch GL, Baker TA, Sauer RT. Bivalent Tethering of SspB to ClpXP Is Required for Efficient Substrate Delivery. Mol Cell 2004; 13:443-9. [PMID: 14967151 DOI: 10.1016/s1097-2765(04)00027-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/05/2003] [Accepted: 12/09/2003] [Indexed: 11/30/2022]
Abstract
SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.
Collapse
Affiliation(s)
- Daniel N Bolon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Clp/Hsp100 chaperones work with other cellular chaperones and proteases to control the quality and amounts of many intracellular proteins. They employ an ATP-dependent protein unfoldase activity to solubilize protein aggregates or to target specific classes of proteins for degradation. The structural complexity of Clp/Hsp100 proteins combined with the complexity of the interactions with their macromolecular substrates presents a considerable challenge to understanding the mechanisms by which they recognize and unfold substrates and deliver them to downstream enzymes. Fortunately, high-resolution structural data is now available for several of the chaperones and their functional partners, which together with mutational data on the chaperones and their substrates has provided a glimmer of light at the end of the Clp/Hsp100 tunnel.
Collapse
Affiliation(s)
- Michael R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|