1
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
3
|
Peterka M, Kornmann B. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice. PLoS Genet 2019; 15:e1008050. [PMID: 30856164 PMCID: PMC6428352 DOI: 10.1371/journal.pgen.1008050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/21/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
CENP-F is a large, microtubule-binding protein that regulates multiple cellular processes including chromosome segregation and mitochondrial trafficking at cytokinesis. This multiplicity of functions is mediated through the binding of various partners, like Bub1 at the kinetochore and Miro at mitochondria. Due to the multifunctionality of CENP-F, the cellular phenotypes observed upon its depletion are difficult to interpret and there is a need to genetically separate its different functions by preventing binding to selected partners. Here we engineer a CENP-F point-mutant that is deficient in Miro binding and thus is unable to localize to mitochondria, but retains other localizations. We introduce this mutation in cultured human cells using CRISPR/Cas9 system and show it causes a defect in mitochondrial spreading similar to that observed upon Miro depletion. We further create a mouse model carrying this CENP-F variant, as well as truncated CENP-F mutants lacking the farnesylated C-terminus of the protein. Importantly, one of these truncations leads to ~80% downregulation of CENP-F expression. We observe that, despite the phenotypes apparent in cultured cells, mutant mice develop normally. Taken together, these mice will serve as important models to study CENP-F biology at organismal level. In addition, because truncations of CENP-F in humans cause a lethal disease termed Strømme syndrome, they might also be relevant disease models.
Collapse
Affiliation(s)
- Martin Peterka
- Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
- Molecular Life Science Program, Zurich Life-Science Graduate School, Zürich, Switzerland
| | | |
Collapse
|
4
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
5
|
Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, Ochsenbein F, Guerois R, Doye V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Rep 2018; 19:embr.201744742. [PMID: 29632243 DOI: 10.15252/embr.201744742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022] Open
Abstract
Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
Collapse
Affiliation(s)
- Alessandro Berto
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577), Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Dumont
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Valérie Doye
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Abstract
Human retinoblastoma gene RB1 is the first tumor suppressor gene (TSG) isolated by positional cloning in 1986. RB is extensively studied for its ability to regulate cell cycle by binding to E2F1 and inhibiting the transcriptional activity of the latter. In human embryonic stem cells (ESCs), only a minute trace of RB is found in complex with E2F1. Increased activity of RB triggers differentiation, cell cycle arrest, and cell death. On the other hand, inactivation of the entire RB family (RB1, RBL1, and RBL2) in human ESC induces G2/M arrest and cell death. These observations indicate that both loss and overactivity of RB could be lethal for the stemness of cells. A question arises why inactive RB is required for the survival and stemness of cells? To shed some light on this question, we analyzed the RB-binding proteins. In this review we have focused on 27 RB-binding partners that may have potential roles in different aspects of stem cell biology.
Collapse
Affiliation(s)
- M Mushtaq
- Karolinska Institutet, Stockholm, Sweden
| | | | - E V Kashuba
- Karolinska Institutet, Stockholm, Sweden; R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine.
| |
Collapse
|
7
|
Pfaltzgraff ER, Roth GM, Miller PM, Gintzig AG, Ohi R, Bader DM. Loss of CENP-F results in distinct microtubule-related defects without chromosomal abnormalities. Mol Biol Cell 2016; 27:1990-9. [PMID: 27146114 PMCID: PMC4927273 DOI: 10.1091/mbc.e15-12-0848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 01/09/2023] Open
Abstract
Microtubule (MT)-binding centromere protein F (CENP-F) was previously shown to play a role exclusively in chromosome segregation during cellular division. Many cell models of CENP-F depletion show a lag in the cell cycle and aneuploidy. Here, using our novel genetic deletion model, we show that CENP-F also regulates a broader range of cellular functions outside of cell division. We characterized CENP-F(+/+) and CENP-F(-/-) mouse embryonic fibroblasts (MEFs) and found drastic differences in multiple cellular functions during interphase, including cell migration, focal adhesion dynamics, and primary cilia formation. We discovered that CENP-F(-/-) MEFs have severely diminished MT dynamics, which underlies the phenotypes we describe. These data, combined with recent biochemical research demonstrating the strong binding of CENP-F to the MT network, support the conclusion that CENP-F is a powerful regulator of MT dynamics during interphase and affects heterogeneous cell functions.
Collapse
Affiliation(s)
- Elise R Pfaltzgraff
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Gretchen M Roth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Paul M Miller
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Anneelizabeth G Gintzig
- Division of Hematology-Oncology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - David M Bader
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
8
|
Quin GJ, Lyons B, Len ACL, Madigan MC, Gillies MC. Proteome changes induced by laser in diabetic retinopathy. Clin Exp Ophthalmol 2014; 43:180-7. [DOI: 10.1111/ceo.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/14/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Godfrey J Quin
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
- Australian School of Advanced Medicine; Macquarie University; Sydney New South Wales Australia
| | - Brian Lyons
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| | - Alice CL Len
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| | - Michele C Madigan
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
- School of Optometry and Vision Science; University of New South Wales; Sydney New South Wales Australia
| | - Mark C Gillies
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
9
|
Dees E, Miller PM, Moynihan KL, Pooley RD, Hunt RP, Galindo CL, Rottman JN, Bader DM. Cardiac-specific deletion of the microtubule-binding protein CENP-F causes dilated cardiomyopathy. Dis Model Mech 2012; 5:468-80. [PMID: 22563055 PMCID: PMC3380710 DOI: 10.1242/dmm.008680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CENP-F is a large multifunctional protein with demonstrated regulatory roles in cell proliferation, vesicular transport and cell shape through its association with the microtubule (MT) network. Until now, analysis of CENP-F has been limited to in vitro analysis. Here, using a Cre-loxP system, we report the in vivo disruption of CENP-F gene function in murine cardiomyocytes, a cell type displaying high levels of CENP-F expression. Loss of CENP-F function in developing myocytes leads to decreased cell division, blunting of trabeculation and an initially smaller, thin-walled heart. Still, embryos are born at predicted mendelian ratios on an outbred background. After birth, hearts lacking CENP-F display disruption of their intercalated discs and loss of MT integrity particularly at the costamere; these two structures are essential for cell coupling/electrical conduction and force transduction in the heart. Inhibition of myocyte proliferation and cell coupling as well as loss of MT maintenance is consistent with previous reports of generalized CENP-F function in isolated cells. One hundred percent of these animals develop progressive dilated cardiomyopathy with heart block and scarring, and there is a 20% mortality rate. Importantly, although it has long been postulated that the MT cytoskeleton plays a role in the development of heart disease, this study is the first to reveal a direct genetic link between disruption of this network and cardiomyopathy. Finally, this study has broad implications for development and disease because CENP-F loss of function affects a diverse array of cell-type-specific activities in other organs.
Collapse
Affiliation(s)
- Ellen Dees
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Du J, Zhang Y, Liu Y, Li Y, Zhu X. Involvement of Cenp-F in interphase chromatin organization possibly through association with DNA-dependent protein kinase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:839-46. [PMID: 20978035 DOI: 10.1093/abbs/gmq095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cenp-F (also named mitosin) is a 350-kDa human kinetochore protein important for the mitotic progression. It is also a nuclear matrix protein in interphase cells. Here, we showed that overexpression of N-terminal deletion mutants of Cenp-F containing the C-terminal 112 residues induced chromatin condensation into numerous aggregates of varying sizes in interphase nucleus, colocalizing with the exogenous proteins. In situ hybridization using whole chromosome painting probes indicated that the chromatin aggregates were not prematurely condensed individual chromosomes. Neither were they due to apoptosis. We provided evidence showing association of Cenp-F with certain regions of interphase chromatin fibers. Cenp-F associated with the DNA-dependent protein kinase (DNA-PK), a trimeric protein complex critical for genome homeostasis. Moreover, the DNA-PK association activity of Cenp-F mutants correlated with their ability to induce chromatin aggregation. These results imply a role of Cenp-F in organization of interphase chromatin through association and possibly regulation of DNA-PK.
Collapse
Affiliation(s)
- Juan Du
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
11
|
Moynihan KL, Pooley R, Miller PM, Kaverina I, Bader DM. Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Mol Biol Cell 2009; 20:4790-803. [PMID: 19793914 DOI: 10.1091/mbc.e09-07-0560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule (MT) network is essential in a broad spectrum of cellular functions. Many studies have linked CENP-F to MT-based activities as disruption of this protein leads to major changes in MT structure and function. Still, the basis of CENP-F regulation of the MT network remains elusive. Here, our studies reveal a novel and critical localization and role for CENP-F at the centrosome, the major MT organizing center (MTOC) of the cell. Using a yeast two-hybrid screen, we identify Hook2, a linker protein that is essential for regulation of the MT network at the centrosome, as a binding partner of CENP-F. With recently developed immunochemical reagents, we confirm this interaction and reveal the novel localization of CENP-F at the centrosome. Importantly, in this first report of CENP-F(-/-) cells, we demonstrate that ablation of CENP-F protein function eliminates MT repolymerization after standard nocodazole treatment. This inhibition of MT regrowth is centrosome specific because MT repolymerization is readily observed from the Golgi in CENP-F(-/-) cells. The centrosome-specific function of CENP-F in the regulation of MT growth is confirmed by expression of truncated CENP-F containing only the Hook2-binding domain. Furthermore, analysis of partially reconstituted MTOC asters in cells that escape complete repolymerization block shows that disruption of CENP-F function impacts MT nucleation and anchoring rather than promoting catastrophe. Our study reveals a major new localization and function of CENP-F at the centrosome that is likely to impact a broad array of MT-based actions in the cell.
Collapse
Affiliation(s)
- Katherine L Moynihan
- Stahlman Cardiovascular Research Laboratories, Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | |
Collapse
|
12
|
He Q, Eko FO, Lyn D, Ananaba GA, Bandea C, Martinez J, Joseph K, Kellar K, Black CM, Igietseme JU. Involvement of LEK1 in dendritic cell regulation of T cell immunity against Chlamydia. THE JOURNAL OF IMMUNOLOGY 2008; 181:4037-42. [PMID: 18768859 DOI: 10.4049/jimmunol.181.6.4037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.
Collapse
Affiliation(s)
- Qing He
- Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Robertson JB, Zhu T, Nasreen S, Kilkenny D, Bader D, Dees E. CMF1-Rb interaction promotes myogenesis in avian skeletal myoblasts. Dev Dyn 2008; 237:1424-33. [PMID: 18425850 DOI: 10.1002/dvdy.21544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CMF1 protein is expressed in developing striated muscle before the expression of contractile proteins, and depletion of CMF1 in myoblasts results in inability to express muscle-specific proteins. Previous studies of CMF1 identify a functional Rb-binding domain, which is conserved in the murine and human homologues. Here, we show that CMF1 binds Rb family members, while a CMF1 protein with deletion of the Rb-binding domain (Rb-del CMF1) does not. Myogenic cell lines over-expressing Rb-del CMF1 proliferate normally, but exhibit markedly impaired differentiation, including dramatically reduced contractile proteins gene expression and failure to fuse into myotubes. Furthermore, by quantitative real-time polymerase chain reaction, MyoD and Myf5 mRNA levels are comparable to wild-type, while myogenin and contractile protein mRNA levels are significantly attenuated. These data demonstrate that CMF1 regulates myocyte differentiation by interaction with Rb family members to induce expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- J Brian Robertson
- Department Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE. E2F5 and LEK1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem 2008; 101:1394-408. [PMID: 17295207 DOI: 10.1002/jcb.21256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Raf/MEK/ERK signaling in skeletal muscle cells affects several aspects of myogenesis that are correlated with the duration and intensity of the input signal. 23A2RafER(DD) myoblasts directing elevated levels of Raf kinase for 24 h are mitotically inactive. Removal of the stimulus results in cell cycle re-entry and proliferation. Using a proteomic approach, E2F5 and LEK1 were detected in the nuclei of Raf-arrested myoblasts. Disruption of MEK1 activity prevents phosphorylation of ERK1/2 and nuclear translocation of E2F5 and LEK1. The pocket proteins, p107 and p130, remain in the cytoplasm of growth arrested myoblasts irrespective of Raf/ERK activation while pRb translocates to the nucleus. Importantly, both E2F5 and LEK1 are found in the nuclei of non-dividing satellite cells and myonuclei in vivo and in vitro. Our results indicate that Raf-arrested myoblasts may serve as a model system for satellite cell cycle studies and that E2F5 and LEK1 translocation to the nucleus is an important first step during entry into quiescence.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Ubiquitin-dependent proteolysis plays an important role in regulating fundamental biological functions, including cell division and cellular differentiation. Previous studies implicate the ubiquitin-proteasome system (UPS) in myogenic differentiation through regulating cell cycle progression and modulating myogenic factors such as MyoD and Myf5. Certain ubiquitin protein ligases, including the SCF complex and APC, have been suggested to govern terminal muscle differentiation. However, the underlying mechanism of regulation of both the cell cycle and myogenic factors by the UPS during this process remains unclear. We have dissected the role of the UPS in myogenic differentiation using an in vitro muscle differentiation system based on C2C12 cells. We demonstrate that Cdh1-APC regulates two critical proteins, Skp2 and Myf5, for proteolysis during muscle differentiation. The targeting of Skp2 by Cdh1-APC for destruction results in elevation of p21 and p27, which are crucial for coordinating cellular division and differentiation. Degradation of Myf5 by Cdh1-APC facilitates myogenic fusion. Knockdown of Cdh1 by siRNA significantly attenuates muscle differentiation. Taken together, Cdh1-APC is an important ubiquitin E3 ligase that modulates muscle differentiation through coordinating cell cycle progression and initiating the myogenic differentiation program.
Collapse
Affiliation(s)
- Wenqi Li
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
17
|
Ahuja P, Sdek P, Maclellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007; 87:521-44. [PMID: 17429040 PMCID: PMC2708177 DOI: 10.1152/physrev.00032.2006] [Citation(s) in RCA: 424] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interest in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period, and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration.
Collapse
Affiliation(s)
| | | | - W. Robb Maclellan
- Corresponding author: W. Robb MacLellan, Cardiovascular Research Laboratories, David Geffen school of Medicine at UCLA, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California, 90095-1760; Phone: (310) 825-2556; Fax: (310) 206-5777; e-mail:
| |
Collapse
|
18
|
Evans HJ, Edwards L, Goodwin RL. Conserved C-terminal domains of mCenp-F (LEK1) regulate subcellular localization and mitotic checkpoint delay. Exp Cell Res 2007; 313:2427-37. [PMID: 17498689 PMCID: PMC3991481 DOI: 10.1016/j.yexcr.2007.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
Centromeric Protein-F (Cenp-F) family members have been identified in organisms from yeast to human. Cenp-F proteins are a component of kinetochores during mitosis, bind to the Rb family of tumor suppressors, and have regulatory effects on the cell cycle and differentiation; however, their role in these processes has not been resolved. Here, we provide evidence that the role of murine Cenp-F (mCenp-F, also known as LEK1) remains largely conserved and that the domains within the C-terminus collectively function to regulate the G2/M cell cycle checkpoint. Overexpression of the C-terminal domain of mCenp-F decreases DNA synthesis. Analyses of deletion mutants of mCenp-F reveal that the complete C-terminal domain is required to delay cell cycle progression at G2/M. Signal transduction pathway profiling experiments indicate that the mCenp-F-mediated cell cycle delay does not involve transcriptional activity of key cell cycle regulators such as Rb, E2F, p53, or Myc. However, endogenous mCenp-F colocalizes with pRb and p107, which demonstrates in vivo protein-protein interaction during cell division. These observations suggest that the domains of the C-terminus of mCenp-F have a conserved function in control of mitotic progression through protein-protein interaction with pocket proteins, thus providing a direct connection between cell cycle regulation and mitotic progression.
Collapse
Affiliation(s)
- Heather J Evans
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, SC, USA
| | | | | |
Collapse
|
19
|
Dees E, Robertson JB, Zhu T, Bader D. Specific deletion of CMF1 nuclear localization domain causes incomplete cell cycle withdrawal and impaired differentiation in avian skeletal myoblasts. Exp Cell Res 2006; 312:3000-14. [PMID: 16904105 DOI: 10.1016/j.yexcr.2006.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 11/17/2022]
Abstract
CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.
Collapse
Affiliation(s)
- Ellen Dees
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
20
|
Skapek SX, Pan YR, Lee EYHP. Regulation of cell lineage specification by the retinoblastoma tumor suppressor. Oncogene 2006; 25:5268-76. [PMID: 16936747 DOI: 10.1038/sj.onc.1209710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early studies of the retinoblastoma gene (RB) have uncovered its critical role as a regulator of the G(1)/S cell cycle phase progression. Surprisingly, genetic approaches in mammals and nematodes have also shown RB controls cell lineage specification and aspects of differentiation. The RB gene product accomplishes this by diverse mechanisms such as by interacting with tissue-specific transcription factors, enhancing RNA interference, and modifying chromatin structure. We review recent studies uncovering novel mechanisms by which RB works in several cell lineages and we provide perspectives on how these new findings might relate to RB tumor suppression.
Collapse
Affiliation(s)
- S X Skapek
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | |
Collapse
|
21
|
Pooley RD, Reddy S, Soukoulis V, Roland JT, Goldenring JR, Bader DM. CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25. Mol Biol Cell 2006; 17:3176-86. [PMID: 16672379 PMCID: PMC1483049 DOI: 10.1091/mbc.e05-12-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 12/26/2022] Open
Abstract
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.
Collapse
Affiliation(s)
- Ryan D. Pooley
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Samyukta Reddy
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Victor Soukoulis
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Joseph T. Roland
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - James R. Goldenring
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - David M. Bader
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| |
Collapse
|
22
|
Ma L, Zhao X, Zhu X. Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci 2006; 13:205-13. [PMID: 16456711 DOI: 10.1007/s11373-005-9057-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 01/03/2023] Open
Abstract
Mitosin/CENP-F is a large nuclear/kinetochore protein containing multiple leucine zipper motifs potentially for protein interactions. Its expression levels and subcellular localization patterns are regulated in a cell cycle-dependent manner. Recently, accumulating lines of evidence have suggested it a multifunctional protein involved in mitotic control, microtubule dynamics, transcriptional regulation, and muscle cell differentiation. Consistently, it is shown to interact directly with a variety of proteins including CENP-E, NudE/Nudel, ATF4, and Rb. Here we review the current progress and discuss possible mechanisms through which mitosin may function.
Collapse
Affiliation(s)
- Li Ma
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
23
|
Holt SV, Vergnolle MAS, Hussein D, Wozniak MJ, Allan VJ, Taylor SS. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J Cell Sci 2006; 118:4889-900. [PMID: 16219694 DOI: 10.1242/jcs.02614] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cenp-F is an unusual kinetochore protein in that it localizes to the nuclear matrix in interphase and the nuclear envelope at the G2/M transition; it is farnesylated and rapidly degraded after mitosis. We have recently shown that farnesylation of Cenp-F is required for G2/M progression, its localization to kinetochores, and its degradation. However, the role Cenp-F plays in mitosis has remained enigmatic. Here we show that, following repression of Cenp-F by RNA interference (RNAi), the processes of metaphase chromosome alignment, anaphase chromosome segregation and cytokinesis all fail. Although kinetochores attach to microtubules in Cenp-F-deficient cells, the oscillatory movements that normally occur following K-fibre formation are severely dampened. Consistently, inter-kinetochore distances are reduced. In addition, merotelic associations are observed, suggesting that whereas kinetochores can attach microtubules in the absence of Cenp-F, resolving inappropriate interactions is inhibited. Repression of Cenp-F does not appear to compromise the spindle checkpoint. Rather, the chromosome alignment defect induced by Cenp-F RNA interference is accompanied by a prolonged mitosis, indicating checkpoint activation. Indeed, the prolonged mitosis induced by Cenp-F RNAi is dependent on the spindle checkpoint kinase BubR1. Surprisingly, chromosomes in Cenp-F-deficient cells frequently show a premature loss of chromatid cohesion. Thus, in addition to regulating kinetochore-microtubule interactions, Cenp-F might be required to protect centromeric cohesion prior to anaphase commitment. Intriguingly, whereas most of the sister-less kinetochores cluster near the spindle poles, some align at the spindle equator, possibly through merotelic or lateral orientations.
Collapse
Affiliation(s)
- Sarah V Holt
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
24
|
Dees E, Robertson JB, Ashe M, Pabón-Peña LM, Bader D, Goodwin RL. LEK1 protein expression in normal and dysregulated cardiomyocyte mitosis. ACTA ACUST UNITED AC 2006; 286:823-32. [PMID: 16047383 DOI: 10.1002/ar.a.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A defining characteristic of embryonic cells is their ability to divide rapidly, even in tissues such as cardiac muscle, which cannot divide once fully differentiated. This suggests that regulators of cell division differ in embryonic and differentiated cells. LEK1 is a member of an emerging family of proteins with diverse functions but shared structural domains, including numerous leucine zippers, a nuclear localization site, and a functional Rb-binding domain. LEK1 is expressed ubiquitously in the developing mouse embryo from the earliest stages of differentiation through birth. It is absent in adult tissues, even those that maintain active cell division. We hypothesize that LEK1 is a regulator of mitosis restricted to the developing embryo and early neonate. Here, using BrdU incorporation, we show that LEK1 protein downregulation in cardiac myocytes correlates directly with cessation of DNA synthesis between neonatal days 6 and 10. In contrast, in an immortalized cardiac cell line (HL1 cells), both BrdU incorporation and LEK1 protein expression persist, and actively dividing cells express LEK1. However, BrdU incorporation can be decreased in these cells by treatment with a morpholino targeting LEK1 mRNA. These data suggest a role for LEK1 in regulating the normal embryonic cardiomyocyte cell cycle and in promoting continued mitosis in transformed, abnormally dividing cardiomyocytes.
Collapse
Affiliation(s)
- Ellen Dees
- Gladys P. Stahlman Cardiovascular Research Laboratory, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
25
|
Soukoulis V, Reddy S, Pooley RD, Feng Y, Walsh CA, Bader DM. Cytoplasmic LEK1 is a regulator of microtubule function through its interaction with the LIS1 pathway. Proc Natl Acad Sci U S A 2005; 102:8549-54. [PMID: 15939891 PMCID: PMC1150833 DOI: 10.1073/pnas.0502303102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIS1 and nuclear distribution gene E (NudE) are partner proteins in a conserved pathway regulating the function of dynein and microtubules. Here, we present data that cytoplasmic LEK1 (cytLEK1), a large protein containing a spectrin repeat and multiple leucine zippers, is a component of this pathway through its direct interaction with NudE, as determined by a yeast two-hybrid screen. We identified the binding domains in each molecule, and coimmunoprecipitation and colocalization studies confirmed the specificity of the interaction between cytLEK1 and NudE. Confocal deconvolution analysis revealed that cytLEK1 exhibits colocalization with endogenous NudE and with the known NudE binding partners, LIS1 and dynein. By localizing the NudE-binding domain of cytLEK1 to a small domain within the molecule, we were able to disrupt cytLEK1 function by using a dominant negative approach in addition to LEK1 knockdown and, thus, examine the role of the cytLEK1-NudE interaction in cells. Consistent with a defect in the LIS1 pathway, disruption of cytLEK1 function resulted in alteration of microtubule organization and cellular shape. The microtubule network of cells became tightly focused around the nucleus and resulted in a rounded cell shape. Additionally, cells exhibited a severe inability to repolymerize their microtubule networks after nocodazole challenge. Taken together, our studies revealed that cytLEK1 is essential for cellular functions regulated by the LIS1 pathway.
Collapse
Affiliation(s)
- Victor Soukoulis
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | |
Collapse
|
26
|
Papadimou E, Ménard C, Grey C, Pucéat M. Interplay between the retinoblastoma protein and LEK1 specifies stem cells toward the cardiac lineage. EMBO J 2005; 24:1750-61. [PMID: 15861132 PMCID: PMC1142583 DOI: 10.1038/sj.emboj.7600652] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/30/2005] [Indexed: 11/09/2022] Open
Abstract
The molecular mechanisms governing early cardiogenesis are still largely unknown. Interestingly, the retinoblastoma protein (Rb), a regulator of cell cycle, has recently emerged as a new candidate regulating cell differentiation. Rb-/- mice die at midgestation and mice lacking E2f1/E2f3, downstream components of the Rb-dependent transcriptional pathway, die of heart failure. To gain insight into the function of Rb pathway in early cardiogenesis, we used Rb-/- embryonic stem (ES) cells differentiating into cardiomyocytes. Rb-/- cells displayed a dramatic delay in expression of cardiac-specific transcription factors and in turn in the whole process of cardiac differentiation. The phenotype of Rb-/- ES cell-derived cardiomyocytes was rescued by reintroducing Rb in cardiac progenitors, by stimulating the BMP-dependent cardiogenic pathway or by overexpression of Nkx2.5. ES cells deficient in the recently identified factor LEK1, a murine homolog of the cardiomyogenic factor 1, or specific disruption of Rb-LEK1 interaction into the nucleus of differentiating ES cells recapitulated the delay in cardiac differentiation of Rb-/- ES cells. Thus, we provide evidence for a novel Rb/LEK1-dependent and BMP-independent transcriptional program, which plays a pivotal role in priming ES cells toward a cardiac fate.
Collapse
Affiliation(s)
| | | | | | - Michel Pucéat
- CRBM, CNRS FRE 2593, Montpellier, France
- CRBM, CNRS FRE 2593, 1919, route de Mende, 34293 Montpellier, France. Tel.: +33 467 61 34 32; Fax: +33 467 52 15 59; E-mail:
| |
Collapse
|