1
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Zamarreño J, Muñoz S, Alonso-Rodríguez E, Alcalá M, Rodríguez S, Bermejo R, Sacristán MP, Bueno A. Timely lagging strand maturation relies on Ubp10 deubiquitylase-mediated PCNA dissociation from replicating chromatin. Nat Commun 2024; 15:8183. [PMID: 39294185 PMCID: PMC11411133 DOI: 10.1038/s41467-024-52542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Synthesis and maturation of Okazaki Fragments is an incessant and highly efficient metabolic process completing the synthesis of the lagging strands at replication forks during S phase. Accurate Okazaki fragment maturation (OFM) is crucial to maintain genome integrity and, therefore, cell survival in all living organisms. In eukaryotes, OFM involves the consecutive action of DNA polymerase Pol ∂, 5' Flap endonuclease Fen1 and DNA ligase I, and constitutes the best example of a sequential process coordinated by the sliding clamp PCNA. For OFM to occur efficiently, cooperation of these enzymes with PCNA must be highly regulated. Here, we present evidence of a role for the K164-PCNA-deubiquitylase Ubp10 in the maturation of Okazaki fragments in the budding yeast Saccharomyces cerevisiae. We show that Ubp10 associates with lagging-strand DNA synthesis machineries on replicating chromatin to ensure timely ligation of Okazaki fragments by promoting PCNA dissociation from chromatin requiring lysine 164 deubiquitylation.
Collapse
Affiliation(s)
- Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Esmeralda Alonso-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Macarena Alcalá
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
3
|
Shaw AE, Kairamkonda S, Ghodke H, Schauer GD. Biochemical and single-molecule techniques to study accessory helicase resolution of R-loop proteins at stalled replication forks. Methods Enzymol 2022; 673:191-225. [PMID: 35965008 DOI: 10.1016/bs.mie.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
R-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted. The critical role of non-replicative accessory helicases in R-loop protein resolution has increasingly come into light in recent years. Such helicases include the Pif1-family, monomeric helicases that have been studied in many different contexts and that have been ascribed to a multitude of separable protective functions in the cell. In this chapter, we present protocols to study R-loop protein resolution by Pif1 helicase at stalled replication forks using purified proteins, both at the biochemical and single-molecule level. Our system uses recombinant proteins expressed in Saccharomyces cerevisiae but could apply to practically any organism of interest due to the high interspecies homology of the proteins involved in DNA replication. The methods we outline are extensible to many systems and should be applicable to studying R-loop clearance by any Superfamily (SF) 1B helicase. These techniques will further enable mechanistic research on these critical but understudied components of the genomic maintenance program.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Sreeya Kairamkonda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
4
|
Dong C, Schultz JC, Liu W, Lian J, Huang L, Xu Z, Zhao H. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng 2021; 66:319-327. [PMID: 33713797 DOI: 10.1016/j.ymben.2021.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite and widely used for treatment of various diseases. Although high level production of SAM had been achieved in yeast, novel metabolic engineering strategies are needed to further enhance SAM production for industrial applications. Here genome-scale engineering (GSE) was performed to identify new targets for SAM overproduction using the multi-functional genome-wide CRISPR (MAGIC) system, and the effects of these newly identified targets were further validated in industrial yeast strains. After 3 rounds of FACS screening and characterization, numerous novel targets for enhancing SAM production were identified. In addition, transcriptomic and metabolomic analyses were performed to investigate the molecular mechanisms for enhanced SAM accumulation. The best combination (upregulation of SNZ3, RFC4, and RPS18B) improved SAM productivity by 2.2-fold and 1.6-fold in laboratory and industrial yeast strains, respectively. Using GSE of laboratory yeast strains to guide industrial yeast strain engineering presents an effective approach to design microbial cell factories for industrial applications.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - J Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Bai G, Kermi C, Stoy H, Schiltz CJ, Bacal J, Zaino AM, Hadden MK, Eichman BF, Lopes M, Cimprich KA. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Mol Cell 2020; 78:1237-1251.e7. [PMID: 32442397 PMCID: PMC7305998 DOI: 10.1016/j.molcel.2020.04.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Chames Kermi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Carl J Schiltz
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Julien Bacal
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Angela M Zaino
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06029-3092, USA
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06029-3092, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
6
|
Whinn KS, Kaur G, Lewis JS, Schauer GD, Mueller SH, Jergic S, Maynard H, Gan ZY, Naganbabu M, Bruchez MP, O'Donnell ME, Dixon NE, van Oijen AM, Ghodke H. Nuclease dead Cas9 is a programmable roadblock for DNA replication. Sci Rep 2019; 9:13292. [PMID: 31527759 PMCID: PMC6746809 DOI: 10.1038/s41598-019-49837-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.
Collapse
Affiliation(s)
- Kelsey S Whinn
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Gurleen Kaur
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Jacob S Lewis
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Grant D Schauer
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Stefan H Mueller
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Hamish Maynard
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Zhong Yan Gan
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Matharishwan Naganbabu
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Marcel P Bruchez
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Harshad Ghodke
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
7
|
Hicks JA, Trakooljul N, Liu HC. Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poult Sci 2019; 98:642-652. [PMID: 30184155 DOI: 10.3382/ps/pey412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Chen Y, Qian J, You L, Zhang X, Jiao J, Liu Y, Zhao J. Subunit Interaction Differences Between the Replication Factor C Complexes in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:779. [PMID: 29971074 PMCID: PMC6018503 DOI: 10.3389/fpls.2018.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 06/01/2023]
Abstract
Replication factor C (RFC) is a multisubunit complex that opens the sliding clamp and loads it onto the DNA chain in an ATP-dependent manner and is thus critical for high-speed DNA synthesis. In yeast (Saccharomyces cerevisiae) and humans, biochemical studies and structural analysis revealed interaction patterns between the subunits and architectures of the clamp loaders. Mutations of ScRFC1/2/3/4/5 lead to loss of cell viability and defective replication. However, the functions of RFC subunits in higher plants are unclear, except for AtRFC1/3/4, and the interaction and arrangement of the subunits have not been studied. Here, we identified rfc2-1/+, rfc3-2/+, and rfc5-1/+ mutants in Arabidopsis, and found that embryos and endosperm arrested at the 2/4-celled embryo proper stage and 6-8 nuclei stages, respectively. Subcellular localization analysis revealed that AtRFC1 and OsRFC1/4/5 proteins were localized in the nucleus, while AtRFC2/3/4/5 and OsRFC2/3 proteins were present both in the nucleus and cytoplasm. By using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) techniques, we demonstrated the interactions of Arabidopsis and rice (Oryza sativa) RFC subunits, and proposed arrangements of the five subunits within the RFC complex, which were AtRFC5-AtRFC4-AtRFC3/2-AtRFC2/3-AtRFC1 and OsRFC5-OsRFC2-OsRFC3-OsRFC4-OsRFC1, respectively. In addition, AtRFC1 could interact with AtRFC2/3/4/5 in the presence of other subunits, while OsRFC1 directly interacted with the other four subunits. To further characterize the regions required for complex formation, truncated RFC proteins of the subunits were created. The results showed that C-termini of the RFC subunits are required for complex formation. Our studies indicate that the localization and interactions of RFCs in Arabidopsis and rice are distinctly discrepant.
Collapse
|
9
|
Cirilli M, Bereshchenko O, Ermakova O, Nerlov C. Insights into specificity, redundancy and new cellular functions of C/EBPa and C/EBPb transcription factors through interactome network analysis. Biochim Biophys Acta Gen Subj 2016; 1861:467-476. [PMID: 27746211 DOI: 10.1016/j.bbagen.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND C/EBPa and C/EBPb are transcription factors with tissue specific expression regulating several important cellular processes. They work by recruiting protein complexes to a common DNA recognition motif and both are able to compensate each other's absence in many cell types, thus showing functional redundancy. They also play distinct roles in specific cellular pathways and their abnormal functioning gives raise to different human pathologies. METHODS To investigate the molecular basis of C/EBPa and C/EBPb specificity and redundancy we characterized their in vivo protein-protein interaction networks by Tandem Affinity Purification (TAP) and Mass Spectrometry (MS). To unravel the functional features of C/EBPa and C/EBPb proteomes we studied the statistical enrichment of binding partners related to Gene Ontology (GO) terms and KEGG pathways. RESULTS Our data confirmed that the C/EBPa and C/EBPb regulate biological processes like cell proliferation, apoptosis and transformation. We found that both C/EBPa and C/EBPb are involved in other cellular pathways such as RNA maturation, RNA splicing and DNA repair. Specific interactions of C/EBPa with MRE11, RUVBL1 and RUVBL2 components of DNA repair system were confirmed by co-immunoprecipitation assays. CONCLUSIONS Our comparative analysis of the C/EBPa and C/EBPb proteomes provides an insight for understanding both their redundant and specific roles in cells indicating their involvement in new pathways. Such novel predicted functions are relevant to normal cellular processes and disease phenotypes controlled by these transcription factors. GENERAL SIGNIFICANCE Functional characterization of C/EBPa and C/EBPb proteomes suggests they can regulate novel pathways and indicate potential molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Maurizio Cirilli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, via Ramarini 32, 00015 Monterotondo, Italy
| | - Oxana Bereshchenko
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy; Department of Medicine, University of Perugia, Perugia 06132, Italy
| | - Olga Ermakova
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy.
| | - Claus Nerlov
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy; MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
10
|
Vedelek B, Blastyák A, Boros IM. Cross-Species Interaction between Rapidly Evolving Telomere-Specific Drosophila Proteins. PLoS One 2015; 10:e0142771. [PMID: 26566042 PMCID: PMC4643883 DOI: 10.1371/journal.pone.0142771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Telomere integrity in Drosophila melanogaster is maintained by a putative multisubunit complex called terminin that is believed to act in analogy to the mammalian shelterin complex in protecting chromosome ends from being recognized as sites of DNA damage. The five proteins supposed to form the terminin complex are HP1-ORC associated protein, HP1-HOAP interacting protein, Verrocchio, Drosophila Telomere Loss/Modigliani and Heterochromatic Protein 1. Four of these proteins evolve rapidly within the Drosophila genus. The accelerated evolution of terminin components may indicate the involvement of these proteins in the process by which new species arise, as the resulting divergence of terminin proteins might prevent hybrid formation, thus driving speciation. However, terminin is not an experimentally proven entity, and no biochemical studies have been performed to investigate its assembly and action in detail. Motivated by these facts in order to initiate biochemical studies on terminin function, we attempted to reconstitute terminin by co-expressing its subunits in bacteria and investigated the possible role of the fast-evolving parts of terminin components in complex assembly. Our results suggest formation of stable subcomplexes of terminin, but not of the whole complex in vitro. We found that the accelerated evolution is restricted to definable regions of terminin components, and that the divergence of D. melanogaster Drosophila Telomere Loss and D. yakuba Verrocchio proteins does not preclude their stable interaction.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - András Blastyák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
11
|
N-terminal-mediated oligomerization of DnaA drives the occupancy-dependent rejuvenation of the protein on the membrane. Biosci Rep 2015; 35:BSR20150175. [PMID: 26272946 PMCID: PMC4721551 DOI: 10.1042/bsr20150175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/17/2023] Open
Abstract
Initiation of DNA replication in bacteria requires recharging of DnaA with ATP. We demonstrate in the present study that this process involves the N-terminal domain-mediated oligomerization of the protein on the membrane, which can be modelled as a surface density-driven phase transition switch. DnaA, the initiator of chromosome replication in most known eubacteria species, is activated once per cell division cycle. Its overall activity cycle is driven by ATP hydrolysis and ADP–ATP exchange. The latter can be promoted by binding to specific sequences on the chromosome and/or to acidic phospholipids in the membrane. We have previously shown that the transition into an active form (rejuvenation) is strongly co-operative with respect to DnaA membrane occupancy. Only at low membrane occupancy is DnaA reactivation efficiently catalysed by the acidic phospholipids. The present study was aimed at unravelling the molecular mechanism underlying the occupancy-dependent DnaA rejuvenation. We found that truncation of the DnaA N-terminal completely abolishes the co-operative transformation between the high and low occupancy states (I and II respectively) without affecting the membrane binding. The environmentally sensitive fluorophore specifically attached to the N-terminal cysteines of DnaA reported on occupancy-correlated changes in its vicinity. Cross-linking of DnaA with a short homobifunctional reagent revealed that state II of the protein on the membrane corresponds to a distinct oligomeric form of DnaA. The kinetic transition of DnaA on the membrane surface is described in the present study by a generalized 2D condensation phase transition model, confirming the existence of two states of DnaA on the membrane and pointing to the possibility that membrane protein density serves as an on-off switch in vivo. We conclude that the DnaA conformation attained at low surface density drives its N-terminal-mediated oligomerization, which is presumably a pre-requisite for facilitated nt exchange.
Collapse
|
12
|
Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O'Donnell ME. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 2015; 4:e04988. [PMID: 25871847 PMCID: PMC4413876 DOI: 10.7554/elife.04988] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork.
Collapse
Affiliation(s)
- Roxana E Georgescu
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Grant D Schauer
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Nina Y Yao
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Lance D Langston
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Olga Yurieva
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Dan Zhang
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Jeff Finkelstein
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Mike E O'Donnell
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| |
Collapse
|
13
|
Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:31-8. [PMID: 25450506 DOI: 10.1016/j.bbapap.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 11/22/2022]
Abstract
DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the Saccharomyces cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the β-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway.
Collapse
|
14
|
Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O'Donnell ME. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 2014; 21:664-70. [PMID: 24997598 PMCID: PMC4482249 DOI: 10.1038/nsmb.2851] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ-PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.
Collapse
Affiliation(s)
- Roxana E Georgescu
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Lance Langston
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Nina Y Yao
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Olga Yurieva
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Dan Zhang
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jeff Finkelstein
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Tani Agarwal
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Mike E O'Donnell
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| |
Collapse
|
15
|
A novel function for the conserved glutamate residue in the walker B motif of replication factor C. Genes (Basel) 2014; 4:134-51. [PMID: 23946885 PMCID: PMC3740443 DOI: 10.3390/genes4020134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In all domains of life, sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders load clamps onto DNA in a multi-step process that requires ATP binding and hydrolysis. Like other AAA+ proteins, clamp loaders contain conserved Walker A and Walker B sequence motifs, which participate in ATP binding and hydrolysis, respectively. Mutation of the glutamate residue in Walker B motifs (or DExx-boxes) in AAA+ proteins typically reduces ATP hydrolysis by as much as a couple orders of magnitude, but has no effect on ATP binding. Here, the Walker B Glu in each of the four active ATP sites of the eukaryotic clamp loader, RFC, was mutated to Gln and Ala separately, and ATP binding- and hydrolysis-dependent activities of the quadruple mutant clamp loaders were characterized. Fluorescence-based assays were used to measure individual reaction steps required for clamp loading including clamp binding, clamp opening, DNA binding and ATP hydrolysis. Our results show that the Walker B mutations affect ATP-binding-dependent interactions of RFC with the clamp and DNA in addition to reducing ligand-dependent ATP hydrolysis activity. Here, we show that the Walker B glutamate is required for ATP-dependent ligand binding activity, a previously unknown function for this conserved Glu residue in RFC.
Collapse
|
16
|
Ma Z, Bi Q, Wang Y. Hydrogen sulfide accelerates cell cycle progression in oral squamous cell carcinoma cell lines. Oral Dis 2014; 21:156-62. [PMID: 24589248 DOI: 10.1111/odi.12223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Z Ma
- Department of Special Dentistry; Peking University School and Hospital of Stomatology; Beijing China
| | - Q Bi
- Department of Oral Surgery; Hospital for Oral Disease Prevention and Treatment; Harbin China
| | - Y Wang
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
17
|
Marzahn MR, Hayner JN, Finkelstein J, O'Donnell M, Bloom LB. The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA. J Biol Chem 2014; 289:5537-48. [PMID: 24436332 DOI: 10.1074/jbc.m113.541466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading.
Collapse
Affiliation(s)
- Melissa R Marzahn
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610 and
| | | | | | | | | |
Collapse
|
18
|
A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells. G3-GENES GENOMES GENETICS 2013; 3:741-756. [PMID: 23550123 PMCID: PMC3618361 DOI: 10.1534/g3.112.005397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Repetitive elements comprise a significant portion of most eukaryotic genomes. Minisatellites, a type of repetitive element composed of repeat units 15−100 bp in length, are stable in actively dividing cells but change in composition during meiosis and in stationary-phase cells. Alterations within minisatellite tracts have been correlated with the onset of a variety of diseases, including diabetes mellitus, myoclonus epilepsy, and several types of cancer. However, little is known about the factors preventing minisatellite alterations. Previously, our laboratory developed a color segregation assay in which a minisatellite was inserted into the ADE2 gene in the yeast Saccharomyces cerevisiae to monitor alteration events. We demonstrated that minisatellite alterations that occur in stationary-phase cells give rise to a specific colony morphology phenotype known as blebbing. Here, we performed a modified version of the synthetic genetic array analysis to screen for mutants that produce a blebbing phenotype. Screens were conducted using two distinctly different minisatellite tracts: the ade2-min3 construct consisting of three identical 20-bp repeats, and the ade2-h7.5 construct, consisting of seven-and-a-half 28-bp variable repeats. Mutations in 102 and 157 genes affect the stability of the ade2-min3 and ade2-h7.5 alleles, respectively. Only seven hits overlapped both screens, indicating that different factors regulate repeat stability depending upon minisatellite size and composition. Importantly, we demonstrate that mismatch repair influences the stability of the ade2-h7.5 allele, indicating that this type of DNA repair stabilizes complex minisatellites in stationary phase cells. Our work provides insight into the factors regulating minisatellite stability.
Collapse
|
19
|
Abstract
To achieve the high degree of processivity required for DNA replication, DNA polymerases associate with ring-shaped sliding clamps that encircle the template DNA and slide freely along it. The closed circular structure of sliding clamps necessitates an enzyme-catalyzed mechanism, which not only opens them for assembly and closes them around DNA, but specifically targets them to sites where DNA synthesis is initiated and orients them correctly for replication. Such a feat is performed by multisubunit complexes known as clamp loaders, which use ATP to open sliding clamp rings and place them around the 3' end of primer-template (PT) junctions. Here we discuss the structure and composition of sliding clamps and clamp loaders from the three domains of life as well as T4 bacteriophage, and provide our current understanding of the clamp-loading process.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
20
|
Improved solubility of replication factor C (RFC) Walker A mutants. Protein Expr Purif 2012; 83:135-44. [PMID: 22469630 DOI: 10.1016/j.pep.2012.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 11/21/2022]
Abstract
Protein insolubility often poses a significant problem during purification protocols and in enzyme assays, especially for eukaryotic proteins expressed in a recombinant bacterial system. The limited solubility of replication factor C (RFC), the clamp loader complex from Saccharomyces cerevisiae, has been previously documented. We found that mutant forms of RFC harboring a single point mutation in the Walker A motif were even less soluble than the wild-type complex. The addition of maltose at 0.75 M to the storage and assay buffers greatly increases protein solubility and prevents the complex from falling apart. Our analysis of the clamp loading reaction is dependent on fluorescence-based assays, which are environmentally sensitive. Using wt RFC as a control, we show that the addition of maltose to the reaction buffers does not affect fluorophore responses in the assays or the enzyme activity, indicating that maltose can be used as a buffer additive for further downstream analysis of these mutants.
Collapse
|
21
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
22
|
Pogoreltsev A, Solel E, Pappo D, Keinan E. Deca-heterosubstituted corannulenes. Chem Commun (Camb) 2012; 48:5425-7. [DOI: 10.1039/c2cc31801f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
The eukaryotic RFC clamp loader couples the energy of ATP hydrolysis to open and close the circular PCNA sliding clamp onto primed sites for use by DNA polymerases and repair factors. Structural studies reveal clamp loaders to be heteropentamers. Each subunit contains a region of homology to AAA+ proteins that defines two domains. The AAA+ domains form a right-handed spiral upon binding ATP. This spiral arrangement generates a DNA binding site within the center of RFC. DNA enters the central chamber through a gap between the AAA+ domains of two subunits. Specificity for a primed template junction is achieved by a third domain that blocks DNA, forcing it to bend sharply. Thus only DNA with a flexible joint can bind the central chamber. DNA entry also requires a slot in the PCNA clamp, which is opened upon binding the AAA+ domains of the clamp loader. ATP hydrolysis enables clamp closing and ejection of RFC, completing the clamp loading reaction.
Collapse
Affiliation(s)
- Nina Y Yao
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA,
| | | |
Collapse
|
24
|
ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. J Mol Biol 2011; 416:176-91. [PMID: 22197378 DOI: 10.1016/j.jmb.2011.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 11/20/2022]
Abstract
The multi-subunit replication factor C (RFC) complex loads circular proliferating cell nuclear antigen (PCNA) clamps onto DNA where they serve as mobile tethers for polymerases and coordinate the functions of many other DNA metabolic proteins. The clamp loading reaction is complex, involving multiple components (RFC, PCNA, DNA, and ATP) and events (minimally: PCNA opening/closing, DNA binding/release, and ATP binding/hydrolysis) that yield a topologically linked clamp·DNA product in less than a second. Here, we report pre-steady-state measurements of several steps in the reaction catalyzed by Saccharomyces cerevisiae RFC and present a comprehensive kinetic model based on global analysis of the data. Highlights of the reaction mechanism are that ATP binding to RFC initiates slow activation of the clamp loader, enabling it to open PCNA (at ~2 s(-1)) and bind primer-template DNA (ptDNA). Rapid binding of ptDNA leads to formation of the RFC·ATP·PCNA(open)·ptDNA complex, which catalyzes a burst of ATP hydrolysis. Another slow step in the reaction follows ATP hydrolysis and is associated with PCNA closure around ptDNA (8 s(-1)). Dissociation of PCNA·ptDNA from RFC leads to catalytic turnover. We propose that these early and late rate-determining events are intramolecular conformational changes in RFC and PCNA that control clamp opening and closure, and that ATP binding and hydrolysis switch RFC between conformations with high and low affinities, respectively, for open PCNA and ptDNA, and thus bookend the clamp loading reaction.
Collapse
|
25
|
Thompson JA, Marzahn MR, O'Donnell M, Bloom LB. Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC. J Biol Chem 2011; 287:2203-9. [PMID: 22115746 DOI: 10.1074/jbc.c111.318899] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clamp loaders from all domains of life load clamps onto DNA. The clamp tethers DNA polymerases to DNA to increase the processivity of synthesis as well as the efficiency of replication. Here, we investigated proliferating cell nuclear antigen (PCNA) binding and opening by the Saccharomyces cerevisiae clamp loader, replication factor C (RFC), and the DNA damage checkpoint clamp loader, Rad24-RFC, using two separate fluorescence intensity-based assays. Analysis of PCNA opening by RFC revealed a two-step reaction in which RFC binds PCNA before opening PCNA rather than capturing clamps that have transiently and spontaneously opened in solution. The affinity of RFC for PCNA is about an order of magnitude lower in the absence of ATP than in its presence. The affinity of Rad24-RFC for PCNA in the presence of ATP is about an order magnitude weaker than that of RFC for PCNA, similar to the RFC-PCNA interaction in the absence of ATP. Importantly, fewer open clamp loader-clamp complexes are formed when PCNA is bound by Rad24-RFC than when bound by RFC.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | | | | | | |
Collapse
|
26
|
Kazlauskas D, Venclovas C. Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size. Nucleic Acids Res 2011; 39:8291-305. [PMID: 21742758 PMCID: PMC3201878 DOI: 10.1093/nar/gkr564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genome duplication in free-living cellular organisms is performed by DNA replicases that always include a DNA polymerase, a DNA sliding clamp and a clamp loader. What are the evolutionary solutions for DNA replicases associated with smaller genomes? Are there some general principles? To address these questions we analyzed DNA replicases of double-stranded (ds) DNA viruses. In the process we discovered highly divergent B-family DNA polymerases in phiKZ-like phages and remote sliding clamp homologs in Ascoviridae family and Ma-LMM01 phage. The analysis revealed a clear dependency between DNA replicase components and the viral genome size. As the genome size increases, viruses universally encode their own DNA polymerases and frequently have homologs of DNA sliding clamps, which sometimes are accompanied by clamp loader subunits. This pattern is highly non-random. The absence of sliding clamps in large viral genomes usually coincides with the presence of atypical polymerases. Meanwhile, sliding clamp homologs, not accompanied by clamp loaders, have an elevated positive electrostatic potential, characteristic of non-ring viral processivity factors that bind the DNA directly. Unexpectedly, we found that similar electrostatic properties are shared by the eukaryotic 9-1-1 clamp subunits, Hus1 and, to a lesser extent, Rad9, also suggesting the possibility of direct DNA binding.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| | | |
Collapse
|
27
|
Maradeo ME, Garg A, Skibbens RV. Rfc5p regulates alternate RFC complex functions in sister chromatid pairing reactions in budding yeast. Cell Cycle 2010; 9:4370-8. [PMID: 20980821 PMCID: PMC3055188 DOI: 10.4161/cc.9.21.13634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 11/19/2022] Open
Abstract
Sister chromatid pairing reactions, termed cohesion establishment, occur during S-phase and appear to be regulated by Replication Factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these novel pathways, we analyzed the small RFC subunit Rfc5p that is common to both Ctf18p-RFC and Elg1p-RFC. Despite this commonality, the data show that diminished Rfc5p function rescues ctf7/eco1 mutant cell phenotypes, revealing that Rfc5p promotes anti-establishment activities. This rescue is specific to establishment pathways in that rfc5-1 greatly accentuates growth defects when expressed in scc2 (deposition), mcd1/scc1 or smc3 (cohesion maintenance) mutated cells. Our results reveal for the first time a role for small RFC subunits in directing RFC complex functions-in this case towards anti-establishment pathways. We further report that Pds5p exhibits both establishment and anti-establishment functions in cohesion. This duality suggests that categorizations of establishment and anti-establishment activities require further examination.
Collapse
Affiliation(s)
- Marie E Maradeo
- Dept. of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | | | |
Collapse
|
28
|
The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol Biochem Parasitol 2010; 172:9-18. [DOI: 10.1016/j.molbiopara.2010.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
|
29
|
Zhuang Z, Ai Y. Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1081-93. [PMID: 19576301 PMCID: PMC2846219 DOI: 10.1016/j.bbapap.2009.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.
Collapse
Affiliation(s)
- Zhihao Zhuang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE, 19716, USA.
| | | |
Collapse
|
30
|
McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J. Analysis of the role of PCNA-DNA contacts during clamp loading. BMC STRUCTURAL BIOLOGY 2010; 10:3. [PMID: 20113510 PMCID: PMC2824762 DOI: 10.1186/1472-6807-10-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/30/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sliding clamps, such as Proliferating Cell Nuclear Antigen (PCNA) in eukaryotes, are ring-shaped protein complexes that encircle DNA and enable highly processive DNA replication by serving as docking sites for DNA polymerases. In an ATP-dependent reaction, clamp loader complexes, such as the Replication Factor-C (RFC) complex in eukaryotes, open the clamp and load it around primer-template DNA. RESULTS We built a model of RFC bound to PCNA and DNA based on existing crystal structures of clamp loaders. This model suggests that DNA would enter the clamp at an angle during clamp loading, thereby interacting with positively charged residues in the center of PCNA. We show that simultaneous mutation of Lys 20, Lys 77, Arg 80, and Arg 149, which interact with DNA in the RFC-PCNA-DNA model, compromises the ability of yeast PCNA to stimulate the DNA-dependent ATPase activity of RFC when the DNA is long enough to extend through the clamp. Fluorescence anisotropy binding experiments show that the inability of the mutant clamp proteins to stimulate RFC ATPase activity is likely caused by reduction in the affinity of the RFC-PCNA complex for DNA. We obtained several crystal forms of yeast PCNA-DNA complexes, measuring X-ray diffraction data to 3.0 A resolution for one such complex. The resulting electron density maps show that DNA is bound in a tilted orientation relative to PCNA, but makes different contacts than those implicated in clamp loading. Because of apparent partial disorder in the DNA, we restricted refinement of the DNA to a rigid body model. This result contrasts with previous analysis of a bacterial clamp bound to DNA, where the DNA was well resolved. CONCLUSION Mutational analysis of PCNA suggests that positively charged residues in the center of the clamp create a binding surface that makes contact with DNA. Disruption of this positive surface, which had not previously been implicated in clamp loading function, reduces RFC ATPase activity in the presence of DNA, most likely by reducing the affinity of RFC and PCNA for DNA. The interaction of DNA is not, however, restricted to one orientation, as indicated by analysis of the PCNA-DNA co-crystals.
Collapse
Affiliation(s)
- Randall McNally
- Department of Molecular and Cell Biology, Department of Chemistry, California Institute for Quantitative Biosciences (QB3), Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
31
|
Gershoni-Poranne R, Pappo D, Solel E, Keinan E. Corannulene Ethers via Ullmann Condensation. Org Lett 2009; 11:5146-9. [DOI: 10.1021/ol902352k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Doron Pappo
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ephrath Solel
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ehud Keinan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
32
|
Molecular analyses of a three-subunit euryarchaeal clamp loader complex from Methanosarcina acetivorans. J Bacteriol 2009; 191:6539-49. [PMID: 19717601 DOI: 10.1128/jb.00414-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomal DNA replication is dependent on processive DNA synthesis. Across the three domains of life and in certain viruses, a toroidal sliding clamp confers processivity to replicative DNA polymerases by encircling the DNA and engaging the polymerase in protein/protein interactions. Sliding clamps are ring-shaped; therefore, they have cognate clamp loaders that open and load them onto DNA. Here we use biochemical and mutational analyses to study the structure/function of the Methanosarcina acetivorans clamp loader or replication factor C (RFC) homolog. M. acetivorans RFC (RFC(Ma)), which represents an intermediate between the common archaeal RFC and the eukaryotic RFC, comprises two different small subunits (RFCS1 and RFCS2) and a large subunit (RFCL). Size exclusion chromatography suggested that RFCS1 exists in oligomeric states depending on protein concentration, while RFCS2 exists as a monomer. Protein complexes of RFCS1/RFCS2 formed in solution; however, they failed to stimulate DNA synthesis by a cognate DNA polymerase in the presence of its clamp. Determination of the subunit composition and previous mutational analysis allowed the prediction of the spatial distribution of subunits in this new member of the clamp loader family. Three RFCS1 subunits are flanked by an RFCS2 and an RFCL. The spatial distribution is, therefore, reminiscent of the minimal Escherichia coli clamp loader that exists in space as three gamma-subunits (motor) flanked by the delta' (stator) and the delta (wrench) subunits. Mutational analysis, however, suggested that the similarity between the two clamp loaders does not translate into the complete conservation of the functions of individual subunits within the RFC(Ma) complex.
Collapse
|
33
|
Di Cecco L, Melissari E, Mariotti V, Iofrida C, Galli A, Guidugli L, Lombardi G, Caligo MA, Iacopetti P, Pellegrini S. Characterisation of gene expression profiles of yeast cells expressing BRCA1 missense variants. Eur J Cancer 2009; 45:2187-96. [DOI: 10.1016/j.ejca.2009.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/15/2009] [Accepted: 04/24/2009] [Indexed: 11/25/2022]
|
34
|
Qin B, Chen X, Fang X, Shu Y, Yip YK, Yan Y, Pan S, Ong WQ, Ren C, Su H, Zeng H. Crystallographic Evidence of an Unusual, Pentagon-Shaped Folding Pattern in a Circular Aromatic Pentamer. Org Lett 2008; 10:5127-30. [DOI: 10.1021/ol801980h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Qin
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiuying Chen
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiao Fang
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Yingying Shu
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Yeow Kwan Yip
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Yan Yan
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Siyan Pan
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qiang Ong
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Changliang Ren
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Haibin Su
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| | - Huaqiang Zeng
- Department of Chemistry and NUS MedChem Program of the Office of Life Sciences, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore, and Division of Materials Science, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
35
|
Shumaker DK, Solimando L, Sengupta K, Shimi T, Adam SA, Grunwald A, Strelkov SV, Aebi U, Cardoso MC, Goldman RD. The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. ACTA ACUST UNITED AC 2008; 181:269-80. [PMID: 18426975 PMCID: PMC2315674 DOI: 10.1083/jcb.200708155] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study provides insights into the role of nuclear lamins in DNA replication. Our data demonstrate that the Ig-fold motif located in the lamin C terminus binds directly to proliferating cell nuclear antigen (PCNA), the processivity factor necessary for the chain elongation phase of DNA replication. We find that the introduction of a mutation in the Ig-fold, which alters its structure and causes human muscular dystrophy, inhibits PCNA binding. Studies of nuclear assembly and DNA replication show that lamins, PCNA, and chromatin are closely associated in situ. Exposure of replicating nuclei to an excess of the lamin domain containing the Ig-fold inhibits DNA replication in a concentration-dependent fashion. This inhibitory effect is significantly diminished in nuclei exposed to the same domain bearing the Ig-fold mutation. Using the crystal structures of the lamin Ig-fold and PCNA, molecular docking simulations suggest probable interaction sites. These findings also provide insights into the mechanisms underlying the numerous disease-causing mutations located within the lamin Ig-fold.
Collapse
Affiliation(s)
- Dale K Shumaker
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rouillon C, Henneke G, Flament D, Querellou J, Raffin JP. DNA Polymerase Switching on Homotrimeric PCNA at the Replication Fork of the Euryarchaea Pyrococcus abyssi. J Mol Biol 2007; 369:343-55. [PMID: 17442344 DOI: 10.1016/j.jmb.2007.03.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
DNA replication in Archaea, as in other organisms, involves large protein complexes called replisomes. In the Euryarchaeota subdomain, only two putative replicases have been identified, and their roles in leading and lagging strand DNA synthesis are still poorly understood. In this study, we focused on the coupling of proliferating cell nuclear antigen (PCNA)-loading mechanisms with DNA polymerase function in the Euryarchaea Pyrococcus abyssi. PCNA spontaneously loaded onto primed DNA, and replication factor C dramatically increased this loading. Surprisingly, the family B DNA polymerase (Pol B) also increased PCNA loading, probably by stabilizing the clamp on primed DNA via an essential motif. In contrast, on an RNA-primed DNA template, the PCNA/Pol B complex was destabilized in the presence of dNTPs, allowing the family D DNA polymerase (Pol D) to perform RNA-primed DNA synthesis. Then, Pol D is displaced by Pol B to perform processive DNA synthesis, at least on the leading strand.
Collapse
Affiliation(s)
- Christophe Rouillon
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, BP 70, F-29280 Plouzané, France
| | | | | | | | | |
Collapse
|
37
|
Zhang JK, Zhao LF, Cheng J, Guo J, Wang DQ, Hong Y, Mao Y. Screening and cloning for proteins transactivated by the PS1TP5 protein of hepatitis B virus: A suppression subtractive hybridization study. World J Gastroenterol 2007; 13:1602-7. [PMID: 17461456 PMCID: PMC4146906 DOI: 10.3748/wjg.v13.i10.1602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone and identify human genes transactivated by PS1TP5 by constructing a cDNA subtractive library with suppression subtractive hybridization (SSH) technique.
METHODS: SSH and bioinformatics techniques were used for screening and cloning of the target genes transactivated by PS1TP5 protein. The mRNA was isolated from HepG2 cells transfected with pcDNA3.1(-)-myc-his(A)-PS1TP5 and pcDNA3.1(-)-myc-his(A) empty vector, respectively, and SSH technique was employed to analyze the differentially expressed DNA sequence between the two groups. After digestion with restriction enzyme RsaI, small size cDNAs were obtained. Then tester cDNA was divided into two groups and ligated to the specific adaptor 1 and adaptor 2, respectively. The tester cDNA was hybridized with driver cDNA twice and subjected to nested PCR for two times, and then subcloned into T/A plasmid vectors to set up the subtractive library. Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Vector NTI 9.1 and NCBI BLAST software after PCR amplification.
RESULTS: The subtractive library of genes transactivated by PS1TP5 was constructed successfully. The amplified library contained 90 positive clones. Colony PCR showed that 70 clones contained 200-1000-bp inserts. Sequence analysis was performed in 30 clones randomly, and the full-length sequences were obtained by bioinformatics technique. Altogether 24 coding sequences were obtained, which consisted of 23 known and 1 unknown. One novel gene with unknown functions was found and named as PS1TP5TP1 after being electronically spliced, and deposited in GenBank (accession number: DQ487761).
CONCLUSION: PS1TP5 is closely correlated with immunoregulation, carbohydrate metabolism, signal transduction, formation mechanism of hepatic fibrosis, and occurrence and development of tumor. Understanding PS1TP5 transactive proteins may help to bring some new clues for further studying the biological functions of pre-S1 protein.
Collapse
Affiliation(s)
- Jian-Kang Zhang
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Vijayakumar S, Chapados BR, Schmidt KH, Kolodner RD, Tainer JA, Tomkinson AE. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 2007; 35:1624-37. [PMID: 17308348 PMCID: PMC1865074 DOI: 10.1093/nar/gkm006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the β-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the co-ordinated, sequential action of these enzymes.
Collapse
Affiliation(s)
- Sangeetha Vijayakumar
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Brian R. Chapados
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Kristina H. Schmidt
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Richard D. Kolodner
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - John A. Tainer
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
- *To whom correspondence should be addressed. +1 858 784 8119+1 585 784 2289 Correspondence may also be addressed to Alan Tomkinson. +1 410 706 2365 +1 410 706 3000
| | - Alan E. Tomkinson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| |
Collapse
|
39
|
Johnson A, Yao NY, Bowman GD, Kuriyan J, O'Donnell M. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. J Biol Chem 2006; 281:35531-43. [PMID: 16980295 DOI: 10.1074/jbc.m606090200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C (RFC) is an AAA+ heteropentamer that couples the energy of ATP binding and hydrolysis to the loading of the DNA polymerase processivity clamp, proliferating cell nuclear antigen (PCNA), onto DNA. RFC consists of five subunits in a spiral arrangement (RFC-A, -B, -C, -D, and -E, corresponding to subunits RFC1, RFC4, RFC3, RFC2, and RFC5, respectively). The RFC subunits are AAA+ family proteins and the complex contains four ATP sites (sites A, B, C, and D) located at subunit interfaces. In each ATP site, an arginine residue from one subunit is located near the gamma-phosphate of ATP bound in the adjacent subunit. These arginines act as "arginine fingers" that can potentially perform two functions: sensing that ATP is bound and catalyzing ATP hydrolysis. In this study, the arginine fingers in RFC were mutated to examine the steps in the PCNA loading mechanism that occur after RFC binds ATP. This report finds that the ATP sites of RFC function in distinct steps during loading of PCNA onto DNA. ATP binding to RFC powers recruitment and opening of PCNA and activates a gamma-phosphate sensor in ATP site C that promotes DNA association. ATP hydrolysis in site D is uniquely stimulated by PCNA, and we propose that this event is coupled to PCNA closure around DNA, which starts an ordered hydrolysis around the ring. PCNA closure severs contact to RFC subunits D and E (RFC2 and RFC5), and the gamma-phosphate sensor of ATP site C is switched off, resulting in low affinity of RFC for DNA and ejection of RFC from the site of PCNA loading.
Collapse
Affiliation(s)
- Aaron Johnson
- Laboratory of DNA Replication, Howard Hughes Medical Institute and Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
40
|
Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 2006; 366:179-92. [PMID: 17157868 DOI: 10.1016/j.jmb.2006.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/04/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
TIP48 and TIP49 are two related and highly conserved eukaryotic AAA(+) proteins with an essential biological function and a critical role in major pathways that are closely linked to cancer. They are found together as components of several highly conserved chromatin-modifying complexes. Both proteins show sequence homology to bacterial RuvB but the nature and mechanism of their biochemical role remain unknown. Recombinant human TIP48 and TIP49 were assembled into a stable high molecular mass equimolar complex and tested for activity in vitro. TIP48/TIP49 complex formation resulted in synergistic increase in ATPase activity but ATP hydrolysis was not stimulated in the presence of single-stranded, double-stranded or four-way junction DNA and no DNA helicase or branch migration activity could be detected. Complexes with catalytic defects in either TIP48 or TIP49 had no ATPase activity showing that both proteins within the TIP48/TIP49 complex are required for ATP hydrolysis. The structure of the TIP48/TIP49 complex was examined by negative stain electron microscopy. Three-dimensional reconstruction at 20 A resolution revealed that the TIP48/TIP49 complex consisted of two stacked hexameric rings with C6 symmetry. The top and bottom rings showed substantial structural differences. Interestingly, TIP48 formed oligomers in the presence of adenine nucleotides, whilst TIP49 did not. The results point to biochemical differences between TIP48 and TIP49, which may explain the structural differences between the two hexameric rings and could be significant for specialised functions that the proteins perform individually.
Collapse
Affiliation(s)
- Teena Puri
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
41
|
Yao NY, Johnson A, Bowman GD, Kuriyan J, O'Donnell M. Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 2006; 281:17528-17539. [PMID: 16608854 DOI: 10.1074/jbc.m601273200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic replication factor C (RFC) clamp loader is an AAA+ spiral-shaped heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp processivity factor on DNA. In this study, we examined the roles of individual RFC subunits in opening the PCNA clamp. Interestingly, Rfc1, which occupies the position analogous to the delta clamp-opening subunit in the Escherichia coli clamp loader, is not required to open PCNA. The Rfc5 subunit is required to open PCNA. Consistent with this result, Rfc2.3.4.5 and Rfc2.5 subassemblies are capable of opening and unloading PCNA from circular DNA. Rfc5 is positioned opposite the PCNA interface from Rfc1, and therefore, its action with Rfc2 in opening PCNA indicates that PCNA is opened from the opposite side of the interface that the E. coli delta wrench acts upon. This marks a significant departure in the mechanism of eukaryotic and prokaryotic clamp loaders. Interestingly, the Rad.RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA. We propose that Rad.RFC may clear PCNA from DNA to facilitate shutdown of replication in the face of DNA damage.
Collapse
Affiliation(s)
- Nina Y Yao
- Rockefeller University, New York, New York 10021
| | | | - Greg D Bowman
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - John Kuriyan
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Howard Hughes Medical Institute, New York, New York 10021; Departments of Molecular and Cell Biology and Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Mike O'Donnell
- Rockefeller University, New York, New York 10021; Howard Hughes Medical Institute, New York, New York 10021.
| |
Collapse
|
42
|
Haracska L, Unk I, Prakash L, Prakash S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 2006; 103:6477-82. [PMID: 16611731 PMCID: PMC1458909 DOI: 10.1073/pnas.0510924103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Rad6-Rad18 ubiquitin-conjugating enzyme complex promotes replication through DNA lesions by means of at least three different pathways: the DNA polymerase (Pol) eta- and zeta-dependent translesion DNA synthesis (TLS) and a Rad5-Mms2-Ubc13-dependent pathway. In DNA-damaged yeast cells proliferating cell nuclear antigen (PCNA) becomes monoubiquitylated at the K164 residue, and genetic studies in yeast have indicated a requirement for this modification in TLS mediated by Poleta and Polzeta. To be able to decipher the role of PCNA monoubiquitylation in the TLS process, we have reconstituted this PCNA modification in vitro from purified yeast proteins. We show that, in addition to the requirement for Rad6-Rad18, the reaction depends on the loading of the PCNA homotrimeric ring onto the DNA by replication factor C and that all three PCNA monomers become efficiently ubiquitylated. The availability of PCNA monoubiquitylated on all of its three monomers has enabled us to examine the effects of this PCNA modification on DNA synthesis by Pols delta, eta, zeta, and Rev1. Contrary to the prevailing ideas that presume a role for PCNA ubiquitylation in the disruption of Poldelta's binding to PCNA or in the enhancement of the binding affinity of the TLS Pols for PCNA, we find that PCNA ubiquitylation does not affect any of these processes. These observations lead us to suggest a role for PCNA monoubiquitylation in disrupting the PCNA binding of a protein(s) that otherwise is inhibitory to the binding of PCNA by TLS Pols.
Collapse
Affiliation(s)
- Lajos Haracska
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary; and
| | - Ildiko Unk
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary; and
| | - Louise Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
44
|
Das BB, Sen N, Dasgupta SB, Ganguly A, Majumder HK. N-terminal region of the large subunit of Leishmania donovani bisubunit topoisomerase I is involved in DNA relaxation and interaction with the smaller subunit. J Biol Chem 2005; 280:16335-44. [PMID: 15711017 DOI: 10.1074/jbc.m412417200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania donovani topoisomerase I is an unusual bisubunit enzyme. We have demonstrated earlier that the large and small subunit could be reconstituted in vitro to show topoisomerase I activity. We extend our biochemical study to evaluate the role of the large subunit in topoisomerase activity. The large subunit (LdTOP1L) shows a substantial degree of homology with the core DNA binding domain of the topoisomerase IB family. Two N-terminal truncation constructs, LdTOP1Delta39L (lacking amino acids 1-39) and LdTOP1Delta99L (lacking amino acids 1-99) of the large subunit were generated and mixed with intact small subunit (LdTOP1S). Our observations reveal that residues within amino acids 1-39 of the large subunit have significant roles in modulating topoisomerase I activity (i.e. in vitro DNA relaxation, camptothecin sensitivity, cleavage activity, and DNA binding affinity). Interestingly, the mutant LdTOP1Delta99LS was unable to show topoisomerase I activity. Investigation of the loss of activity indicates that LdTOP1Delta99L was unable to pull down glutathione S-transferase-LdTOP1S in an Ni(2+)-nitrilotriacetic acid co-immobilization experiment. For further analysis, we co-expressed LdTOP1L and LdTOP1S in Escherichia coli BL21(DE3)pLysS cells. The lysate shows topoisomerase I activity. Immunoprecipitation revealed that LdTOP1L could interact with LdTOP1S, indicating the subunit interaction in bacterial cells, whereas immunoprecipitation of bacterial lysate co-expressing LdTOP1Delta99L and LdTOP1S reveals that LdTOP1Delta99L was significantly deficient at interacting with LdTOP1S to reconstitute topoisomerase I activity. This study demonstrates that heterodimerization between the large and small subunits of the bisubunit enzyme appears to be an absolute requirement for topoisomerase activity. The residue within amino acids 1-39 from the N-terminal end of the large subunit regulates DNA topology during relaxation by controlling noncovalent DNA binding or by coordinating DNA contacts by other parts of the enzyme.
Collapse
Affiliation(s)
- Benu Brata Das
- Department of Molecular Parasitology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
45
|
Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. J Mol Biol 2005; 346:1259-74. [PMID: 15713479 DOI: 10.1016/j.jmb.2005.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/29/2004] [Accepted: 01/05/2005] [Indexed: 01/26/2023]
Abstract
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.
Collapse
Affiliation(s)
- Liqun Xia
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Su'etsugu M, Shimuta TR, Ishida T, Kawakami H, Katayama T. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J Biol Chem 2004; 280:6528-36. [PMID: 15611053 DOI: 10.1074/jbc.m412060200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
47
|
Coman MM, Jin M, Ceapa R, Finkelstein J, O'Donnell M, Chait BT, Hingorani MM. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit. J Mol Biol 2004; 342:1457-69. [PMID: 15364574 PMCID: PMC2849281 DOI: 10.1016/j.jmb.2004.07.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E.coli gamma complex clamp loader and DNA using UV-induced protein-DNA cross-linking and mass spectrometry. The results show that the delta subunit in the gamma complex makes close contact with the primer-template junction. Tryptophan 279 in the delta C-terminal domain lies near the 3'-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that delta also binds and opens the beta clamp (hydrophobic residues in the N-terminal domain of delta contact beta. The clamp-binding and DNA-binding sites on delta appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S.cerevisiae RFC complex suggests that the dual functionality observed for delta in the gamma complex may be true also for clamp loaders from other organisms.
Collapse
Affiliation(s)
- Maria Magdalena Coman
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Mi Jin
- Rockefeller University, New York, NY 10021, USA
| | - Razvan Ceapa
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Jeff Finkelstein
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | - Michael O'Donnell
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | | | - Manju M. Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- Corresponding author:
| |
Collapse
|
48
|
Takahashi Y, Edamatsu M, Toyoshima YY. Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein. Proc Natl Acad Sci U S A 2004; 101:12865-9. [PMID: 15326307 PMCID: PMC516486 DOI: 10.1073/pnas.0403429101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule motor involved in numerous essential processes within eukaryotic cells, such as nuclear segregation and trafficking of intracellular particles. The motor domain of the dynein heavy chain comprises six tandemly linked AAA (ATPase associated with diverse cellular activities) modules (AAA1-AAA6). The first four modules include nucleotide-binding sites (Walker A or P-loop motifs), and each of the four sites appears to bind ATP. However, the role and the function of each binding site are unknown. Especially, the question of which P-loops are ATP-hydrolyzing sites has not been answered, because it is difficult to measure the ATPase activity of each P-loop. Here, we purified several truncated Saccharomyces cerevisiae cytoplasmic dynein fragments and their mutants expressed in Escherichia coli and then measured their ATPase activities. Our results suggest that there are multiple ATP-binding sites that have abilities to hydrolyze ATP in cytoplasmic dynein. Furthermore, a single AAA module is insufficient for ATP hydrolysis, and the adjacent module facing the ATP-binding site is necessary for ATP-hydrolyzing activity.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | |
Collapse
|