1
|
Spotting the Targets of the Apospory Controller TGS1 in Paspalum notatum. PLANTS 2022; 11:plants11151929. [PMID: 35893633 PMCID: PMC9332697 DOI: 10.3390/plants11151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.
Collapse
|
2
|
Wietrzynski W, Traverso E, Wollman FA, Wostrikoff K. The state of oligomerization of Rubisco controls the rate of synthesis of the Rubisco large subunit in Chlamydomonas reinhardtii. THE PLANT CELL 2021; 33:1706-1727. [PMID: 33625514 PMCID: PMC8254502 DOI: 10.1093/plcell/koab061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation.
Collapse
Affiliation(s)
- Wojciech Wietrzynski
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eleonora Traverso
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Katia Wostrikoff
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| |
Collapse
|
3
|
ZnJ6 Is a Thylakoid Membrane DnaJ-Like Chaperone with Oxidizing Activity in Chlamydomonas reinhardtii. Int J Mol Sci 2021; 22:ijms22031136. [PMID: 33498879 PMCID: PMC7865324 DOI: 10.3390/ijms22031136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022] Open
Abstract
Assembly of photosynthetic complexes is sensitive to changing light intensities, drought and pathogens, each of which induces a redox imbalance that requires the assistance of specific chaperones to maintain protein structure. Here we report a thylakoid membrane-associated DnaJ-like protein, ZnJ6 (Cre06.g251716.t1.2), in Chlamydomonas reinhardtii. The protein has four CXXCX(G)X(G) motifs that form two zinc fingers (ZFs). Site-directed mutagenesis (Cys > Ser) eliminates the ability to bind zinc. An intact ZF is required for ZnJ6 stability at elevated temperatures. Chaperone assays with recombinant ZnJ6 indicate that it has holding and oxidative activities. ZnJ6 is unable to reduce the disulfide bonds of insulin but prevents its aggregation in a reducing environment. It also assists in the reactivation of reduced denatured RNaseA, possibly by its oxidizing activity. ZnJ6 pull-down assays revealed interactions with oxidoreductases, photosynthetic proteins and proteases. In vivo experiments with a C. reinhardtii insertional mutant (∆ZnJ6) indicate enhanced tolerance to oxidative stress but increased sensitivity to heat and reducing conditions. Moreover, ∆ZnJ6 has reduced photosynthetic efficiency shown by the Chlorophyll fluorescence transient. Taken together, we identify a role for this thylakoid-associated DnaJ-like oxidizing chaperone that assists in the prevention of protein misfolding and aggregation, thus contributing to stress endurance, redox maintenance and photosynthetic balance.
Collapse
|
4
|
Tan SI, Ng IS. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. BIORESOURCE TECHNOLOGY 2020; 314:123785. [PMID: 32652452 DOI: 10.1016/j.biortech.2020.123785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Global warming is a surging issue that has provoked the demand of green process to mitigate carbon dioxide. In this context, RuBisCo-equipped Escherichia coli has first developed and evaluated the CO2-assimiliable capability based on the mass balance in three devices: Flask-based in CO2 incubator (FIC), two-layered device (TLD) and CO2 bubbling device (CBD) systematically. With the forced diffusion of 5% CO2 in CBD, which confers an efficient attack of CO2 to RuBisCo, the CO2 assimilation increased from -5.03 to -2.63 g-CO2/g-DCW. Furthermore, boosted CO2 assimilation ability was observed by co-expression of GroELS chaperone with 71% reduction on CO2 release. By DNA sequencing and tandem MS/MS analysis, the toxicity of RuBisCo and PRK was identified to interfere the sugar metabolism and energy producing, while the cell morphology was changed and observed in RuBisCo-equipped E. coli. Our study provides a new perspective of higher CO2 assimilation for sustainable to eco-friendly green bioprocess.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
5
|
Bach-Pages M, Homma F, Kourelis J, Kaschani F, Mohammed S, Kaiser M, van der Hoorn RAL, Castello A, Preston GM. Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules 2020; 10:E661. [PMID: 32344669 PMCID: PMC7226388 DOI: 10.3390/biom10040661] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.
Collapse
Affiliation(s)
- Marcel Bach-Pages
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Felix Homma
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Jiorgos Kourelis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Farnusch Kaschani
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Markus Kaiser
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Renier A. L. van der Hoorn
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| |
Collapse
|
6
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Kacar B, Hanson‐Smith V, Adam ZR, Boekelheide N. Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree. GEOBIOLOGY 2017; 15:628-640. [PMID: 28670785 PMCID: PMC5575542 DOI: 10.1111/gbi.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 05/04/2023]
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen-sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event.
Collapse
Affiliation(s)
- B. Kacar
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - V. Hanson‐Smith
- Department of Microbiology and ImmunologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Z. R. Adam
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | |
Collapse
|
8
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
9
|
Böhnke S, Perner M. Unraveling RubisCO Form I and Form II Regulation in an Uncultured Organism from a Deep-Sea Hydrothermal Vent via Metagenomic and Mutagenesis Studies. Front Microbiol 2017; 8:1303. [PMID: 28747908 PMCID: PMC5506194 DOI: 10.3389/fmicb.2017.01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/04/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first major step of carbon fixation in the Calvin-Benson-Bassham (CBB) cycle. This autotrophic CO2 fixation cycle accounts for almost all the assimilated carbon on Earth. Due to the primary role that RubisCO plays in autotrophic carbon fixation, it is important to understand how its gene expression is regulated and the enzyme is activated. Since the majority of all microorganisms are currently not culturable, we used a metagenomic approach to identify genes and enzymes associated with RubisCO expression. The investigated metagenomic DNA fragment originates from the deep-sea hydrothermal vent field Nibelungen at 8°18′ S along the Mid-Atlantic Ridge. It is 13,046 bp and resembles genes from Thiomicrospira crunogena. The fragment encodes nine open reading frames (ORFs) which include two types of RubisCO, form I (CbbL/S) and form II (CbbM), two LysR transcriptional regulators (LysR1 and LysR2), two von Willebrand factor type A (CbbO-m and CbbO-1), and two AAA+ ATPases (CbbQ-m and CbbQ-1), expected to function as RubisCO activating enzymes. In silico analyses uncovered several putative LysR binding sites and promoter structures. Functions of some of these DNA motifs were experimentally confirmed. For example, according to mobility shift assays LysR1’s binding ability to the intergenic region of lysR1 and cbbL appears to be intensified when CbbL or LysR2 are present. Binding of LysR2 upstream of cbbM appears to be intensified if CbbM is present. Our study suggests that CbbQ-m and CbbO-m activate CbbL and that LysR1 and LysR2 proteins promote CbbQ-m/CbbO-m expression. CbbO-1 seems to activate CbbM and CbbM itself appears to contribute to intensifying LysR’s binding ability and thus its own transcriptional regulation. CbbM furthermore appears to impair cbbL expression. A model summarizes the findings and predicts putative interactions of the different proteins influencing RubisCO gene regulation and expression.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
10
|
Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W. Localized control of oxidized RNA. J Cell Sci 2015; 128:4210-9. [PMID: 26449969 DOI: 10.1242/jcs.175232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
Abstract
The oxidation of biological molecules by reactive oxygen species (ROS) can render them inactive or toxic. This includes the oxidation of RNA, which appears to underlie the detrimental effects of oxidative stress, aging and certain neurodegenerative diseases. Here, we investigate the management of oxidized RNA in the chloroplast of the green alga Chlamydomonas reinhardtii. Our immunofluorescence microscopy results reveal that oxidized RNA (with 8-hydroxyguanine) is localized in the pyrenoid, a chloroplast microcompartment where CO2 is assimilated by the Calvin cycle enzyme Rubisco. Results of genetic analyses support a requirement for the Rubisco large subunit (RBCL), but not Rubisco, in the management of oxidized RNA. An RBCL pool that can carry out such a 'moonlighting' function is revealed by results of biochemical fractionation experiments. We also show that human (HeLa) cells localize oxidized RNA to cytoplasmic foci that are distinct from stress granules, processing bodies and mitochondria. Our results suggest that the compartmentalization of oxidized RNA management is a general phenomenon and therefore has some fundamental significance.
Collapse
Affiliation(s)
- Yu Zhan
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - James S Dhaliwal
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Pauline Adjibade
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - James Uniacke
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| | - Rachid Mazroui
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University, Centre de Recherche le CHU de Quebec, Quebec, Canada G1V 4G2
| | - William Zerges
- Biology Department & Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
11
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
12
|
Sudhani HP, Moreno J. Control of the ribulose 1,5-bisphosphate carboxylase/oxygenase activity by the chloroplastic glutathione pool. Arch Biochem Biophys 2015; 567:30-4. [DOI: 10.1016/j.abb.2014.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022]
|
13
|
Doron L, Segal N, Gibori H, Shapira M. The BSD2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:345-55. [PMID: 25124725 DOI: 10.1111/tpj.12638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 05/13/2023]
Abstract
The expression of the CO2 -fixation enzyme ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which is affected by light, involves the cysteine-rich protein bundle-sheath defective-2 (BSD2) that was originally identified in maize bundle-sheath cells. We identified the BSD2 ortholog in Chlamydomonas reinhardtii as a small protein (17 kDa) localized to the chloroplast. The algal BSD2-ortholog contains four CXXCXGXG DnaJ-like elements, but lacks the other conserved domains of DnaJ. BSD2 co-migrated with the rbcL transcript on heavy polysomes, and both BSD2 and rbcL mRNA shifted to the lighter fractions under oxidizing conditions that repress the translation of the Rubisco large subunit (RbcL). This profile of co-migration supports the possibility that BSD2 is required for the de novo synthesis of RbcL. Furthermore, BSD2 co-migrated with the rbcL transcript in a C. reinhardtii premature-termination mutant that encodes the first 60 amino acids of RbcL. In both strains, BSD2 shared its migration profile with the rbcL transcript but not with psbA mRNA. The chaperone activity of BSD2 was exemplified by its ability to prevent the aggregation of both citrate synthase (CS) and RbcL in vitro following their chemical denaturation. This activity did not depend on the presence of the thiol groups on BSD2. In contrast, the activity of BSD2 in preventing the precipitation of reduced β-chains in vitro in the insulin turbidity assay was thiol-dependent. We conclude that BSD2 combines a chaperone 'holdase' function with the ability to interact with free thiols, with both activities being required to protect newly synthesized RbcL chains.
Collapse
Affiliation(s)
- Lior Doron
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel
| | | | | | | |
Collapse
|
14
|
Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH. Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal 2014; 21:1271-84. [PMID: 24328795 PMCID: PMC4158989 DOI: 10.1089/ars.2013.5632] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Protein S-nitrosylation, a post-translational modification (PTM) consisting of the covalent binding of nitric oxide (NO) to a cysteine thiol moiety, plays a major role in cell signaling and is recognized to be involved in numerous physiological processes and diseases in mammals. The importance of nitrosylation in photosynthetic eukaryotes has been less studied. The aim of this study was to expand our knowledge on protein nitrosylation by performing a large-scale proteomic analysis of proteins undergoing nitrosylation in vivo in Chlamydomonas reinhardtii cells under nitrosative stress. RESULTS Using two complementary proteomic approaches, 492 nitrosylated proteins were identified. They participate in a wide range of biological processes and pathways, including photosynthesis, carbohydrate metabolism, amino acid metabolism, translation, protein folding or degradation, cell motility, and stress. Several proteins were confirmed in vitro by western blot, site-directed mutagenesis and activity measurements. Moreover, 392 sites of nitrosylation were also identified. These results strongly suggest that S-nitrosylation could constitute a major mechanism of regulation in C. reinhardtii under nitrosative stress conditions. INNOVATION This study constitutes the largest proteomic analysis of protein nitrosylation reported to date. CONCLUSION The identification of 381 previously unrecognized targets of nitrosylation further extends our knowledge on the importance of this PTM in photosynthetic eukaryotes. The data have been deposited to the ProteomeXchange repository with identifier PXD000569.
Collapse
Affiliation(s)
- Samuel Morisse
- 1 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curie , Paris, France
| | | | | | | | | |
Collapse
|
15
|
Rosnow J, Yerramsetty P, Berry JO, Okita TW, Edwards GE. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC PLANT BIOLOGY 2014; 14:34. [PMID: 24443986 PMCID: PMC3904190 DOI: 10.1186/1471-2229-14-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND In the model single-cell C4 plant Bienertia sinuspersici, chloroplast- and nuclear-encoded photosynthetic enzymes, characteristically confined to either bundle sheath or mesophyll cells in Kranz-type C4 leaves, all occur together within individual leaf chlorenchyma cells. Intracellular separation of dimorphic chloroplasts and key enzymes within central and peripheral compartments allow for C4 carbon fixation analogous to NAD-malic enzyme (NAD-ME) Kranz type species. Several methods were used to investigate dimorphic chloroplast differentiation in B. sinuspersici. RESULTS Confocal analysis revealed that Rubisco-containing chloroplasts in the central compartment chloroplasts (CCC) contained more photosystem II proteins than the peripheral compartment chloroplasts (PCC) which contain pyruvate,Pi dikinase (PPDK), a pattern analogous to the cell type-specific chloroplasts of many Kranz type NAD-ME species. Transient expression analysis using GFP fusion constructs containing various lengths of a B. sinuspersici Rubisco small subunit (RbcS) gene and the transit peptide of PPDK revealed that their import was not specific to either chloroplast type. Immunolocalization showed the rbcL-specific mRNA binding protein RLSB to be selectively localized to the CCC in B. sinuspersici, and to Rubisco-containing BS chloroplasts in the closely related Kranz species Suaeda taxifolia. Comparative fluorescence analyses were made using redox-sensitive and insensitive GFP forms, as well comparative staining using the peroxidase indicator 3,3-diaminobenzidine (DAB), which demonstrated differences in stromal redox potential, with the CCC having a more negative potential than the PCC. CONCLUSIONS Both CCC RLSB localization and the differential chloroplast redox state are suggested to have a role in post-transcriptional rbcL expression.
Collapse
Affiliation(s)
- Josh Rosnow
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
16
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
17
|
Rochaix JD. Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid Redox Signal 2013; 18:2184-201. [PMID: 23339452 PMCID: PMC3629850 DOI: 10.1089/ars.2012.5110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Photosynthetic organisms are subjected to frequent changes in their environment that include fluctuations in light quality and quantity, temperature, CO(2) concentration, and nutrient availability. They have evolved complex responses to these changes that allow them to protect themselves against photo-oxidative damage and to optimize their growth under these adverse conditions. In the case of light changes, these acclimatory processes can occur in either the short or the long term and are mainly mediated through the redox state of the plastoquinone pool and the ferredoxin/thioredoxin system. RECENT ADVANCES Short-term responses involve a dynamic reorganization of photosynthetic complexes, and long-term responses (LTRs) modulate the chloroplast and nuclear gene expression in such a way that the levels of the photosystems and their antennae are rebalanced for an optimal photosynthetic performance. These changes are mediated through a complex signaling network with several protein kinases and phosphatases that are conserved in land plants and algae. The phosphorylation status of the light-harvesting proteins of photosystem II and its core proteins is mainly determined by two complementary kinase-phosphatase pairs corresponding to STN7/PPH1 and STN8/PBCP, respectively. CRITICAL ISSUES The activity of the Stt7 kinase is principally regulated by the redox state of the plastoquinone pool, which in turn depends on the light irradiance, ambient CO(2) concentration, and cellular energy status. In addition, this kinase is also involved in the LTR. FUTURE DIRECTIONS Other chloroplast kinases modulate the activity of the plastid transcriptional machinery, but the global signaling network that connects all of the identified kinases and phosphatases is still largely unknown.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Schwarz C, Bohne AV, Wang F, Cejudo FJ, Nickelsen J. An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:378-89. [PMID: 22725132 DOI: 10.1111/j.1365-313x.2012.05083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Expression of the chloroplast psbD gene encoding the D2 protein of the photosystem II reaction center is regulated by light. In the green alga Chlamydomonas reinhardtii, D2 synthesis requires a high-molecular-weight complex containing the RNA stabilization factor Nac2 and the translational activator RBP40. Based on size exclusion chromatography analyses, we provide evidence that light control of D2 synthesis depends on dynamic formation of the Nac2/RBP40 complex. Furthermore, 2D redox SDS-PAGE assays suggest an intermolecular disulfide bridge between Nac2 and Cys11 of RBP40 as the putative molecular basis for attachment of RBP40 to the complex in light-grown cells. This covalent link is reduced in the dark, most likely via NADPH-dependent thioredoxin reductase C, supporting the idea of a direct relationship between chloroplast gene expression and chloroplast carbon metabolism during dark adaption of algal cells.
Collapse
Affiliation(s)
- Christian Schwarz
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig Maximilian University Munich, Grosshaderner Strasse, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
19
|
Espelund M, Minge MA, Gabrielsen TM, Nederbragt AJ, Shalchian-Tabrizi K, Otis C, Turmel M, Lemieux C, Jakobsen KS. Genome fragmentation is not confined to the peridinin plastid in dinoflagellates. PLoS One 2012; 7:e38809. [PMID: 22719952 PMCID: PMC3377699 DOI: 10.1371/journal.pone.0038809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/14/2012] [Indexed: 11/28/2022] Open
Abstract
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.
Collapse
Affiliation(s)
- Mari Espelund
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marianne A. Minge
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Tove M. Gabrielsen
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Alexander J. Nederbragt
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biology, Microbial Evolution Research Group (MERG), University of Oslo, Oslo, Norway
| | - Christian Otis
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Kjetill S. Jakobsen
- Department of Biology, Centre of Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
- Department of Biology, Microbial Evolution Research Group (MERG), University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
20
|
Thivierge K, Prado A, Driscoll BT, Bonneil E, Thibault P, Bede JC. Caterpillar- and salivary-specific modification of plant proteins. J Proteome Res 2010; 9:5887-95. [PMID: 20857983 DOI: 10.1021/pr100643m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Though there is overlap, plant responses to caterpillar herbivory show distinct variations from mechanical wounding. In particular, effectors in caterpillar oral secretions modify wound-associated plant responses. Previous studies have focused on transcriptional and protein abundance differences in response to caterpillar herbivory. This study investigated Spodoptera exigua caterpillar-specific post-translational modification of Arabidopsis thaliana soluble leaf proteins by liquid chromatography/electrospray ionization/mass spectroscopy/mass spectroscopy (LC/ESI/MS/MS). Given that caterpillar labial saliva contains oxidoreductases, such as glucose oxidase, particular attention was paid to redox-associated modifications, such as the oxidation of protein cysteine residues. Caterpillar- and saliva-specific protein modifications were observed. Differential phosphorylation of the jasmonic acid biosynthetic enzyme, lipoxygenase 2, and a chaperonin protein is seen in plants fed upon by caterpillars with intact salivary secretions compared to herbivory by larvae with impaired labial salivary secretions. Often a systemic suppression of photosynthesis is associated with caterpillar herbivory. Of the five proteins modified in a caterpillar-specific manner (a transcription repressor, a DNA-repair enzyme, PS I P700, Rubisco and Rubisco activase), three are associated with photosynthesis. Oxidative modifications are observed, such as caterpillar-specific denitrosylation of Rubisco activase and chaperonin, cysteine oxidation of Rubisco, DNA-repair enzyme, and chaperonin and caterpillar-specific 4-oxo-2-nonenal modification of the DNA-repair enzyme.
Collapse
Affiliation(s)
- Karine Thivierge
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Li H, Miao J, Cui F, Li G. Characterization of cupric glutamate extinguishing mechanism of Alexandrium sp. LC3 with two-dimensional electrophoresis and MALDI-TOF MS. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:527-537. [PMID: 18449603 DOI: 10.1007/s10126-008-9091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 02/04/2008] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
Mechanisms by which cupric glutamate, a novel algicide, extinguishes Alexandrium sp. LC3 are shown in this study. We show that cupric glutamate not only stimulated the production of malonaldehyde (MDA) and dramatically promoted cell plasma membrane permeability (p < 0.01) but also remarkably reduced sulfhydryl (SH) group content (p < 0.01). Analysis of protein expression profiles by two-dimensional electrophoresis (2-DE) indicated that only 47 protein spots were detected in both control and cupric glutamate treated cells. Three reliable spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as ribulose-bisphosphate carboxylase large subunit precursor, RNA polymerase beta chain, and hypothetical protein, which can be well correlated with cupric glutamate stress. Based on above results, we hypothesize that the extinguishing mechanisms include (1) the cell membrane being damaged by cupric glutamate; (2) cupric glutamate probably induced denaturation and disintegration of intracellular protein, which led to inhibition of cell growth.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Marine Biological Active Substances, SOA., 6 Xian Xia-ling Road, Hi-Tech Park, Qingdao 266061, China.
| | | | | | | |
Collapse
|
23
|
Uniacke J, Zerges W. Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2008; 182:641-6. [PMID: 18710928 PMCID: PMC2518703 DOI: 10.1083/jcb.200805125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Eukaryotic cells under stress repress translation and localize these messenger RNAs (mRNAs) to cytoplasmic RNA granules. We show that specific stress stimuli induce the assembly of RNA granules in an organelle with bacterial ancestry, the chloroplast of Chlamydomonas reinhardtii. These chloroplast stress granules (cpSGs) form during oxidative stress and disassemble during recovery from stress. Like mammalian stress granules, cpSGs contain poly(A)-binding protein and the small, but not the large, ribosomal subunit. In addition, mRNAs are in continuous flux between polysomes and cpSGs during stress. Localization of cpSGs within the pyrenoid reveals that this chloroplast compartment functions in this stress response. The large subunit of ribulosebisphosphate carboxylase/oxygenase also assembles into cpSGs and is known to bind mRNAs during oxidative stress, raising the possibility that it plays a role in cpSG assembly. This discovery within such an organelle suggests that mRNA localization to granules during stress is a more general phenomenon than currently realized.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
24
|
Krause K. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 2008; 54:111-21. [DOI: 10.1007/s00294-008-0208-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
25
|
Garczarek L, Dufresne A, Blot N, Cockshutt AM, Peyrat A, Campbell DA, Joubin L, Six C. Function and evolution of the psbA gene family in marine Synechococcus: Synechococcus sp. WH7803 as a case study. ISME JOURNAL 2008; 2:937-53. [PMID: 18509382 DOI: 10.1038/ismej.2008.46] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In cyanobacteria, the D1 protein of photosystem II (PSII) is encoded by the psbA multigene family. In most freshwater strains, a D1:1 isoform of this protein is exchanged for a D1:2 isoform in response to various stresses, thereby altering PSII photochemistry. To investigate PSII responses to stress in marine Synechococcus, we acclimated cultures of the WH7803 strain to different growth irradiances and then exposed them to high light (HL) or ultraviolet (UV) radiation. Measurement of PSII quantum yield and quantitation of the D1 protein pool showed that HL-acclimated cells were more resistant to UV light than were low light- (LL) or medium light- (ML) acclimated cells. Both UV and HL induced the expression of psbA genes encoding D1:2 and the repression of the psbA gene encoding D1:1. Although three psbA genes encode identical D1:2 isoforms in Synechococcus sp. WH7803, only one was strongly stress responsive in our treatment conditions. Examination of 11 marine Synechococcus genomic sequences identified up to six psbA copies per genome, with always a single gene encoding D1:1. In phylogenetic analyses, marine Synechococcus genes encoding D1:1 clustered together, while the genes encoding D1:2 grouped by genome into subclusters. Moreover, examination of the genomic environment of psbA genes suggests that the D1:2 genes are hotspots for DNA recombination. Collectively, our observations suggest that while all psbA genes follow a concerted evolution within each genome, D1:2 coding genes are subject to intragenome homogenization most probably mediated by gene conversion.
Collapse
Affiliation(s)
- Laurence Garczarek
- Station Biologique, UMR 7144 CNRS et Université Pierre et Marie Curie, Roscoff cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ichikawa K, Miyake C, Iwano M, Sekine M, Shinmyo A, Kato K. Ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit translation is regulated in a small subunit-independent manner in the expanded leaves of tobacco. PLANT & CELL PHYSIOLOGY 2008; 49:214-25. [PMID: 18178584 DOI: 10.1093/pcp/pcm179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of small subunits (SSs) encoded by rbcS on the nuclear genome and large subunits (LSs) encoded by rbcL on the chloroplast genome, and it is localized in the chloroplast stroma. Constitutive knockdown of the rbcS gene reportedly causes a reduction in LS quantity and the level of translation in tobacco and the unicellular green alga Chlamydomonas. Constitutively knockdown of the rbcS gene also causes a reduction in photosynthesis, which influences the expression of photosynthetic genes, including the rbcL gene. Here, to investigate the influence of the knockdown of the rbcS gene on the expression of the rbcL gene under normal photosynthetic conditions, we generated transgenic tobacco plants in which the amount of endogenous rbcS mRNA can be reduced by inducible expression of antisense rbcS mRNA with dexamethasone (DEX) treatment at later stages of growth. In already expanded leaves, after DEX treatment, the level of photosynthesis, RuBisCO quantity and the chloroplast ultrastructure were normal, but the amount of rbcS mRNA was reduced. An in vivo pulse labeling experiment and polysome analysis showed that LSs were translated at the same rate as in wild-type leaves. On the other hand, in newly emerging leaves, the rbcS mRNA quantity, the level of photosynthesis and the quantity of RuBisCO were reduced, and chloroplasts failed to develop. In these leaves, the level of LS translation was inhibited, as previously described. These results suggest that LS translation is regulated in an SS-independent manner in expanded leaves under normal photosynthetic conditions.
Collapse
Affiliation(s)
- Katsuhiko Ichikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
29
|
Rom I, Faicevici A, Almog O, Neuman-Silberberg FS. Drosophila Dynein light chain (DDLC1) binds to gurken mRNA and is required for its localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1526-33. [PMID: 17561283 DOI: 10.1016/j.bbamcr.2007.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/23/2022]
Abstract
During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.
Collapse
Affiliation(s)
- Inna Rom
- Department of Virology and Developmental Genetics, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
30
|
Wostrikoff K, Stern D. Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci U S A 2007; 104:6466-71. [PMID: 17404229 PMCID: PMC1851044 DOI: 10.1073/pnas.0610586104] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Indexed: 01/01/2023] Open
Abstract
Plants rely on ribulose bisphosphate carboxylase/oxygenase (Rubisco) for carbon fixation. Higher plant Rubisco possesses an L(8)S(8) structure, with the large subunit (LS) encoded in the chloroplast by rbcL and the small subunit encoded by the nuclear RBCS gene family. Because its components accumulate stoichiometrically but are encoded in two genetic compartments, rbcL and RBCS expression must be tightly coordinated. Although this coordination has been observed, the underlying mechanisms have not been defined. Here, we use tobacco to understand how LS translation is related to its assembly status. To do so, two transgenic lines deficient in LS biogenesis were created: a chloroplast transformant expressing a truncated and unstable LS polypeptide, and a line where a homolog of the maize Rubisco-specific chaperone, BSD2, was repressed by RNAi. We found that in both lines, LS translation is no longer regulated by the availability of small subunit (SS), indicating that LS translation is not activated by the presence of its assembly partner but, rather, undergoes an autoregulation of translation. Pulse labeling experiments indicate that LS is synthesized but not accumulated in the transgenic lines, suggesting that accumulation of a repressor motif is required for LS assembly-dependent translational regulation.
Collapse
Affiliation(s)
- Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| | - David Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| |
Collapse
|
31
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Cohen I, Sapir Y, Shapira M. A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. PLANT PHYSIOLOGY 2006; 141:1089-97. [PMID: 16731581 PMCID: PMC1489886 DOI: 10.1104/pp.106.079046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/30/2006] [Accepted: 05/04/2006] [Indexed: 05/09/2023]
Abstract
We previously proposed a mechanism for control of Rubisco expression and assembly during oxidative stress in Chlamydomonas reinhardtii. The N terminus of the large subunit (LSU) comprises an RNA recognition motif (RRM) that is normally buried in the protein, but becomes exposed under oxidizing conditions when the glutathione pool shifts toward its oxidized form. Thus, de novo translation and assembly of Rubisco LSU stop with similar kinetics and the unpaired small subunit (SSU) is rapidly degraded. Here we show that the structure of the N-terminal domain is highly conserved throughout evolution, despite its relatively low sequence similarity. Furthermore, Rubisco from a broad evolutionary range of photosynthetic organisms binds RNA under oxidizing conditions, with dissociation constant values in the nanomolar range. In line with these observations, oxidative stress indeed causes a translational arrest in land plants as well as in Rhodospirillum rubrum, a purple bacterium that lacks the SSU. We highlight an evolutionary conserved element located within alpha-helix B, which is located in the center of the RRM and is also involved in the intramolecular interactions between two LSU chains. Thus, assembly masks the N terminus of the LSU hiding the RRM. When assembly is interrupted due to structural changes that occur under oxidizing conditions or in the absence of a dedicated chaperone, the N-terminal domain can become exposed, leading to the translational arrest of Rubisco LSU. Taken together, these results support a model by which LSU translation is governed by its dimerization. In the case that regulation of type I and type II Rubisco is conserved, the SSU does not appear to be directly involved in LSU translation.
Collapse
Affiliation(s)
- Idan Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
33
|
Marín-Navarro J, Moreno J. Cysteines 449 and 459 modulate the reduction-oxidation conformational changes of ribulose 1.5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress. PLANT, CELL & ENVIRONMENT 2006; 29:898-908. [PMID: 17087473 DOI: 10.1111/j.1365-3040.2005.01469.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The role of cysteines 449 (Cys449) and 459 (Cys459) from the large subunit (LS) of ribulose 1-5-bisphosphate carboxylase/oxygenase (Rubisco) in the reduction-oxidation (redox) regulation of the enzyme was assessed by site-directed mutagenesis of these residues and chloroplast transformation of Chlamydomonas reinhardtii. In vitro studies indicated that mutations C449S, C459S or C449S/ C459S do not affect the activity and proteolytic susceptibility of the enzyme in the reduced state. However, when oxidized, the mutant enzymes differed from the wild type (WT), showing an increased resistance to inactivation and, in the case of the double mutant (DM), an altered structural conformation as reflected by the kinetics of proteolysis with subtilisin. The response of the DM strain to saline stress revealed that the absence of Cys449 and Cys459 intensifies Rubisco degradation and the covalent disulfide and non-disulfide polymerization of the enzyme in vivo. Saline stress also induced Rubisco translocation to a membrane (M) fraction that contained only covalently polymerized enzyme. Rubisco mobilization to this M fraction was enhanced also in the DM strain. Altogether, these results indicate that Cys449 and Cys459 participate in the modulation of the conformational changes promoted by oxidative modifications retarding processes related to the catabolism of the enzyme in vivo.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Departament de Bioquimica i Biologia Molecular, Universitat de València, Dr Moliner 50, Burjassot E46100, Spain
| | | |
Collapse
|
34
|
Abstract
A reduced form of glutathione (GSH) is considered to protect the cell from oxidative damage, based on its redox buffering action and abundance in the cell. However, in plants, the high redox potential molecule ascorbate exists at comparable or higher concentrations and is used for scavenging hydrogen peroxide as an electron donor. Recently, examples that cannot be explained simply by the antioxidant activity of GSH have been increasing in number. This article summarizes the recent findings on the glutathione-associated events in plants, in particular, growth and development including cell differentiation, cell death and senescence, pathogen resistance, and enzymatic regulation.
Collapse
Affiliation(s)
- Ken'ichi Ogawa
- Research Institute for Biological Sciences Okayama, Okayama, Japan.
| |
Collapse
|
35
|
Pfannschmidt T, Liere K. Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 2005; 7:607-18. [PMID: 15890004 DOI: 10.1089/ars.2005.7.607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chloroplasts are typical organelles of plant cells and represent the site of photosynthesis. As one very remarkable feature, they possess their own genome and a complete machinery to express the genetic information in it. The plastid gene expression machinery is a unique assembly of prokaryotic-, eukaryotic-, and phage-like components because chloroplasts acquired a great number of regulatory proteins during evolution. Such proteins can be found at all levels of gene expression. They significantly expand the functional and especially the regulatory properties of the "old" gene expression system that chloroplasts inherited from their prokaryotic ancestors. Recent results show that photosynthesis has a strong regulatory effect on plastid gene expression. The redox states of electron transport components, redox-active molecules coupled to photosynthesis, and pools of reactive oxygen species act as redox signals. They provide a functional feedback control, which couples the expression of chloroplast genes to the actual function of photosynthesis and, by this means, helps to acclimate the photosynthetic process to environmental cues. The redox signals are mediated by various specific signaling pathways that involve many of the "new" regulatory proteins. Chloroplasts therefore are an ideal model to study redox-regulated mechanisms in gene expression control. Because of the multiple origins of the expression machinery, these observations are of great relevance for many other biological systems.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Department for General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | |
Collapse
|
36
|
Cohen I, Knopf JA, Irihimovitch V, Shapira M. A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and its subunit expression. PLANT PHYSIOLOGY 2005; 137:738-46. [PMID: 15681660 PMCID: PMC1065373 DOI: 10.1104/pp.104.056341] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/02/2004] [Accepted: 12/08/2004] [Indexed: 05/18/2023]
Abstract
In Chlamydomonas reinhardtii, a light-induced oxidative stress shifts the glutathione pool toward its oxidized form, resulting in a translational arrest of the large subunit (LSU) of Rubisco. We show here that the translational arrest of LSU is tightly coordinated with cessation of Rubisco assembly, and both processes take place after a threshold level of reactive oxygen species is reached. As a result, the small subunit is also eliminated by rapid degradation. We previously showed that the amino terminus of the LSU could bind RNA in a sequence-independent manner, as it shares a structural similarity with the RNA recognition motif. This domain becomes exposed only under oxidizing conditions, thus restricting the RNA-binding activity. Here we show that in vitro, thiol groups of both subunits become oxidized in the presence of oxidized glutathione. The structural changes are mediated by oxidized glutathione, whereas only very high concentrations of H2O2 confer similar results in vitro. Changes in the redox state of the LSU thiol groups are also observed in vivo, in response to a physiological light shock caused by transfer of cells from low light to high light. We propose that during a photooxidative stress, oxidation of thiol groups occurs already in nascent LSU chains, perhaps hindering their association with chaperones. As a result, their RNA recognition motif domain becomes exposed and will bind any RNA in its vicinity, including its own transcript. Due to this binding the ribosome stalls, preventing the assembly of additional ribosomes on the transcript. Polysome analysis using Suc gradients indeed shows that the rbcL RNA is associated with the polysomal fraction at all times but shifts toward fractions that contain smaller polysomes and monosomes during oxidative stress. Thus, translational arrest of the LSU most likely occurs at a postinitiation stage.
Collapse
Affiliation(s)
- Idan Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
37
|
Abstract
Initially discovered in the context of photosynthesis, regulation by change in the redox state of thiol groups (S-S <--> 2SH) is now known to occur throughout biology. Several systems, each linking a hydrogen donor to an intermediary disulfide protein, act to effect changes that alter the activity of target proteins: the ferredoxin/thioredoxin system, comprised of reduced ferredoxin, a thioredoxin, and the enzyme, ferredoxin-thioredoxin reductase; the NADP/thioredoxin system, including NADPH, a thioredoxin, and NADP-thioredoxin reductase; and the glutathione/glutaredoxin system, composed of reduced glutathione and a glutaredoxin. A related disulfide protein, protein disulfide isomerase (PDI) acts in protein assembly. Regulation linked to plastoquinone and signaling induced by reactive oxygen species (ROS) and other agents are also being actively investigated. Progress made on these systems has linked redox to the regulation of an increasing number of processes not only in plants, but in other types of organisms as well. Research in areas currently under exploration promises to provide a fuller understanding of the role redox plays in cellular processes, and to further the application of this knowledge to technology and medicine.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
38
|
Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y. Biogenesis of PSI involves a cascade of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 2004; 23:2696-705. [PMID: 15192706 PMCID: PMC449776 DOI: 10.1038/sj.emboj.7600266] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 05/13/2004] [Indexed: 11/09/2022] Open
Abstract
Photosystem I comprises 13 subunits in Chlamydomonas reinhardtii, four of which-the major reaction center I subunits PsaA and PsaB, PsaC and PsaJ-are chloroplast genome-encoded. We demonstrate that PSI biogenesis involves an assembly-governed regulation of synthesis of the major chloroplast-encoded subunits where the presence of PsaB is required to observe significant rates of PsaA synthesis and the presence of PsaA is required to observe significant rates of PsaC synthesis. Using chimeric genes expressed in the chloroplast, we show that these regulatory processes correspond to autoregulation of translation for PsaA and PsaC. The downregulation of translation occurs at some early stage since it arises from the interaction between unassembled PsaA and PsaC polypeptides and 5' untranslated regions of psaA and psaC mRNAs, respectively. These assembly-dependent autoregulations of translation represent two new instances of a control by epistasy of synthesis process that turns out to be a general feature of protein expression in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Katia Wostrikoff
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Francis-André Wollman
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| | - Yves Choquet
- CNRS/UPR 1261, ass. Univ. Paris VI, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|