1
|
Mooren OL, McConnell P, DeBrecht JD, Jaysingh A, Cooper JA. Reconstitution of Arp2/3-nucleated actin assembly with proteins CP, V-1, and CARMIL. Curr Biol 2024; 34:5173-5186.e4. [PMID: 39437783 PMCID: PMC11576230 DOI: 10.1016/j.cub.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as capping protein, Arp2/3, myosin I linker (CARMIL), CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin-capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1/myotrophin binds to the F-actin-binding site on CP and sterically blocks CP from binding barbed ends. CPI-motif proteins also weaken the binding between V-1 and CP, which decreases the inhibitory effects of V-1, thereby freeing CP to cap barbed ends. Here, we address the question of whether CPI-motif proteins on a surface analogous to a membrane lead to net activation or inhibition of actin assembly nucleated by Arp2/3 complex. Using reconstitution with purified components, we discovered that CARMIL at the surface promotes and enhances actin assembly, countering the inhibitory effects of V-1 and thus activating CP. The reconstitution involves the presence of an Arp2/3 activator on the surface, along with Arp2/3 complex, V-1, CP, profilin, and actin monomers in solution, recreating key features of cell physiology.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - James D DeBrecht
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Anshuman Jaysingh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Mooren OL, McConnell P, DeBrecht JD, Jaysingh A, Cooper JA. Reconstitution of Arp2/3-Nucleated Actin Assembly with CP, V-1 and CARMIL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593916. [PMID: 38798690 PMCID: PMC11118340 DOI: 10.1101/2024.05.13.593916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as CARMIL, CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1 / myotrophin binds to the F-actin binding site on CP and sterically blocks CP from binding barbed ends. CPI-motif proteins also weaken the binding between V-1 and CP, which decreases the inhibitory effects of V-1, thereby freeing CP to cap barbed ends. Here, we address the question of whether CPI-motif proteins on a surface analogous to a membrane lead to net activation or inhibition of actin assembly nucleated by Arp2/3 complex. Using reconstitution with purified components, we discovered that CARMIL at the surface promotes and enhances actin assembly, countering the inhibitory effects of V-1 and thus activating CP. The reconstitution involves the presence of an Arp2/3 activator on the surface, along with Arp2/3 complex, V-1, CP, profilin and actin monomers in solution, recreating key features of cell physiology.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - James D DeBrecht
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Anshuman Jaysingh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Jung G, Pan M, Alexander C, Jin T, Hammer JA. Dual regulation of the actin cytoskeleton by CARMIL-GAP. J Cell Sci 2022; 135:275754. [PMID: 35583107 PMCID: PMC9270954 DOI: 10.1242/jcs.258704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Capping protein Arp2/3 myosin I linker (CARMIL) proteins are multi-domain scaffold proteins that regulate actin dynamics by regulating the activity of capping protein (CP). Here, we characterize CARMIL-GAP (GAP for GTPase-activating protein), a Dictyostelium CARMIL isoform that contains a ∼130 residue insert that, by homology, confers GTPase-activating properties for Rho-related GTPases. Consistent with this idea, this GAP domain binds Dictyostelium Rac1a and accelerates its rate of GTP hydrolysis. CARMIL-GAP concentrates with F-actin in phagocytic cups and at the leading edge of chemotaxing cells, and CARMIL-GAP-null cells exhibit pronounced defects in phagocytosis and chemotactic streaming. Importantly, these defects are fully rescued by expressing GFP-tagged CARMIL-GAP in CARMIL-GAP-null cells. Finally, rescue with versions of CARMIL-GAP that lack either GAP activity or the ability to regulate CP show that, although both activities contribute significantly to CARMIL-GAP function, the GAP activity plays the bigger role. Together, our results add to the growing evidence that CARMIL proteins influence actin dynamics by regulating signaling molecules as well as CP, and that the continuous cycling of the nucleotide state of Rho GTPases is often required to drive Rho-dependent biological processes. Summary:Dictyostelium CARMIL-GAP supports phagocytosis and chemotaxis by regulating both capping protein and Rac1.
Collapse
Affiliation(s)
- Goeh Jung
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - Chris Alexander
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| |
Collapse
|
4
|
Yang Y, Li D, Chao X, Singh SP, Thomason P, Yan Y, Dong M, Li L, Insall RH, Cai H. Leep1 interacts with PIP3 and the Scar/WAVE complex to regulate cell migration and macropinocytosis. J Cell Biol 2021; 220:212090. [PMID: 33978708 PMCID: PMC8127007 DOI: 10.1083/jcb.202010096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain–containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.
Collapse
Affiliation(s)
- Yihong Yang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shashi P Singh
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Peter Thomason
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Glasgow, UK.,University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Kumar AP, Verma CS, Lukman S. Structural dynamics and allostery of Rab proteins: strategies for drug discovery and design. Brief Bioinform 2020; 22:270-287. [PMID: 31950981 DOI: 10.1093/bib/bbz161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/29/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Rab proteins represent the largest family of the Rab superfamily guanosine triphosphatase (GTPase). Aberrant human Rab proteins are associated with multiple diseases, including cancers and neurological disorders. Rab subfamily members display subtle conformational variations that render specificity in their physiological functions and can be targeted for subfamily-specific drug design. However, drug discovery efforts have not focused much on targeting Rab allosteric non-nucleotide binding sites which are subjected to less evolutionary pressures to be conserved, hence are likely to offer subfamily specificity and may be less prone to undesirable off-target interactions and side effects. To discover druggable allosteric binding sites, Rab structural dynamics need to be first incorporated using multiple experimentally and computationally obtained structures. The high-dimensional structural data may necessitate feature extraction methods to identify manageable representative structures for subsequent analyses. We have detailed state-of-the-art computational methods to (i) identify binding sites using data on sequence, shape, energy, etc., (ii) determine the allosteric nature of these binding sites based on structural ensembles, residue networks and correlated motions and (iii) identify small molecule binders through structure- and ligand-based virtual screening. To benefit future studies for targeting Rab allosteric sites, we herein detail a refined workflow comprising multiple available computational methods, which have been successfully used alone or in combinations. This workflow is also applicable for drug discovery efforts targeting other medically important proteins. Depending on the structural dynamics of proteins of interest, researchers can select suitable strategies for allosteric drug discovery and design, from the resources of computational methods and tools enlisted in the workflow.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, South Africa
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Sackmann E. Viscoelasticity of single cells-from subcellular to cellular level. Semin Cell Dev Biol 2018; 93:2-15. [PMID: 30267805 DOI: 10.1016/j.semcdb.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
This review deals with insights into complex cellular structures and processes obtained by measuring viscoelastic impedances of the cell envelope and the cytoplasm by colloidal bead microrheometry. I first introduce a mechanical cell model that allows us to understand their unique ability of mechanical self-stabilization by actin microtubule crosstalk. In the second part, I show how cell movements can be driven by pulsatile or propagating solitary actin gelatin waves (SAGW) that are generated on nascent adhesion domains by logistically controlled membrane recruitment of functional proteins by electrostatic-hydrophobic forces. The global polarization of cell migration is guided by actin-microtubule crosstalk that is mediated by the Ca++ and strain-sensitive supramolecular scaffolding protein IQGAP. In the third part, I introduce the traction force microscopy as a tool to measure the forces between somatic cells and the tissue ´Here I show, how absolute values of viscoelastic impedances of the composite cell envelope can be obtained by deformation field mapping techniques. In the fourth part, it is shown how the dynamic mechanical properties of the active viscoplastic cytoplasmic space can be evaluated using colloidal beads as phantom endosomes. Separate measurements of velocity distributions of directed and random motions of phantom endosomes, yield local values of transport forces, viscosities and life times of directed motion along microtubules. The last part deals with biomimetic experiments allowing us to quantitatively evaluate the mechanical properties of passive and active actin networks on the basis of the percolation theory of gelation.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department E22, Technical University Munich, James Franck Str. 1, D85747, Garching, Germany.
| |
Collapse
|
7
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Ohishi T, Yoshida H, Katori M, Migita T, Muramatsu Y, Miyake M, Ishikawa Y, Saiura A, Iemura SI, Natsume T, Seimiya H. Tankyrase-Binding Protein TNKS1BP1 Regulates Actin Cytoskeleton Rearrangement and Cancer Cell Invasion. Cancer Res 2017; 77:2328-2338. [PMID: 28202517 DOI: 10.1158/0008-5472.can-16-1846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 01/29/2017] [Indexed: 11/16/2022]
Abstract
Tankyrase, a PARP that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here, we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion. In TNKS1BP1-depleted cells, actin filament dynamics, focal adhesion, and lamellipodia ruffling were increased with activation of the ROCK/LIMK/cofilin pathway. TNKS1BP1 bound the actin-capping protein CapZA2. TNKS1BP1 depletion dissociated CapZA2 from the cytoskeleton, leading to cofilin phosphorylation and enhanced cell invasion. Tankyrase overexpression increased cofilin phosphorylation, dissociated CapZA2 from cytoskeleton, and enhanced cell invasion in a PARP activity-dependent manner. In clinical samples of pancreatic cancer, TNKS1BP1 expression was reduced in invasive regions. We propose that the tankyrase-TNKS1BP1 axis constitutes a posttranslational modulator of cell invasion whose aberration promotes cancer malignancy. Cancer Res; 77(9); 2328-38. ©2017 AACR.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan
| | - Haruka Yoshida
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Masamichi Katori
- Divison of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Toshiro Migita
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Mao Miyake
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yuichi Ishikawa
- Divison of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Akio Saiura
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Jo YJ, Jang WI, Namgoong S, Kim NH. Actin-capping proteins play essential roles in the asymmetric division of maturing mouse oocytes. J Cell Sci 2014; 128:160-70. [PMID: 25395583 DOI: 10.1242/jcs.163576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Actin polymerization is essential for various stages of mammalian oocyte maturation, including spindle migration, actin cap formation, polar body extrusion and cytokinesis. The heterodimeric actin-capping protein is an essential element of the actin cytoskeleton. It binds to the fast-growing (barbed) ends of actin filaments and plays essential roles in various actin-mediated cellular processes. However, the roles of capping protein in mammalian oocyte maturation are poorly understood. We investigated the roles of capping protein in mouse oocytes and found that it is essential for correct asymmetric spindle migration and polar body extrusion. Capping protein mainly localized in the cytoplasm during maturation. By knocking down or ectopically overexpressing this protein, we revealed that it is crucial for efficient spindle migration and maintenance of the cytoplasmic actin mesh density. Expression of the capping-protein-binding region of CARMIL (also known as LRRC16A) impaired spindle migration and polar body extrusion during oocyte maturation and decreased the density of the cytoplasmic actin mesh. Taken together, these findings show that capping protein is an essential component of the actin cytoskeleton machinery that plays crucial roles in oocyte maturation, presumably by controlling the cytoplasmic actin mesh density.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Woo-In Jang
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| |
Collapse
|
10
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|
11
|
Zwolak A, Yang C, Feeser EA, Ostap EM, Svitkina T, Dominguez R. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nat Commun 2013; 4:2523. [PMID: 24071777 PMCID: PMC3796438 DOI: 10.1038/ncomms3523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022] Open
Abstract
CARMIL is an approximately 1,370-amino-acid cytoskeletal scaffold that has crucial roles in cell motility and tissue development through interactions with cytoskeletal effectors and regulation of capping protein at the leading edge. However, the mechanism of CARMIL leading edge localization is unknown. Here we show that CARMIL interacts directly with the plasma membrane through its amino-terminal region. The crystal structure of CARMIL1-668 reveals that this region harbours a non-canonical pleckstrin homology (PH) domain connected to a 16-leucine-rich repeat domain. Lipid binding is mediated by the PH domain, but is further enhanced by a central helical domain. Small-angle X-ray scattering reveals that the helical domain mediates antiparallel dimerization, properly positioning the PH domains for simultaneous membrane interaction. In cells, deletion of the PH domain impairs leading edge localization. The results support a direct membrane-binding mechanism for CARMIL localization at the leading edge, where it regulates cytoskeletal effectors and motility.
Collapse
Affiliation(s)
- Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, 221 Leidy Laboratory, Philadelphia, PA 19104, USA
| | - Elizabeth A. Feeser
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, 221 Leidy Laboratory, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 728 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum. BMC STRUCTURAL BIOLOGY 2012; 12:12. [PMID: 22657106 PMCID: PMC3472329 DOI: 10.1186/1472-6807-12-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/10/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=β- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.
Collapse
|
13
|
Kim T, Ravilious GE, Sept D, Cooper JA. Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein. J Biol Chem 2012; 287:15251-62. [PMID: 22411988 DOI: 10.1074/jbc.m112.345447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capping protein (CP) controls the polymerization of actin filaments by capping their barbed ends. In lamellipodia, CP dissociates from the actin cytoskeleton rapidly, suggesting the possible existence of an uncapping factor, for which the protein CARMIL (capping protein, Arp2/3 and myosin-I linker) is a candidate. CARMIL binds to CP via two motifs. One, the CP interaction (CPI) motif, is found in a number of unrelated proteins; the other motif is unique to CARMILs, the CARMIL-specific interaction motif. A 115-aa CARMIL fragment of CARMIL with both motifs, termed the CP-binding region (CBR), binds to CP with high affinity, inhibits capping, and causes uncapping. We wanted to understand the structural basis for this function. We used a collection of mutants affecting the actin-binding surface of CP to test the possibility of a steric-blocking model, which remained open because a region of CBR was not resolved in the CBR/CP co-crystal structure. The CP actin-binding mutants bound CBR normally. In addition, a CBR mutant with all residues of the unresolved region changed showed nearly normal binding to CP. Having ruled out a steric blocking model, we tested an allosteric model with molecular dynamics. We found that CBR binding induces changes in the conformation of the actin-binding surface of CP. In addition, ∼30-aa truncations on the actin-binding surface of CP decreased the affinity of CBR for CP. Thus, CARMIL promotes uncapping by binding to a freely accessible site on CP bound to a filament barbed end and inducing a change in the conformation of the actin-binding surface of CP.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
14
|
Zwolak A, Uruno T, Piszczek G, Hammer JA, Tjandra N. Molecular basis for barbed end uncapping by CARMIL homology domain 3 of mouse CARMIL-1. J Biol Chem 2010; 285:29014-26. [PMID: 20630878 DOI: 10.1074/jbc.m110.134221] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capping protein (CP) is a ubiquitously expressed, 62-kDa heterodimer that binds the barbed end of the actin filament with approximately 0.1 nm affinity to prevent further monomer addition. CARMIL is a multidomain protein, present from protozoa to mammals, that binds CP and is important for normal actin dynamics in vivo. The CARMIL CP binding site resides in its CAH3 domain (CARMIL homology domain 3) located at or near the protein's C terminus. CAH3 binds CP with approximately 1 nm affinity, resulting in a complex with weak capping activity (30-200 nm). Solution assays and single-molecule imaging show that CAH3 binds CP already present on the barbed end, causing a 300-fold increase in the dissociation rate of CP from the end (i.e. uncapping). Here we used nuclear magnetic resonance (NMR) to define the molecular interaction between the minimal CAH3 domain (CAH3a/b) of mouse CARMIL-1 and CP. Specifically, we show that the highly basic CAH3a subdomain is required for the high affinity interaction of CAH3 with a complementary "acidic groove" on CP opposite its actin-binding surface. This CAH3a-CP interaction orients the CAH3b subdomain, which we show is also required for potent anti-CP activity, directly adjacent to the basic patch of CP, shown previously to be required for CP association to and high affinity interaction with the barbed end. The importance of specific residue interactions between CP and CAH3a/b was confirmed by site-directed mutagenesis of both proteins. Together, these results offer a mechanistic explanation for the barbed end uncapping activity of CARMIL, and they identify the basic patch on CP as a crucial regulatory site.
Collapse
Affiliation(s)
- Adam Zwolak
- Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Liang Y, Niederstrasser H, Edwards M, Jackson CE, Cooper JA. Distinct roles for CARMIL isoforms in cell migration. Mol Biol Cell 2010; 20:5290-305. [PMID: 19846667 DOI: 10.1091/mbc.e08-10-1071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms for cell migration, especially how signaling and cytoskeletal systems are integrated, are not understood well. Here, we examined the role of CARMIL (capping protein, Arp2/3, and Myosin-I linker) family proteins in migrating cells. Vertebrates express three conserved genes for CARMIL, and we examined the functions of the two CARMIL genes expressed in migrating human cultured cells. Both isoforms, CARMIL1 and 2, were necessary for cell migration, but for different reasons. CARMIL1 localized to lamellipodia and macropinosomes, and loss of its function caused loss of lamellipodial actin, along with defects in protrusion, ruffling, and macropinocytosis. CARMIL1-knockdown cells showed loss of activation of Rac1, and CARMIL1 was biochemically associated with the GEF Trio. CARMIL2, in contrast, colocalized with vimentin intermediate filaments, and loss of its function caused a distinctive multipolar phenotype. Loss of CARMIL2 also caused decreased levels of myosin-IIB, which may contribute to the polarity phenotype. Expression of one CARMIL isoform was not able to rescue the knockdown phenotypes of the other. Thus, the two isoforms are both important for cell migration, but they have distinct functions.
Collapse
Affiliation(s)
- Yun Liang
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
16
|
Fujiwara I, Remmert K, Hammer JA. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J Biol Chem 2009; 285:2707-20. [PMID: 19926785 DOI: 10.1074/jbc.m109.031203] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bulk solution assays have shown that the isolated CARMIL homology 3 (CAH3) domain from mouse and Acanthamoeba CARMIL rapidly and potently restores actin polymerization when added to actin filaments previously capped with capping protein (CP). To demonstrate this putative uncapping activity directly, we used total internal reflection microscopy to observe single, CP-capped actin filaments before and after the addition of the CAH3 domain from mouse CARMIL-1 (mCAH3). The addition of mCAH3 rapidly restored the polymerization of individual capped filaments, consistent with uncapping. To verify uncapping, filaments were capped with recombinant mouse CP tagged with monomeric green fluorescent protein (mGFP-CP). Restoration of polymerization upon the addition of mCAH3 was immediately preceded by the complete dissociation of mGFP-CP from the filament end, confirming the CAH3-driven uncapping mechanism. Quantitative analyses showed that the percentage of capped filaments that uncapped increased as the concentration of mCAH3 was increased, reaching a maximum of approximately 90% at approximately 250 nm mCAH3. Moreover, the time interval between mCAH3 addition and uncapping decreased as the concentration of mCAH3 increased, with the half-time of CP at the barbed end decreasing from approximately 30 min without mCAH3 to approximately 10 s with a saturating amount of mCAH3. Finally, using mCAH3 tagged with mGFP, we obtained direct evidence that the complex of CP and mCAH3 has a small but measurable affinity for the barbed end, as inferred from previous studies and kinetic modeling. We conclude that the isolated CAH3 domain of CARMIL (and presumably the intact molecule as well) possesses the ability to uncap CP-capped actin filaments.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
17
|
Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix. Protein Expr Purif 2009; 67:113-9. [PMID: 19427903 DOI: 10.1016/j.pep.2009.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 11/23/2022]
Abstract
Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.
Collapse
|
18
|
Vanderzalm PJ, Pandey A, Hurwitz ME, Bloom L, Horvitz HR, Garriga G. C. elegans CARMIL negatively regulates UNC-73/Trio function during neuronal development. Development 2009; 136:1201-10. [PMID: 19244282 PMCID: PMC2685937 DOI: 10.1242/dev.026666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2009] [Indexed: 01/11/2023]
Abstract
Whereas many molecules that promote cell and axonal growth cone migrations have been identified, few are known to inhibit these processes. In genetic screens designed to identify molecules that negatively regulate such migrations, we identified CRML-1, the C. elegans homolog of CARMIL. Although mammalian CARMIL acts to promote the migration of glioblastoma cells, we found that CRML-1 acts as a negative regulator of neuronal cell and axon growth cone migrations. Genetic evidence indicates that CRML-1 regulates these migrations by inhibiting the Rac GEF activity of UNC-73, a homolog of the Rac and Rho GEF Trio. The antagonistic effects of CRML-1 and UNC-73 can control the direction of growth cone migration by regulating the levels of the SAX-3 (a Robo homolog) guidance receptor. Consistent with the hypothesis that CRML-1 negatively regulates UNC-73 activity, these two proteins form a complex in vivo. Based on these observations, we propose a role for CRML-1 as a novel regulator of cell and axon migrations that acts through inhibition of Rac signaling.
Collapse
Affiliation(s)
| | - Amita Pandey
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael E. Hurwitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Laird Bloom
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gian Garriga
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Cooper JA, Sept D. New insights into mechanism and regulation of actin capping protein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:183-206. [PMID: 18544499 DOI: 10.1016/s1937-6448(08)00604-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The heterodimeric actin capping protein, referred to here as "CP," is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
20
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Canton DA, Olsten MEK, Niederstrasser H, Cooper JA, Litchfield DW. The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J Biol Chem 2006; 281:36347-59. [PMID: 16987810 PMCID: PMC2583070 DOI: 10.1074/jbc.m607595200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CKIP-1 is a pleckstrin homology domain-containing protein that induces alterations of the actin cytoskeleton and cell morphology when expressed in human osteosarcoma cells. CKIP-1 interacts with the heterodimeric actin-capping protein in cells, so we postulated that this interaction was responsible for the observed cytoskeletal and morphological effects of CKIP-1. To test this postulate, we used peptide "walking arrays" and alignments of CKIP-1 with CARMIL, another CP-binding protein, to identify Arg-155 and Arg-157 of CKIP-1 as residues potentially required for its interactions with CP. CKIP-1 mutants harboring Arg-155 and Arg-157 substitutions exhibited greatly decreased CP binding, while retaining wild-type localization, the ability to interact with protein kinase CK2, and self-association. To examine the phenotype associated with expression of these mutants, we generated tetracycline-inducible human osteosarcoma cells lines expressing R155E,R157E mutants of CKIP-1. Examination of these cell lines reveals that CKIP-1 R155E,R157E did not induce the distinct changes in cell morphology and the actin cytoskeleton that are characteristic of wild-type CKIP-1 demonstrating that the interaction between CKIP-1 and CP is required for these cellular effects.
Collapse
Affiliation(s)
- David A. Canton
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Mary Ellen K. Olsten
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Hanspeter Niederstrasser
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - David W. Litchfield
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- To whom correspondence should be addressed: Dept. of Biochemistry, University of Western Ontario, Medical Sciences Bldg., London, Ontario N6A 5C1, Canada. Tel.: 519-661-4186; Fax: 519-661-3175; E-mail:
| |
Collapse
|
22
|
Abstract
Acanthamoeba CARMIL was previously shown to co-purify with capping protein (CP) and to bind pure CP. Here we show that this interaction inhibits the barbed end-capping activity of CP. Even more strikingly, this interaction drives the uncapping of actin filaments previously capped with CP. These activities are CP-specific; CARMIL does not inhibit the capping activities of either gelsolin or CapG and does not uncap gelsolin-capped filaments. Although full-length (FL) CARMIL (residues 1-1121) possesses both anti-CP activities, C-terminal fragments like glutathione S-transferase (GST)-P (940-1121) that contain the CARMIL CP binding site are at least 10 times more active. We localized the full activities of GST-P to its C-terminal 51 residues (1071-1121). This sequence contains a stretch of 25 residues that is highly conserved in CARMIL proteins from protozoa, flies, worms, and vertebrates (CARMIL Homology domain 3; CAH3). Point mutations showed that the majority of the most highly conserved residues within CAH3 are critical for the anti-CP activity of GST-AP (862-1121). Finally, we found that GST-AP binds CP approximately 20-fold more tightly than does FL-CARMIL. This observation together with the elevated activities of C-terminal fragments relative to FL-CARMIL suggests that FL-CARMIL might exist primarily in an autoinhibited state. Consistent with this idea, proteolytic cleavage of FL-CARMIL with thrombin generated an approximately 14-kDa C-terminal fragment that expresses full anti-CP activities. We propose that, after some type of physiological activation event, FL-CARMIL could function in vivo as a potent CP antagonist. Given the pivotal role that CP plays in determining the global actin phenotype of cells, our results suggest that CARMIL may play an important role in the physiological regulation of actin assembly.
Collapse
Affiliation(s)
- Takehito Uruno
- Laboratory of Cell Biology, Section on Molecular Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rm. 2523, 9000 Rockville Pike, Bethesda, MD 20892-8017, USA
| | | | | |
Collapse
|
23
|
Yang C, Pring M, Wear MA, Huang M, Cooper JA, Svitkina TM, Zigmond SH. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 2005; 9:209-21. [PMID: 16054028 PMCID: PMC2628720 DOI: 10.1016/j.devcel.2005.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 05/05/2005] [Accepted: 06/30/2005] [Indexed: 11/30/2022]
Abstract
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior.
Collapse
Affiliation(s)
- Changsong Yang
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
25
|
Peng Z, Omaruddin R, Bateman E. Stable transfection of Acanthamoeba castellanii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:93-100. [PMID: 15777844 DOI: 10.1016/j.bbamcr.2004.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 11/16/2022]
Abstract
A simple method for stable transfection of Acanthamoeba castellanii using plasmids which confer resistance to neomycin G418 is described. Expression of neomycin phosphotransferase is driven by the Acanthamoeba TBP gene promoter, and can be monitored by cell growth in the presence of neomycin G418 or by Western blot analysis. Transfected cells can be passaged in the same manner as control cells and can be induced to differentiate into cysts, in which form they maintain resistance to neomycin G418 for at least several weeks, although expression of neomycin phosphotransferase is repressed during encystment. Expression of EGFP or an HA-tagged EGFP-TBP fusion can be driven from the same plasmid, using an additional copy of the Acanthamoeba TBP gene promoter or a deletion mutant. The TBP-EGFP fusion is localized to the nucleus, except in a small proportion of presumptive pre-mitotic cells. EGFP expression can also be driven by the cyst-specific CSP21 gene promoter, which is completely repressed in growing cells but strongly induced in differentiating cells. Transfected cells maintain their phenotype for several weeks, even in the absence of neomycin G418, suggesting that transfected genes are stably integrated within the genome. These results demonstrate the utility of the neomycin resistance based plasmids for stable transfection of Acanthamoeba, and may assist a number of investigations.
Collapse
Affiliation(s)
- Zhihua Peng
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington VT 05405, USA
| | | | | |
Collapse
|
26
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
27
|
Abstract
Temporal and spatial control of the actin cytoskeleton are crucial for a range of eukaryotic cellular processes. Capping protein (CP), a ubiquitous highly conserved heterodimer, tightly caps the barbed (fast-growing) end of the actin filament and is an important component in the assembly of various actin structures, including the dynamic branched filament network at the leading edge of motile cells. New research into the molecular mechanism of how CP interacts with the actin filament in vitro and the function of CP in vivo, including discoveries of novel interactions of CP with other proteins, has greatly enhanced our understanding of the role of CP in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Martin A Wear
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI 63110, USA
| | | |
Collapse
|
28
|
Mejillano MR, Kojima SI, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 2004; 118:363-73. [PMID: 15294161 DOI: 10.1016/j.cell.2004.07.019] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 06/14/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
Understanding how a particular cell type expresses the lamellipodial or filopodial form of the actin machinery is essential to understanding a cell's functional interactions. To determine how a cell "chooses" among these alternative modes of "molecular hardware," we tested the role of key proteins that affect actin filament barbed ends. Depletion of capping protein (CP) by short hairpin RNA (shRNA) caused loss of lamellipodia and explosive formation of filopodia. The knockdown phenotype was rescued by a CP mutant refractory to shRNA, but not by another barbed-end capper, gelsolin, demonstrating that the phenotype was specific for CP. In Ena/VASP deficient cells, CP depletion resulted in ruffling instead of filopodia. We propose a model for selection of lamellipodial versus filopodial organization in which CP is a negative regulator of filopodia formation and Ena/VASP has recruiting/activating functions downstream of actin filament elongation in addition to its previously suggested anticapping and antibranching activities.
Collapse
Affiliation(s)
- Marisan R Mejillano
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dynamic actin filaments contribute to cell migration, organelle movements, memory, and gene regulation. These dynamic processes are often regulated by extracellular and?or cell cycle signals. Regulation targets, not actin itself, but the factors that determine it's dynamic properties. Thus, filament nucleation, rate and duration of elongation, and depolymerization are each controlled with regard to time and?or space. Two mechanisms exist for nucleating filaments de novo, the Arp23 complex and the formins; multiple pathways regulate each. A new filament elongates rapidly but transiently before its barbed end is capped. Rapid capping allows the cell to maintain fine temporal and spatial control over F-actin distribution. Modulation of capping protein activity and its access to barbed ends is emerging as a site of local regulation. Finally, to maintain a steady state filaments must depolymerize. Depolymerization can limit the rate of new filament nucleation and elongation. The activity of ADF?cofilin, which facilitates depolymerization, is also regulated by multiple inputs. This chapter describes (1) mechanism and regulation of new filament formation, (2) mechanism of enhancing elongation at barbed ends, (3) capping proteins and their regulators, and (4) recycling of actin monomers from filamentous actin (F-actin) back to globular actin (G-actin).
Collapse
Affiliation(s)
- Sally H Zigmond
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|