1
|
Fragão-Marques M, Francisca-Marques M, Rocha Neves J, Ozben T. Association of inflammatory biomarkers with morbidity and mortality risk in patients with peripheral artery disease: a systematic review and -meta-analysis. Crit Rev Clin Lab Sci 2025:1-20. [PMID: 40515582 DOI: 10.1080/10408363.2025.2512472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025]
Abstract
Peripheral arterial disease (PAD) is a manifestation of systemic atherosclerosis, which might progress due to inflammation. This systematic review assessed the association of specific inflammatory biomarkers with morbidity and mortality in PAD patients. MEDLINE and EMBASE databases were systematically searched for studies assessing evidence between inflammatory biomarkers and morbidity and mortality risks in PAD patients. Results were reported as Hazard Ratios (HR), Odds Ratios (OR), or mean and standard deviation. Effect estimates for high-sensitivity C-reactive protein (hs-CRP) were pooled using a random-effects model and respectively displayed in forest plots. The study reviewed a total of 7024 records, out of which 26 studies were included for qualitative synthesis and nine for quantitative synthesis. A total of 4673 patients were analyzed in the meta-analysis. Elevated baseline IL-6 levels were consistently linked to poor outcomes, including loss of patency and composite endpoints, such as major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Tumor necrosis factor-α (TNF-α) and related biomarkers were associated with adverse outcomes like mortality and patency loss. Elevated IL-1 levels predicted worse cardiovascular outcomes and IL-1 receptor antagonist levels indicated recurrence or new lesions post-surgery. Hs-CRP was statistically significantly associated with all-cause mortality and MALE in the pooled analysis. The study highlights the ability of inflammatory biomarkers to predict clinical outcomes in PAD patients. The strength of these associations varies based on the specific biomarker and clinical context.
Collapse
Affiliation(s)
- Mariana Fragão-Marques
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Rise-Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - João Rocha Neves
- Rise-Health, Faculty of Medicine, University of Porto, Porto, Portugal
- Unity of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Tomris Ozben
- Department of Clinical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
- Medical Faculty, Clinical and Experimental Medicine, Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Taboada-Alquerque M, Olivero-Verbel J. Network Toxicology Analysis Reveals Molecular Mechanisms Associated with Noise Exposure to Multiple Diseases. Toxicol Mech Methods 2025:1-25. [PMID: 39898607 DOI: 10.1080/15376516.2025.2460591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Noise pollution is recognized as an environmental stressor that affects various biological processes beyond auditory functions, mainly through stress hormones release. This work explored the biological processes, diseases attributable to noise-regulated targets, and the main targets involved in each disease, employing a network toxicology approach. Through various databases and bioinformatics analysis, a total of 577 targets were identified as potential candidates implicated in diseases related to noise exposure, 10 from the GEO database and the rest from other databases. Noise pollution was found to regulate processes such as hormone response, cellular response to cytokines, and circulatory system functions, contributing to the development of the pathological manifestations related to the diseases like hypertension, ischemia, atherosclerosis, and cirrhosis. Hub targets for ischemia included IL-6, CASP3, AKT1, and TNF-α, while NOS3 was related to hypertension, and NOS3, TNF-α, AGT, and IL-1B to atherosclerosis. The targets were found to be linked to vascular regulation and inflammation in cardio- and cerebrovascular diseases. Molecular docking studies indicated stress hormones released by noise exposure regulates these diseases through signaling pathways, without implicating its direct binding to hub targets. The results indicate that individuals with vascular diseases are more vulnerable to the effects of prolonged noise exposure.
Collapse
Affiliation(s)
- Maria Taboada-Alquerque
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
3
|
Asgari A, Franczak A, Herchen A, Jickling GC, Jurasz P. Elevated levels of pro-thrombotic eNOS-negative platelets in COVID-19 patients. Thromb Res 2024; 244:109178. [PMID: 39369655 DOI: 10.1016/j.thromres.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Platelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny. OBJECTIVES We investigated whether the percentage of eNOS-negative to eNOS-positive platelets increases in COVID-19 patients and whether this change may be due to the actions of pro-inflammatory cytokines on megakaryocytes. METHODS Platelets were isolated from hospitalized COVID-19 patients and COVID-19-negative controls. Platelet eNOS was measured by flow cytometry and plasma inflammatory cytokines by ELISA. Megakaryocytes from eNOS-GFP transgenic mice and the Meg-01 cell line were characterized to identify an appropriate model to study eNOS-based platelet subpopulation formation in response to inflammatory cytokines. RESULTS COVID-19 patients demonstrated a significant increase in eNOS-negative and a concomitant decrease in eNOS-positive platelets compared to controls, and this change was associated with disease severity as assessed by ICU admission. A higher eNOS-negative to -positive platelet percentage was associated with enhanced platelet activation as measured by surface CD62P. Accordingly, COVID-19 patients demonstrated higher TNF-α, IL-6, and IL-1β plasma concentrations than controls. Inflammatory cytokines associated with COVID-19 promoted eNOS-negative Meg-01 formation and enhanced subsequent eNOS-negative platelet-like particle formation. CONCLUSIONS COVID-19 patients have a higher percentage of eNOS-negative to -positive platelets, likely as a result of inflammatory response reducing megakaryocyte eNOS expression, which predisposes to thrombosis.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Aleksandra Franczak
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Alex Herchen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Glen C Jickling
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Raj P, Bouchard J, Martineau-Côté D, Malunga L, L’Hocine L, Yu L, Sobhi B, Achouri A, Pitre M, Thandapilly SJ, Netticadan T. Oat-Protein-Based Diet Lowers Blood Pressure and Prevents Cardiac Remodeling and Dysfunction in Spontaneously Hypertensive Rats. Nutrients 2024; 16:3870. [PMID: 39599656 PMCID: PMC11597841 DOI: 10.3390/nu16223870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Hypertension and its associated complications, such as cardiac remodeling and dysfunction, continue to impose a significant burden on global healthcare. Nutritional interventions have been recognized as playing a crucial role in addressing this devastating condition termed a 'silent killer'. Plant-based proteins could potentially be utilized as a non-pharmacological strategy to combat hypertension and its related risk factors. In this study, we investigated the efficacy of an oat protein diet in managing hypertension and cardiac abnormalities. Methods: Four-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats were fed a regular diet with casein as a protein source or an oat-protein-based diet for 16 weeks. Twenty-week-old male SHRs showed high blood pressure (BP), cardiac remodeling, cardiac dysfunction, higher levels of markers of oxidative stress [malondialdehyde (MDA)] and inflammation [tumor necrosis factor-α (TNF-α)], as well as lower levels of a marker of vascular function (nitric oxide). Results: The oat protein diet was able to significantly lower high BP, prevent cardiac remodeling and dysfunction, improve the levels of nitric oxide, and reduce the levels of TNF-α. Oat protein, after in vitro gastrointestinal digestion, also exhibited angiotensin-converting enzyme inhibition and significantly higher antioxidant activity than casein when assessed with the 2,2-diphenyl-1-picrylhydrazyl and the iron-chelating assays in vitro.Conclusions: oat protein lowers BP and prevents cardiac remodeling and dysfunction partly via improving the levels of nitric oxide and TNF-αin SHRs. Its high antioxidant potential could contribute to the observed cardiovascular effects.
Collapse
Affiliation(s)
- Pema Raj
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Jenny Bouchard
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Human Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Delphine Martineau-Côté
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Lovemore Malunga
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Human Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Agriculture and Agri-Food Canada, Winnipeg, ON K1A 0C5, Canada
| | - Lamia L’Hocine
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Liping Yu
- Agriculture and Agri-Food Canada, Winnipeg, ON K1A 0C5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Babak Sobhi
- Agriculture and Agri-Food Canada, Winnipeg, ON K1A 0C5, Canada
| | - Allaoua Achouri
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Mélanie Pitre
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Agriculture and Agri-Food Canada, Winnipeg, ON K1A 0C5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Thomas Netticadan
- Agriculture and Agri-Food Canada, Winnipeg, ON K1A 0C5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Festa J, Hussain A, Al-Hareth Z, Bailey SJ, Singh H, Da Boit M. Phenolic Metabolites Protocatechuic Acid and Vanillic Acid Improve Nitric Oxide Bioavailability via the Akt-eNOS Pathway in Response to TNF-α Induced Oxidative Stress and Inflammation in Endothelial Cells. Metabolites 2024; 14:613. [PMID: 39590849 PMCID: PMC11596796 DOI: 10.3390/metabo14110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Reduced nitric oxide (NO) bioavailability secondary to excess-superoxide-driven oxidative stress is central to endothelial dysfunction. Previous studies suggest that phenolic metabolites may improve NO bioavailability, yet limited research is available in response to an inflammatory mediator. Therefore, we assessed the effects of cyanidin-3-glucoside (C3G) and its phenolic metabolites protocatechuic acid (PCA) and vanillic acid (VA) on NO bioavailability in a TNF-α induced inflammatory environment. Methods: Primary human umbilical vein endothelial cells (HUVECs) were supplemented with either C3G, PCA, or VA at 1 μM for 24 h before being stimulated with TNF-α 20 ng/mL for an additional 24 h. Measurements included cell viability, apoptosis, reactive oxygen species (ROS), nitrite concentrations, and endothelial nitric oxide synthase (eNOS) and Akt at the mRNA and protein level. Results: Phenolic metabolites did not increase the eNOS expression or nitrite levels in the unstimulated environment; rather, the metabolites mediated NO bioavailability in response to TNF-α induced oxidative stress, with increased viability, eNOS mRNA, phosphorylation, and nitrite levels. Conclusions: Phenolic metabolites, in the presence of TNF-α, can improve NO bioavailability at physiologically relevant concentrations via the Akt-eNOS pathway. This demonstrates that the induction of inflammation is a prerequisite for phenolic metabolites to promote protective properties in endothelial cells by activating the Akt-eNOS pathway.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (J.F.); (A.H.); (H.S.)
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (J.F.); (A.H.); (H.S.)
| | - Zakia Al-Hareth
- The Jenner Institute, University of Oxford, ORCRB, Headington, Oxford OX3 7DQ, UK;
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (J.F.); (A.H.); (H.S.)
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (J.F.); (A.H.); (H.S.)
| |
Collapse
|
6
|
Liu J, Pan R. Multi-omics association study integrating GWAS and pQTL data revealed MIP-1α as a potential drug target for erectile dysfunction. Front Pharmacol 2024; 15:1495970. [PMID: 39555095 PMCID: PMC11565697 DOI: 10.3389/fphar.2024.1495970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Erectile dysfunction (ED) brings heavy burden to patients and society. Despite the availability of established therapies, existing medications have restricted efficacy. Therefore, we utilized a two-sample Mendelian randomization (MR) approach to find the drug targets that might enhance the clinical outcome of ED. Methods Genetic instruments associated with circulating inflammatory proteins were obtained from a genome-wide association study (GWAS) involving 8,293 European participants. Summary statistics for ED were extracted from a meta-analysis of the United Kingdom Biobank cohort compromised of 6,175 cases and 217,630 controls with European descent. We utilized multi-omics method and MR study to explore potential drug targets by integrating GWAS and protein quantity trait loci (pQTL) data. Inverse-variance weighted (IVW) method was applied as the primary approach. Cochran's Q statistics was employed to investigate the presence of heterogeneity. Furthermore, we identify the potential therapeutic drug targets for the treatment of ED utilizing molecular docking technology. Results This MR analysis of integrating GWAS and pQTL data showed that macrophage inflammatory protein-1 alpha (MIP-1α) was causally associated with the risk of ED (OR:1.19, 95%CI:1.02-1.39, p = 0.023). Meanwhile, the results of the weighted median model were consistent with the IVW estimates (OR:1.26, 95%CI:1.04-1.52, p = 0.018). Sensitivity analysis revealed no horizontal pleiotropy and heterogeneity. Furthermore, four anti-inflammatory or tonifying small molecular compounds, encompassing echinacea, pinoresinol diglucoside, hypericin, and icariin were identified through molecular docking technology. Conclusion This study identified MIP-1α as an underlying druggable gene and promising novel therapeutic target for ED, necessitating further investigation to detect the potential mechanisms by which MIP-1α might impact the development of ED.
Collapse
Affiliation(s)
- Jingwen Liu
- Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou, Zhejiang, China
| | - Renbing Pan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
7
|
Chen M, Zhang Z, Zhou R, Li B, Jiang J, Shi B. The relationship between oxidative balance score and erectile dysfunction in the U.S. male adult population. Sci Rep 2024; 14:10746. [PMID: 38730004 PMCID: PMC11087471 DOI: 10.1038/s41598-024-61287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidative stress strongly influences the pathophysiology of erectile dysfunction (ED). In this study, we used the oxidative balance score (OBS), a composite index, to measure the effects of oxidative stress triggered by diet and lifestyle factors. Here, we conducted a cross-sectional study to determine the statistical relationship between OBS and ED among adult males in the U.S. The data from 3318 participants in the National Health and Nutrition Examination Survey (NHANES) 2001-2004 were analyzed. Weighted logistic regression was used to correct for confounding factors and acquire nationwide representative estimates. Generalized additive modeling was used to explore the nonlinear relationship. We also supplemented subgroup and sensitivity analysis to examine the robustness of the main results. Multivariate logistic regression indicated a consistent negative linear association between OBS and ED across all participants [OR (95% CI) = 0.96 (0.94, 0.98)]. After categorizing OBS into tertiles, participants in the highest tertile had 43% lower odds of having ED than those in the lowest tertile [OR (95% CI) = 0.57 (0.37, 0.87)]. The generalized additive model also visualized the linear trend of this association. Furthermore, this linear relationship remained relatively consistent, regardless of whether subgroup or sensitivity analyses were performed. Our findings suggest that adopting a lifestyle and diet pattern that promotes favorable OBS may effectively protect against the development of ED, regardless of the underlying causes.
Collapse
Affiliation(s)
- Mutong Chen
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
- Shantou University Medical College, Shantou, China.
| | - Zhongfu Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Rui Zhou
- Clinical Psychology/Psychosomatic Medicine Department, Shenzhen People's Hospital, Shenzhen, China
| | - Baizhi Li
- Shantou University Medical College, Shantou, China
| | - Jiahao Jiang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bentao Shi
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
8
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Lin W, Wang H, Lin ME. Relationship Between Systemic Inflammatory Response Index and Erectile Dysfunction: A Cross-sectional Study. Urology 2023; 181:69-75. [PMID: 37673404 DOI: 10.1016/j.urology.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE To explore the association between systemic inflammation response index (SIRI) and erectile dysfunction (ED) in American men. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2004 were used. Multivariate logistic regression and restricted cubic spline were used to evaluate the relationship between SIRI and ED. Interaction analysis was performed for subgroups to verify the results. Meanwhile, 1:1 propensity score matching was performed to adjust for potential confounding factors for data reanalysis to confirm the reliability of the results. RESULTS A total of 3543 US adults aged 20years or older were included in the study, of whom 955 participants were considered to have ED. After adjusting for potential confounding factors, we found that compared with the lowest tertiles, the highest tertiles of SIRI showed a positive association with ED, which odd ratio was 1.70 (95%CI: 1.16-2.50). Dose-response curve analysis showed a positive linear correlation between SIRI and ED prevalence. And in the subgroup analysis, the interaction analysis showed that the results were consistent. Meanwhile, the matching of propensity scores further confirmed the validity of the results. CONCLUSION In conclusion, in this cross-sectional study, we found a positive relationship between SIRI and the prevalence of ED. Further experimental studies are needed to explore the underlying mechanism in the future.
Collapse
Affiliation(s)
- Weilong Lin
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, China
| | - Haoxu Wang
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, China
| | - Ming-En Lin
- The First Affiliated Hospital of Shantou University Medical College, Medical College of Shantou University, Shantou, China.
| |
Collapse
|
10
|
Gong H, Zhong H, Xu HM, Liu XC, Li LP, Zhang DK. Insight into increased risk of portal vein thrombosis in nonalcoholic fatty liver disease. Eur J Intern Med 2023; 114:23-34. [PMID: 37330315 DOI: 10.1016/j.ejim.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading chronic liver diseases with increased morbidity and mortality rates for extrahepatic diseases (including cardiovascular disease, portal vein thrombosis, etc.). There is an increased risk of thrombosis in both the portal and systemic circulation in patients with NAFLD, independent of traditional liver cirrhosis. However, increased portal pressure, the most critical factor, is frequently observed in NAFLD patients, predisposing them to portal vein thrombosis (PVT). It has been reported that there is an 8.5% incidence of PVT among patients with non-cirrhotic NAFLD in a prospective cohort study. Based on the prothrombotic status of NAFLD itself, patients combined with cirrhosis may accelerate the development of PVT and lead to a poor prognosis. Moreover, PVT has been shown to complicate the procedure and adversely affect the outcome during liver transplantation surgery. NAFLD is in a prothrombotic state, and its underlying mechanisms have not been fully understood so far. Particularly noteworthy is that gastroenterologists currently overlook the higher risk of PVT in NAFLD. We investigate the pathogenesis of NAFLD complicated with PVT from the perspective of primary, secondary, and tertiary hemostasis, and also summarize relevant studies in humans. Some treatment options that may affect NAFLD and its PVT are also explored to improve patient-oriented outcomes.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Hui-Mei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiong-Chang Liu
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, Gansu Province, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan Province, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
11
|
Kaluba L, Chikopela T, Goma F, Malambo M, Mutale W, Heimburger DC, Koethe JR. Vascular dysfunction and body mass index in African adults with HIV. BMC Cardiovasc Disord 2023; 23:64. [PMID: 36737679 PMCID: PMC9896806 DOI: 10.1186/s12872-023-03093-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Impaired vascular compliance is common among persons with HIV (PWH) and a risk factor for cardiovascular disease (CVD), though many studies documenting this are from regions with a high prevalence of overweight and obesity. The prevalence and characteristics of impaired vascular compliance among PWH with low body mass index (BMI) is not well described, particularly in sub-Saharan Africa (SSA) where the majority of PWH live, a low BMI is more common, and the burden of CVD is rising. AIM To assess non-invasive vascular compliance measurements, including augmentation index (AIX), pulse wave velocity (PWV) and pulse waveforms, in underweight, normal weight, and overweight PWH on long-term antiretroviral therapy (ART) in SSA. METHODS A cross-sectional study among PWH on ART at the University Teaching Hospital in Lusaka, Zambia. All participants had been on a regimen of efavirenz, emtricitabine, and tenofovir disoproxil fumarate for five or more years. Carotid-femoral PWV (cfPWV), carotid-radial PWV (crPWV), and the corresponding augmentation indexes (cfAIX and crAIX), were measured in all participants, in addition to aortic pressure waveforms, classified as type A, B, C and D according to reflected wave timings and amplitude. Multiple linear regression assessed relationships between demographic and clinical factors with vascular measurement endpoints. RESULTS Ninety one PWH on long-term ART were enrolled; 38 (42%) were underweight (BMI < 18.5 kg/m2), 43 (47%) were normal weight (18.5-24.9 kg/m2) and 10 (11%) were overweight (> 25 kg/m2). Median age was 41, 40 and 40 years, among the three groups, respectively, and the proportion of women increased with BMI level. Overweight participants had a 39% higher cfAIX compared to normal-weight participants, while being underweight was associated with 27% lower cfAIX, after adjusting for age, sex and blood pressure (P = 0.02 and P = 0.01, respectively), but measurements of cfPWV, crPWV and crAIX did not differ. CONCLUSION Underweight PWH in SSA had lower cfAIX measurements compared to normal weight individuals, indicating less arterial stiffness. However, similar cfPWV, crPWV and crAIX values among the underweight and overweight PWH suggest a low BMI may not confer substantial protection against impaired vascular compliance as a contributor to CVD risk among individuals on ART.
Collapse
Affiliation(s)
- Longa Kaluba
- School of Medicine, Cavendish University Zambia, Lusaka, Zambia.
| | - Theresa Chikopela
- Department of Human Physiology, Faculty of Medicine, Lusaka Apex University, Lusaka, Zambia
| | - Fastone Goma
- grid.12984.360000 0000 8914 5257Department of Physiological Sciences, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Mordecai Malambo
- grid.468776.c0000 0004 5346 0270School of Medicine, Cavendish University Zambia, Lusaka, Zambia
| | - Wilbroad Mutale
- grid.12984.360000 0000 8914 5257Department of Health Policy and Management, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Douglas C. Heimburger
- grid.412807.80000 0004 1936 9916Vanderbilt Institute for Global Health and Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN USA ,grid.12984.360000 0000 8914 5257Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - John R. Koethe
- grid.412807.80000 0004 1936 9916Vanderbilt Institute for Global Health and Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN USA
| |
Collapse
|
12
|
Ruan Z, Xie X, Yu H, Liu R, Jing W, Lu T. Association between dietary inflammation and erectile dysfunction among US adults: A cross-sectional analysis of the National Health and Nutrition Examination Survey 2001-2004. Front Nutr 2022; 9:930272. [PMID: 36438746 PMCID: PMC9691656 DOI: 10.3389/fnut.2022.930272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although chronic low-grade inflammation has been linked to the development of erectile dysfunction (ED), the association between pro-inflammatory diets and ED is unclear. The dietary inflammation index (DII) is a novel method to quantify the inflammatory potential of a diet. OBJECTIVE Our objective was to investigate the association between the DII and ED among US males. DESIGN This cross-sectional study included 3,693 males 20-85 year of age from the National Health and Nutrition Examination Survey (NHANES) 2001-2004. Multivariable-adjusted logistic regression models were used to assess the association between the DII and ED. All analyses accounted for the complex sampling design. RESULTS The mean ± SE of the DII was 0.8 ± 0.1 and 0.4 ± 0.1 among participants with and without ED, respectively. After adjusting for age, race/ethnicity, education, smoking status, physical activity, drinking status, hypertension, diabetes, cardiovascular disease, hypercholesterolemia, BMI, and eGFR, the DII score was associated with ED (odds ratio 1.12; 95% CI: 1.04-1.19). Moreover, this association was also stable in our subgroup analysis or sensitivity analyses. CONCLUSION Dietary inflammatory potential, as estimated by the DII score, is positively associated with ED among US males.
Collapse
Affiliation(s)
- Zhijie Ruan
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoping Xie
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haoyang Yu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ruimin Liu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenjuan Jing
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tao Lu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
13
|
Takami Y, Wang C, Nakagami H, Yamamoto K, Nozato Y, Imaizumi Y, Nagasawa M, Takeshita H, Nakajima T, Takeda S, Takeya Y, Kaneda Y, Rakugi H. Novel pathophysiological roles of α-synuclein in age-related vascular endothelial dysfunction. FASEB J 2022; 36:e22555. [PMID: 36125010 DOI: 10.1096/fj.202101621r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Although α-synuclein (SNCA) is a well-known pathological molecule involved in synucleinopathy in neurons, its physiological roles remain largely unknown. We reported that serum SNCA levels have a close inverse correlation with blood pressure and age, which indicates the involvement of SNCA in age-related endothelial dysfunction. Therefore, this study aimed to elucidate the molecular functions of SNCA in the endothelium. We confirmed that SNCA was expressed in and secreted from endothelial cells (ECs). Exogenous treatment with recombinant SNCA (rSNCA) activated the Akt-eNOS axis and increased nitric oxide production in ECs. Treatment with rSNCA also suppressed TNF-α- and palmitic acid-induced NF-κB activation, leading to the suppression of VCAM-1 upregulation and restoration of eNOS downregulation in ECs. As for endogenous SNCA expression, replicative senescence resulted in the attenuation of SNCA expression in cultured ECs, similar to the effects of physiological aging on mice aortas. The siRNA-mediated silencing of SNCA consistently resulted in senescent phenotypes, such as eNOS downregulation, increased β-gal activity, decreased Sirt1 expression, and increased p53 expression, in ECs. Ex vivo assessment of endothelial functions using aortic rings revealed impaired endothelium-dependent acetylcholine-induced relaxation in SNCA knockout (KO) mice. Furthermore, SNCA KO mice, especially those on a high-fat diet, displayed elevated blood pressure compared with wild-type mice; this could be eNOS dysfunction-dependent because of the lower difference caused by L-NAME administration. These results indicate that exogenous and endogenous SNCA in ECs might physiologically maintain vascular integrity, and age-related endothelial dysfunction might be partially ascribed to loss-of-function of SNCA in ECs.
Collapse
Affiliation(s)
- Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Cheng Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Imaizumi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motonori Nagasawa
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan.,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Boamah GA, Huang Z, Shen Y, Lu Y, Wang Z, Su Y, Xu C, Luo X, Ke C, You W. Transcriptome analysis reveals fluid shear stress (FSS) and atherosclerosis pathway as a candidate molecular mechanism of short-term low salinity stress tolerance in abalone. BMC Genomics 2022; 23:392. [PMID: 35606721 PMCID: PMC9128277 DOI: 10.1186/s12864-022-08611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transcriptome sequencing is an effective tool to reveal the essential genes and pathways underlying countless biotic and abiotic stress adaptation mechanisms. Although severely challenged by diverse environmental conditions, the Pacific abalone Haliotis discus hannai remains a high-value aquaculture mollusk and a Chinese predominantly cultured abalone species. Salinity is one of such environmental factors whose fluctuation could significantly affect the abalone's cellular and molecular immune responses and result in high mortality and reduced growth rate during prolonged exposure. Meanwhile, hybrids have shown superiority in tolerating diverse environmental stresses over their purebred counterparts and have gained admiration in the Chinese abalone aquaculture industry. The objective of this study was to investigate the molecular and cellular mechanisms of low salinity adaptation in abalone. Therefore, this study used transcriptome analysis of the gill tissues and flow cytometric analysis of hemolymph of H. discus hannai (DD) and interspecific hybrid H. discus hannai ♀ x H. fulgens ♂ (DF) during low salinity exposure. Also, the survival and growth rate of the species under various salinities were assessed. RESULTS The transcriptome data revealed that the differentially expressed genes (DEGs) were significantly enriched on the fluid shear stress and atherosclerosis (FSS) pathway. Meanwhile, the expression profiles of some essential genes involved in this pathway suggest that abalone significantly up-regulated calmodulin-4 (CaM-4) and heat-shock protein90 (HSP90), and significantly down-regulated tumor necrosis factor (TNF), bone morphogenetic protein-4 (BMP-4), and nuclear factor kappa B (NF-kB). Also, the hybrid DF showed significantly higher and sustained expression of CaM and HSP90, significantly higher phagocytosis, significantly lower hemocyte mortality, and significantly higher survival at low salinity, suggesting a more active molecular and hemocyte-mediated immune response and a more efficient capacity to tolerate low salinity than DD. CONCLUSIONS Our study argues that the abalone CaM gene might be necessary to maintain ion equilibrium while HSP90 can offset the adverse changes caused by low salinity, thereby preventing damage to gill epithelial cells (ECs). The data reveal a potential molecular mechanism by which abalone responds to low salinity and confirms that hybridization could be a method for breeding more stress-resilient aquatic species.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of the Environment and Ecology, Xiamen University, 361102 Xiamen, PR China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Yisha Lu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Ying Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Changan Xu
- Third Institute of Oceanography, MNR, Xiamen, 361005 China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 People’s Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102 People’s Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| |
Collapse
|
15
|
Gunter S, Michel FS, Fourie SS, Singh M, le Roux R, Manilall A, Mokotedi LP, Millen AME. The effect of TNF-α inhibitor treatment on microRNAs and endothelial function in collagen induced arthritis. PLoS One 2022; 17:e0264558. [PMID: 35213638 PMCID: PMC8880872 DOI: 10.1371/journal.pone.0264558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic inflammation causes dysregulated expression of microRNAs. Aberrant microRNA expression is associated with endothelial dysfunction. In this study we determined whether TNF-α inhibition impacted the expression of miRNA-146a-5p and miRNA-155-5p, and whether changes in the expression of these miRNAs were related to inflammation-induced changes in endothelial function in collagen-induced arthritis (CIA). Sixty-four Sprague-Dawley rats were divided into control (n = 24), CIA (n = 24) and CIA+etanercept (n = 16) groups. CIA and CIA+etanercept groups were immunized with bovine type-II collagen, emulsified in incomplete Freund’s adjuvant. Upon signs of arthritis, the CIA+etanercept group received 10mg/kg of etanercept intraperitoneally, every three days. After six weeks of treatment, mesenteric artery vascular reactivity was assessed using wire-myography. Serum concentrations of TNF-α, C-reactive protein, interleukin-6, vascular adhesion molecule-1 (VCAM-1) and pentraxin-3 (PTX-3) were measured by ELISA. Relative expression of circulating miRNA-146a-5p and miRNA-155-5p were determined using RT-qPCR. Compared to controls, circulating miRNA-155-5p, VCAM-1 and PTX-3 concentrations were increased, and vessel relaxation was impaired in the CIA (all p<0.05), but not in the CIA+etanercept (all p<0.05) groups. The CIA group had greater miRNA-146a-5p expression compared to the CIA+etanercept group (p = 0.005). Independent of blood pressure, miRNA-146a-5p expression was associated with increased PTX-3 concentrations (p = 0.03), while miRNA-155-5p expression was associated with impaired vessel relaxation (p = 0.01). In conclusion, blocking circulating TNF-α impacted systemic inflammation-induced increased expression of miRNA-146a-5p and miRNA-155-5p, which were associated with endothelial inflammation and impaired endothelial dependent vasorelaxation, respectively.
Collapse
Affiliation(s)
- Sulè Gunter
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Frederic S. Michel
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Serena S. Fourie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mikayra Singh
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Regina le Roux
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lebogang P. Mokotedi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M. E. Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Caicedo D, Alvarez CV, Perez-Romero S, Devesa J. The Inflammatory Pattern of Chronic Limb-Threatening Ischemia in Muscles: The TNF-α Hypothesis. Biomedicines 2022; 10:biomedicines10020489. [PMID: 35203700 PMCID: PMC8962305 DOI: 10.3390/biomedicines10020489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Vascular inflammation plays a crucial role in peripheral arterial disease (PAD), although the role of the mediators involved has not yet been properly defined. The aim of this work is to investigate gene expression and plasma biomarkers in chronic limb-threating ischemia (CLTI). Methods: Using patients from the GHAS trial, both blood and ischemic muscle samples were obtained to analyze plasma markers and mRNA expression, respectively. Statistical analysis was performed by using univariate (Spearman, t-Student, and X2) and multivariate (multiple logistic regression) tests. Results: A total of 35 patients were available at baseline (29 for mRNA expression). Baseline characteristics (mean): Age: 71.4 ± 12.4 years (79.4% male); TNF-α: 10.7 ± 4.9 pg/mL; hsCRP:1.6 ± 2.2 mg/dL; and neutrophil-to-lymphocyte ratio (NLR): 3.5 ± 2.8. Plasma TNF-α was found elevated (≥8.1) in 68.6% of patients, while high hsCRP (≥0.5) was found in 60.5%. Diabetic patients with a high level of inflammation showed significantly higher levels of NOX4 expression at baseline (p = 0.0346). Plasma TNF-α had a negative correlation with NOS3 (eNOS) expression (−0.5, p = 0.015) and plasma hsCRP with VEGFA (−0.63, p = 0.005). The expression of NOX4 was parallel to that of plasma TNF-α (0.305, p = 0.037), especially in DM. Cumulative mortality at 12 months was related to NLR ≥ 3 (p = 0.019) and TNF-α ≥ 8.1 (p = 0.048). The best cutoff point for NLR to predict mortality was 3.4. Conclusions: NOX4 and TNF-α are crucial for the development and complications of lower limb ischemia, especially in DM. hsCRP could have a negative influence on angiogenesis too. NLR and TNF-α represent suitable markers of mortality in CLTI. These results are novel because they connect muscle gene expression and plasma information in patients with advanced PAD, deepening the search for new and accurate targets for this condition.
Collapse
Affiliation(s)
- Diego Caicedo
- Angiology and Vascular Surgery Department, Complejo Hospitalario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-950-043
| | - Clara V. Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enferme-dades Crónicas (CIMUS), University of Santiago de Compostela (USC), 15783 Santiago de Compostela, Spain; (C.V.A.); (S.P.-R.)
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enferme-dades Crónicas (CIMUS), University of Santiago de Compostela (USC), 15783 Santiago de Compostela, Spain; (C.V.A.); (S.P.-R.)
| | | |
Collapse
|
17
|
Răzvan-Valentin S, Güler SA, Utkan T, Şahin TD, Gacar G, Yazir Y, Rencber SF, Mircea L, Cristian B, Bogdan P, Utkan NZ. Etanercept Prevents Endothelial Dysfunction in Cafeteria Diet-Fed Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042138. [PMID: 35206342 PMCID: PMC8872388 DOI: 10.3390/ijerph19042138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023]
Abstract
Obesity is associated with endothelial dysfunction and this relationship is probably mediated in part by inflammation. Objective: The current study evaluated the effects of etanercept, a tumor necrosis factor-alpha (TNF-α) inhibitor, on endothelial and vascular reactivity, endothelial nitric oxide synthase (eNOS) immunoreactivity, and serum and aortic concentrations of TNF-α in a diet-induced rat model. Design and results: Male weanling Wistar rats were exposed to a standard diet and cafeteria diet (CD) for 12 weeks and etanercept was administered during CD treatment. Isolated aortas of the rats were used for isometric tension recording. Carbachol-induced relaxant responses were impaired in CD-fed rats, while etanercept treatment improved these endothelium-dependent relaxations. No significant change was observed in papaverine- and sodium nitroprusside (SNP)-induced relaxant responses. eNOS expression decreased in CD-fed rats, but no change was observed between etanercept-treated CD-fed rats and control rats. CD significantly increased both the serum and the aortic levels of TNF-α, while etanercept treatment suppressed these elevated levels. CD resulted in a significant increase in the body weight of the rats. Etanercept-treated (ETA) CD-fed rats gained less weight than both CD-fed and control rats.
Collapse
Affiliation(s)
- Scăunaşu Răzvan-Valentin
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Sertaç Ata Güler
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Tijen Utkan
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
- Experimental Medical Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey
| | - Tuğçe Demirtaş Şahin
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
| | - Gulcin Gacar
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Selenay Furat Rencber
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Lupușoru Mircea
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Bălălău Cristian
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Popescu Bogdan
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Nihat Zafer Utkan
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| |
Collapse
|
18
|
Moch Rizal D, Septiyorini N. Molecular Action of Herbal Medicine in Physiology of Erection and its Dysfunction. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224902002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erection is a physiological process that involves vascular, hormonal, and nervous factors. Erectile dysfunction is one of the male sexual problems that occur globally and is reported to affect men's quality of life. Herbal plants have been widely used for disease treatment, including the problem of erectile dysfunction. This paper aims to review the molecular potential of various plants in the physiology of erection and to treat erectile dysfunction. The literature search was carried out through the Pubmed and Google Scholar databases regarding the molecular mechanisms of herbal plants and their potential involvement in the physiology of erection and overcoming erectile dysfunction. This paper focuses on six herbal plants: Panax ginseng, Ginkgo biloba, Epimedium, Black pepper, Tribulus terrestris, and Eurycoma longifolia. The six herbal plants have involvement in the erection process and have molecular potential in the treatment of erectile problems
Collapse
|
19
|
Gopallawa I, Kuek LE, Adappa ND, Palmer JN, Lee RJ. Small-molecule Akt-activation in airway cells induces NO production and reduces IL-8 transcription through Nrf-2. Respir Res 2021; 22:267. [PMID: 34666758 PMCID: PMC8525858 DOI: 10.1186/s12931-021-01865-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-cancerous functions of Akt in the airway are understudied. In some tissues, Akt phosphorylates and activates endothelial nitric oxide synthase (eNOS) to produce nitric oxide (NO) that has anti-inflammatory effects. NO production has antibacterial and antiviral effects in the airway, and increasing NO may be a useful anti-pathogen strategy. Akt also stimulates the nuclear factor erythroid 2-related factor 2 (Nrf-2) transcription factor, which transcribes antioxidant genes. Therefore, we hypothesized that activation of the Akt/eNOS pathway, which also activates Nrf-2, may have protective effects in human airway cells against injury. METHODS To directly test the effects of Akt signaling in the airway, we treated A549 and 16HBE cells as well as primary bronchial, nasal, and type II alveolar epithelial cells with small molecule Akt activator SC79. We examined the effects of SC79 on eNOS activation, NO production, Nrf-2 target levels, and interleukin-8 (IL-8) transcription during exposure to TNF-α or Pseudomonas flagellin (TLR5 agonist). Additionally, air-liquid interface bronchial cultures were treated with cadmium, an oxidative stressor that causes airway barrier breakdown. RESULTS SC79 induced a ~ twofold induction of p-eNOS and Nrf-2 protein levels blocked by PI3K inhibitor LY294002. Live cell imaging revealed SC79 increased acute NO production. Quantitative RT-PCR showed a ~ twofold increase in Nrf-2 target gene transcription. TNF-α or flagellin-induced IL-8 levels were also significantly reduced with SC79 treatment. Moreover, the transepithelial electrical resistance decrease observed with cadmium was ameliorated by SC79, likely by an acute increase in tight junction protein ZO-1 levels. CONCLUSIONS Together, the data presented here demonstrate SC79 activation of Akt induces potentially anti-pathogenic NO production, antioxidant gene transcription, reduces IL-8 transcription, and may protect against oxidative barrier dysfunction in a wide range of airway epithelial cells.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Ning Z, Song Z, Wang C, Peng S, Wan X, Liu Z, Lu A. How Perturbated Metabolites in Diabetes Mellitus Affect the Pathogenesis of Hypertension? Front Physiol 2021; 12:705588. [PMID: 34483960 PMCID: PMC8416465 DOI: 10.3389/fphys.2021.705588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of hypertension (HTN) in type 2 diabetes mellitus (DM) is a common phenomenon in more than half of the diabetic patients. Since HTN constitutes a predictor of vascular complications and cardiovascular disease in type 2 DM patients, it is of significance to understand the molecular and cellular mechanisms of type 2 DM binding to HTN. This review attempts to understand the mechanism via the perspective of the metabolites. It reviewed the metabolic perturbations, the biological function of perturbated metabolites in two diseases, and the mechanism underlying metabolic perturbation that contributed to the connection of type 2 DM and HTN. DM-associated metabolic perturbations may be involved in the pathogenesis of HTN potentially in insulin, angiotensin II, sympathetic nervous system, and the energy reprogramming to address how perturbated metabolites in type 2 DM affect the pathogenesis of HTN. The recent integration of the metabolism field with microbiology and immunology may provide a wider perspective. Metabolism affects immune function and supports immune cell differentiation by the switch of energy. The diverse metabolites produced by bacteria modified the biological process in the inflammatory response of chronic metabolic diseases either. The rapidly evolving metabolomics has enabled to have a better understanding of the process of diseases, which is an important tool for providing some insight into the investigation of diseases mechanism. Metabolites served as direct modulators of biological processes were believed to assess the pathological mechanisms involved in diseases.
Collapse
Affiliation(s)
- Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoying Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Hu YC, Tsai IJ, Hsu HY, Chiang BL, Yang YH. Identification of monoclonal antibodies against human renal glomerular endothelial cells in lupus nephritis that induce endothelial interferon-alpha production. Arthritis Res Ther 2021; 23:171. [PMID: 34134755 PMCID: PMC8207712 DOI: 10.1186/s13075-021-02552-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pathogenesis of lupus nephritis (LN) remains not fully understood. In this study, we aimed to explore the pathogenic roles of autoantibodies against human renal glomerular endothelial cells (HRGEC) in LN patients. METHODS The serum levels of anti-HRGEC antibodies in systemic lupus erythematosus (SLE) patients without LN and LN patients were determined by cell-based enzyme-linked immunosorbent assay (ELISA). Monoclonal IgG anti-HRGEC antibodies were subsequently generated from LN patients. The binding activities of these monoclonal antibodies to HRGEC, their cross-reactivity with double-stranded DNA (dsDNA), and the ability to activate HRGEC were further evaluated. RESULTS LN patients had higher serum levels of IgG anti-HRGEC antibodies than SLE patients without LN and healthy controls. Four monoclonal IgG anti-HRGEC antibodies (LN1-4) were obtained; LN1 and LN2 were IgG3 while LN3 and LN4 were IgG1. Among these monoclonal antibodies, LN1-3 were cross-reactive with dsDNA. The functional assays showed that compared with IgG1/IgG3 isotype controls, LN3 had an effect on HRGEC to enhance interleukin (IL)-6 production, LN4 could enhance IL-8 and monocyte chemoattractant protein (MCP)-1 production, and LN1-3 possessed the ability to induce interferon (IFN)-α production by HRGEC. Moreover, the removal of DNA on the HRGEC surface by DNAse 1 did not interpose the binding of LN1-3 to HRGEC and the effects of LN1-3 on IFN-α induction by HRGEC. CONCLUSIONS Some IgG anti-HRGEC antibodies in LN patients had the ability to enhance endothelial proinflammatory cytokine (IL-6, IL-8, and MCP-1) production, and some could induce the DNA-independent production of IFN-α by HRGEC.
Collapse
Affiliation(s)
- Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Hui-Yao Hsu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, Taiwan. .,Department of Pediatrics, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan.
| |
Collapse
|
22
|
Angolano C, Kaczmarek E, Essayagh S, Daniel S, Choi LY, Tung B, Sauvage G, Lee A, Kipper FC, Arvelo MB, Moll HP, Ferran C. A20/TNFAIP3 Increases ENOS Expression in an ERK5/KLF2-Dependent Manner to Support Endothelial Cell Health in the Face of Inflammation. Front Cardiovasc Med 2021; 8:651230. [PMID: 34026871 PMCID: PMC8138474 DOI: 10.3389/fcvm.2021.651230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.
Collapse
Affiliation(s)
- Cleide Angolano
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Elzbieta Kaczmarek
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sanah Essayagh
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Soizic Daniel
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Lynn Y. Choi
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Brian Tung
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabriel Sauvage
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Andy Lee
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Franciele C. Kipper
- The Division of Neurosurgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Maria B. Arvelo
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Herwig P. Moll
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- The Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Kaya-Sezginer E, Gur S. The Inflammation Network in the Pathogenesis of Erectile Dysfunction: Attractive Potential Therapeutic Targets. Curr Pharm Des 2021; 26:3955-3972. [PMID: 32329680 DOI: 10.2174/1381612826666200424161018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Erectile dysfunction (ED) is an evolving health problem in the aging male population. Chronic low-grade inflammation is a critical component of ED pathogenesis and a probable intermediate stage of endothelial dysfunction, especially in metabolic diseases, with the inclusion of obesity, metabolic syndrome, and diabetes. OBJECTIVE This review will present an overview of preclinical and clinical data regarding common inflammatory mechanisms involved in the pathogenesis of ED associated with metabolic diseases and the effect of antiinflammatory drugs on ED. METHODS A literature search of existing pre-clinical and clinical studies was performed on databases [Pubmed (MEDLINE), Scopus, and Embase] from January 2000 to October 2019. RESULTS Low-grade inflammation is a possible pathological role in endothelial dysfunction as a consequence of ED and other related metabolic diseases. Increased inflammation and endothelial/prothrombotic markers can be associated with the presence and degree of ED. Pharmacological therapy and modification of lifestyle and risk factors may have a significant role in the recovery of erectile response through reduction of inflammatory marker levels. CONCLUSION Inflammation is the least common denominator in the pathology of ED and metabolic disorders. The inflammatory process of ED includes a shift in the complex interactions of cytokines, chemokines, and adhesion molecules. These data have established that anti-inflammatory agents could be used as a therapeutic opportunity in the prevention and treatment of ED. Further research on inflammation-related mechanisms underlying ED and the effect of therapeutic strategies aimed at reducing inflammation is required for a better understanding of the pathogenesis and successful management of ED.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Serap Gur
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
24
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
25
|
Translational insight into prothrombotic state and hypercoagulation in nonalcoholic fatty liver disease. Thromb Res 2020; 198:139-150. [PMID: 33340925 DOI: 10.1016/j.thromres.2020.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging and threatening pathological condition, ranging from fatty liver (FL) to chronic steatohepatitis (NASH), liver cirrhosis, and eventually to hepatocellular carcinoma (HCC). Recent findings suggest that patients with NAFLD have a higher risk of cardiovascular events and thromboembolism and that this risk is independent of metabolic diseases that are frequently associated with NAFLD, such as diabetes, hyperlipidaemia, and obesity. The vascular involvement of NAFLD might be considered its systemic burden, conditioning higher mortality in patients affected by the disease. These clinical findings suggested the existence of a prothrombotic state in NAFLD, which is partially unexplored and whose underlying mechanisms are to date not completely understood. Here, we review the mechanisms involved in the pathogenesis of the prothrombotic state in NAFLD across the progression from the healthy liver through the different stages of the disease. We focused on the possible role of several metabolic features of NAFLD possibly leading to hypercoagulation other than endothelial and platelet activation, such as insulin-resistance, nitric oxide production regulation, and gut microbiota homeostasis. Also, we analysed the involvement of plasminogen activator inhibitor-1 (PAI-1) and thromboinflammation taking place in NAFLD. Finally, we described factors striking a prothrombotic imbalance in NASH cirrhosis, with a particular focus on the pathogenesis of portal vein thrombosis.
Collapse
|
26
|
Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K, Nishimura R. Endothelial Dysfunction in Diabetes. Biomedicines 2020; 8:E182. [PMID: 32610588 PMCID: PMC7400447 DOI: 10.3390/biomedicines8070182] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a worldwide health issue closely associated with cardiovascular events. Given the pandemic of obesity, the identification of the basic underpinnings of vascular disease is strongly needed. Emerging evidence has suggested that endothelial dysfunction is a critical step in the progression of atherosclerosis. However, how diabetes affects the endothelium is poorly understood. Experimental and clinical studies have illuminated the tight link between insulin resistance and endothelial dysfunction. In addition, macrophage polarization from M2 towards M1 contributes to the process of endothelial damage. The possibility that novel classes of anti-hyperglycemic agents exert beneficial effects on the endothelial function and macrophage polarization has been raised. In this review, we discuss the current status of knowledge regarding the pathological significance of insulin signaling in endothelium. Finally, we summarize recent therapeutic strategies against endothelial dysfunction with an emphasis on macrophage polarity.
Collapse
Affiliation(s)
- Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| |
Collapse
|
27
|
Impaired l-arginine-nitric oxide pathway contributes to the pathogenesis of resistant hypertension. Clin Sci (Lond) 2020; 133:2061-2067. [PMID: 31654065 DOI: 10.1042/cs20190851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 01/13/2023]
Abstract
The precise mechanisms underlying resistant hypertension remain elusive. Reduced nitric oxide (NO) bioavailability is frequently documented in chronic kidney disease, obesity, diabetes and advanced age, all of which are risk factors for resistant hypertension. Sympathetic overactivity and chronic activation of the renin-angiotensin system are salient features of resistant hypertension. Interestingly, recent data indicate that renal sympathetic overactivity can reduce the expression of neuronal nitric oxide synthase in the paraventricular nucleus. Reduced NO levels in the paraventricular nucleus can increase sympathetic outflow and this can create a vicious cycle contributing to resistant hypertension. Angiotensin II can reduce l-arginine transport and hence NO production. Reduced NO levels may reduce the formation of angiotensin 1-7 dampening the cardio-protective effects of the renin-angiotensin system contributing to resistant hypertension. In addition, interleukin-6 (IL-6) is demonstrated to be independently associated with resistant hypertension, and IL-6 can reduce NO synthesis. Despite this, NO levels have not been quantified in resistant hypertension. Findings from a small proof of concept study indicate that NO donors can reduce blood pressure in patients with resistant hypertension but more studies are required to validate these preliminary findings. In the present paper, we put forward the hypothesis that reduced NO bioavailability contributes substantially to the development of resistant hypertension.
Collapse
|
28
|
Zaichko K, Stanislavchuk M, Zaichko N. Circadian fluctuations of endothelial nitric oxide synthase activity in females with rheumatoid arthritis: a pilot study. Rheumatol Int 2020; 40:549-554. [PMID: 32025851 DOI: 10.1007/s00296-020-04525-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/25/2020] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is a disease associated with circadian disorders of steroid hormones or cytokine secretion which induce inflammatory, destructive and proliferative processes in the synovial joints. Angiogenesis plays an important role in RA, but circadian rhythms of the angiogenic mediator production, especially endothelial nitric oxide synthase (NOS3), are still unclear. NOS3 takes part in regulation of endothelial functions, inflammation, and bone remodeling process. Studying circadian rhythms of NOS3 production in RA patients will make an improvement in understanding the angiogenic-inflammatory pathways relevant to rheumatic diseases. The aim of the study was to test the hypothesis of a diurnal variation in circulating levels of NOS3 in RA patients. A cross-sectional monocentric pilot study of circadian variability of endothelial nitric oxide synthase in a Ukrainian population was conducted between March and July 2017. We examined 36 RA patients (100% women) and 34 age-matched healthy women without joint diseases and autoimmune diseases (control). Blood samples were collected four times per day (at 08:00; 14:00; 20:00 and 02:00) for two consecutive days. Serum NOS3 concentration was measured by ELISA (Cloud-Clone Corp kit). The study was conducted in compliance with bioethical standards. The SPSS22 software package was used for statistical processing of the results. A diurnal variation in circulating levels of NOS3 in healthy women was established, with peak values appearing in the evening and acrophase at 20:00, and low values in the morning, with batiphase at 08:00. In patients with RA serum, NOS3 levels were substantially decreased throughout the day compared to the control. In RA patients, a diurnal variation in circulating levels of NOS3 was also established. However, the variability of NOS3 production was higher in RA patients than in the control group. For example, in RA patients the difference between morning/evening values of NOS3 was 1.3 times higher (p < 0.05) than in the control. Negative correlations were found between the morning NOS3 levels and RA activity markers such as DAS28 and the number of tender and swollen joints. The diurnal variation in circulating levels of NOS3 in women with RA as well as in healthy women was found. However, in RA patients, a decrease in NOS3 production was observed, especially in the morning, which was associated with an increase in the disease activity. Thus, the circadian rhythm of circulating NOS3 can be opposite to the circadian rhythm of secretion of main inflammatory regulators in RA.
Collapse
Affiliation(s)
- Kateryna Zaichko
- Department of Internal Medicine No.1, National Pirogov Memorial Medical University, Vinnytsya, Ukraine.
| | - Mykola Stanislavchuk
- Department of Internal Medicine No.1, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Nataliia Zaichko
- Department of Chemistry and Biochemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
29
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
30
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Juni RP, Kuster DW, Goebel M, Helmes M, Musters RJ, van der Velden J, Koolwijk P, Paulus WJ, van Hinsbergh VW. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC Basic Transl Sci 2019; 4:575-591. [PMID: 31768475 PMCID: PMC6872802 DOI: 10.1016/j.jacbts.2019.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022]
Abstract
The positive findings of the EMPA-REG OUTCOME trial (Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Empagliflozin) on heart failure (HF) outcome in patients with type 2 diabetes mellitus suggest a direct effect of empagliflozin on the heart. These patients frequently have HF with preserved ejection fraction (HFpEF), in which a metabolic risk-related pro-inflammatory state induces cardiac microvascular endothelial cell (CMEC) dysfunction with subsequent cardiomyocyte (CM) contractility impairment. This study showed that CMECs confer a direct positive effect on contraction and relaxation of CMs, an effect that requires nitric oxide, is diminished after CMEC stimulation with tumor necrosis factor-α, and is restored by empagliflozin. Our findings on the effect of empagliflozin on CMEC-mediated preservation of CM function suggests that empagliflozin can be used to treat the cardiac mechanical implications of microvascular dysfunction in HFpEF.
Collapse
Key Words
- CM, cardiomyocyte
- CMEC, cardiac microvascular endothelial cell
- Ca, calcium
- DM, diabetes mellitus
- DPPH, 1,1-diphenyl-picrylhydrazyl
- EC, endothelial cell
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- JNK, Jun N-terminal kinase
- L-NAME, N(ω)-nitro-L-arginine methyl ester
- LV, left ventricular
- NK-κB, nuclear factor-κB
- NO, nitric oxide
- ROS, reactive oxygen species
- SGLT2, sodium glucose transporter 2
- contraction and relaxation
- eNOS, endothelial nitric oxide synthase
- empagliflozin
- endothelial cell–derived nitric oxide
- heart failure
- oxidative stress
Collapse
Affiliation(s)
- Rio P. Juni
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Diederik W.D. Kuster
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michiel Helmes
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- CytoCypher B.V., Wageningen, the Netherlands
| | - René J.P. Musters
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Pieter Koolwijk
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Walter J. Paulus
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Victor W.M. van Hinsbergh
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
32
|
Do Androgens Modulate the Pathophysiological Pathways of Inflammation? Appraising the Contemporary Evidence. J Clin Med 2018; 7:jcm7120549. [PMID: 30558178 PMCID: PMC6306858 DOI: 10.3390/jcm7120549] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
The role of testosterone in the pathophysiology of inflammation is of critical clinical importance; however, no universal mechanism(s) has been advanced to explain the complex and interwoven pathways of androgens in the attenuation of the inflammatory processes. PubMed and EMBASE searches were performed, including the following key words: "testosterone", "androgens", "inflammatory cytokines", "inflammatory biomarkers" with focus on clinical studies as well as basic scientific studies in human and animal models. Significant benefits of testosterone therapy in ameliorating or attenuating the symptoms of several chronic inflammatory diseases were reported. Because anti⁻tumor necrosis factor therapy is the mainstay for the treatment of moderate-to-severe inflammatory bowel disease; including Crohn's disease and ulcerative colitis, and because testosterone therapy in hypogonadal men with chronic inflammatory conditions reduce tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6, we suggest that testosterone therapy attenuates the inflammatory process and reduces the burden of disease by mechanisms inhibiting inflammatory cytokine expression and function. Mechanistically, androgens regulate the expression and function of inflammatory cytokines, including TNF-α, IL-1β, IL-6, and CRP (C-reactive protein). Here, we suggest that testosterone regulates multiple and overlapping cellular and molecular pathways involving a host of immune cells and biochemical factors that converge to contribute to attenuation of the inflammatory process.
Collapse
|
33
|
Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 2018; 9:2691. [PMID: 30002366 PMCID: PMC6043492 DOI: 10.1038/s41467-018-05116-5] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
Here we identify hundreds of new drug-disease associations for over 900 FDA-approved drugs by quantifying the network proximity of disease genes and drug targets in the human (protein–protein) interactome. We select four network-predicted associations to test their causal relationship using large healthcare databases with over 220 million patients and state-of-the-art pharmacoepidemiologic analyses. Using propensity score matching, two of four network-based predictions are validated in patient-level data: carbamazepine is associated with an increased risk of coronary artery disease (CAD) [hazard ratio (HR) 1.56, 95% confidence interval (CI) 1.12–2.18], and hydroxychloroquine is associated with a decreased risk of CAD (HR 0.76, 95% CI 0.59–0.97). In vitro experiments show that hydroxychloroquine attenuates pro-inflammatory cytokine-mediated activation in human aortic endothelial cells, supporting mechanistically its potential beneficial effect in CAD. In summary, we demonstrate that a unique integration of protein-protein interaction network proximity and large-scale patient-level longitudinal data complemented by mechanistic in vitro studies can facilitate drug repurposing. Repurposing approved drugs could accelerate treatment options for various diseases. Here, the authors use network proximity of disease gene products and drug targets in the human protein interactome to identify drug-disease associations for cardiovascular disease, and validate these using longitudinal healthcare data.
Collapse
Affiliation(s)
- Feixiong Cheng
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, 02115, USA.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Rishi J Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruisheng Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Albert-László Barabási
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, 02115, USA.,Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Center for Network Science, Central European University, Budapest, 1051, Hungary
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Bansal S, Chopra K. Selective ER-α agonist alleviates vascular endothelial dysfunction in ovariectomized type 2 diabetic rats. Mol Cell Endocrinol 2018; 460:152-161. [PMID: 28736253 DOI: 10.1016/j.mce.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/24/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
Abstract
Postmenopausal diabetic women represent a specific risk group with a greater incidence of vascular deficits as compared with age-matched men or non-diabetic women. 17β-estradiol is the mainstay therapy for menopause and associated complications; however, its vasculoprotective effect is lost in women with diabetes. Although, exact mechanism of dichotomous effect of estrogen has not been delineated but it may be due to, differential activation of ER-α and β during disease conditions such as diabetes. Thus main objective of our study was to characterize the specific estrogen receptor which could be selectively targeted to achieve vasculoprotection in postmenopausal diabetic situation. A significant impairment in glycemic and lipid profile, decreased ACh-induced endothelium dependent relaxation, impaired endothelial integrity, and rise in inflammatory and oxidative stress markers were observed in ovariectomized type 2 diabetic rats as compared to sham rats. These markers were further correlated with aortic eNOS levels. Treatment with selective ER-α receptor agonist markedly while 17β-estradiol partially ameliorated these alterations along with enhanced aortic eNOS levels. However, ER-β agonist did not show any effect. Our data suggests that selective ER-α activation could be an important pharmacological target, to mimic the beneficial effect of estradiol in cardiovascular disorders, especially in postmenopausal diabetic state.
Collapse
Affiliation(s)
- Seema Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
35
|
Pankratz F, Hohnloser C, Bemtgen X, Jaenich C, Kreuzaler S, Hoefer I, Pasterkamp G, Mastroianni J, Zeiser R, Smolka C, Schneider L, Martin J, Juschkat M, Helbing T, Moser M, Bode C, Grundmann S. MicroRNA-100 Suppresses Chronic Vascular Inflammation by Stimulation of Endothelial Autophagy. Circ Res 2017; 122:417-432. [PMID: 29208678 DOI: 10.1161/circresaha.117.311428] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE The interaction of circulating cells within the vascular wall is a critical event in chronic inflammatory processes, such as atherosclerosis, but the control of the vascular inflammatory state is still largely unclear. OBJECTIVE This study was undertaken to characterize the function of the endothelial-enriched microRNA miR-100 during vascular inflammation and atherogenesis. METHODS AND RESULTS Based on a transcriptome analysis of endothelial cells after miR-100 overexpression, we identified miR-100 as a potent suppressor of endothelial adhesion molecule expression, resulting in attenuated leukocyte-endothelial interaction in vitro and in vivo as shown by flow cytometry and intravital imaging. Mechanistically, miR-100 directly repressed several components of mammalian target of rapamycin complex 1-signaling, including mammalian target of rapamycin and raptor, which resulted in a stimulation of endothelial autophagy and attenuated nuclear factor κB signaling in vitro and in vivo. In a low-density lipoprotein receptor-deficient atherosclerotic mouse model, pharmacological inhibition of miR-100 resulted in enhanced plaque lesion formation and a higher macrophage content of the plaque, whereas a systemic miR-100 replacement therapy had protective effects and attenuated atherogenesis, resulting in a decrease of plaque area by 45%. Finally, analysis of miR-100 expression in >70 samples obtained during carotid endarterectomy revealed that local miR-100 expression was inversely correlated with inflammatory cell content in patients. CONCLUSIONS In summary, we describe an anti-inflammatory function of miR-100 in the vascular response to injury and inflammation and identify an important novel modulator of mammalian target of rapamycin signaling and autophagy in the vascular system. Our findings of miR-100 as a potential protective anti-athero-miR suggest that the therapeutic replacement of this microRNA could be a potential strategy for the treatment of chronic inflammatory diseases, such as atherosclerosis, in the future.
Collapse
Affiliation(s)
- Franziska Pankratz
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Catherine Hohnloser
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Xavier Bemtgen
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Caterina Jaenich
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Sheena Kreuzaler
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Imo Hoefer
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Gerard Pasterkamp
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Justin Mastroianni
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Robert Zeiser
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Christian Smolka
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Laura Schneider
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Julien Martin
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Maike Juschkat
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Thomas Helbing
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Martin Moser
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Christoph Bode
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.)
| | - Sebastian Grundmann
- From the Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany (F.P., C.H., X.B., C.J., S.K., C.S., L.S., J.M., M.J., T.H., M.M., C.B., S.G.); Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands (I.H., G.P.); and Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Germany (J.M., R.Z.).
| |
Collapse
|
36
|
Urbano RL, Furia C, Basehore S, Clyne AM. Stiff Substrates Increase Inflammation-Induced Endothelial Monolayer Tension and Permeability. Biophys J 2017; 113:645-655. [PMID: 28793219 PMCID: PMC5550298 DOI: 10.1016/j.bpj.2017.06.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
Abstract
Arterial stiffness and inflammation are associated with atherosclerosis, and each have individually been shown to increase endothelial monolayer tension and permeability. The objective of this study was to determine if substrate stiffness enhanced endothelial monolayer tension and permeability in response to inflammatory cytokines. Porcine aortic endothelial cells were cultured at confluence on polyacrylamide gels of varying stiffness and treated with either tumor necrosis factor-α (TNFα) or thrombin. Monolayer tension was measured through vinculin localization at the cell membrane, traction force microscopy, and phosphorylated myosin light chain quantity and actin fiber colocalization. Cell permeability was measured by cell-cell junction confocal microscopy and a dextran permeability assay. When treated with TNFα or thrombin, endothelial monolayers on stiffer substrates showed increased traction forces, vinculin at the cell membrane, and vinculin phosphorylation, suggesting elevated monolayer tension. Interestingly, VE-cadherin shifted toward a smaller molecular weight in endothelial monolayers on softer substrates, which may relate to increased VE-cadherin endocytosis and degradation. Phosphorylated myosin light chain colocalization with actin stress fibers increased in endothelial monolayers treated with TNFα or thrombin on stiffer substrates, indicating elevated cell monolayer contractility. Endothelial monolayers also developed focal adherens intercellular junctions and became more permeable when cultured on stiffer substrates in the presence of the inflammatory cytokines. Whereas each of these effects was likely mitigated by Rho/ROCK, Rho/ROCK pathway inhibition via Y27632 disrupted cell-cell junction morphology, showing that cell contractility is required to maintain adherens junction integrity. These data suggest that stiff substrates change intercellular junction protein localization and degradation, which may counteract the inflammation-induced increase in endothelial monolayer tension and thereby moderate inflammation-induced junction loss and associated endothelial monolayer permeability on stiffer substrates.
Collapse
|
37
|
Brahmanaidu P, Uddandrao VVS, Sasikumar V, Naik RR, Pothani S, Begum MS, Rajeshkumar MP, Varatharaju C, Meriga B, Rameshreddy P, Kalaivani A, Saravanan G. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine. Mol Cell Biochem 2017; 432:25-32. [PMID: 28258439 DOI: 10.1007/s11010-017-2994-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022]
Abstract
Dietary measures and plant-based therapies as prescribed by native systems of medicine have gained attraction among diabetics with claims of efficacy. The present study investigated the effects of S-Allylcysteine (SAC) on body weight gain, glucose, insulin, insulin resistance, and nitric oxide synthase in plasma and argininosuccinate synthase (AS) and argininosuccinate lyase (ASL), lipid peroxides and antioxidant enzymes in aorta of control and streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Changes in body weight, glucose, insulin, insulin resistance, and antioxidant profiles of aorta and mRNA expressions of nitric oxide synthase, AS, and ASL were observed in experimental rats. SAC (150 mg/kg b.w) showed its therapeutic effects similar to gliclazide in decreasing glucose, insulin resistance, lipid peroxidation, and increasing body weight; insulin, antioxidant enzymes, and mRNA levels of nitric oxide synthase, argininosuccinate synthase, and argininosuccinate lyase genes in STZ-NA rats. Histopathologic studies also revealed the protective nature of SAC on aorta. In conclusion, garlic and its constituents mediate the anti-diabetic potential through mitigating hyperglycemic status, changing insulin resistance by alleviating endothelial dysregulation in both plasma and tissues.
Collapse
Affiliation(s)
- Parim Brahmanaidu
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - V V Sathibabu Uddandrao
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Vadivukkarasi Sasikumar
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Ramavat Ravindar Naik
- National Center for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hyderabad, India
| | - Suresh Pothani
- National Center for Laboratory Animal Sciences, National Institute of Nutrition (ICMR-New Delhi), Hyderabad, India
| | - Mustapha Sabana Begum
- Department of Biochemistry, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu, 637408, India
| | - M Prasanna Rajeshkumar
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Chandrasekar Varatharaju
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science, Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - Balaji Meriga
- Animal Physiology & Biochemistry Lab, Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, India
| | - P Rameshreddy
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
| | - A Kalaivani
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India
- Department of Biochemistry, PGP College of Arts and Science, Namakkal, Tamil Nadu, India
| | - Ganapathy Saravanan
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Thokkavadi, Tiruchengode, Tamil Nadu, 637215, India.
| |
Collapse
|
38
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017. [DOI: 10.1210/er.2016-1122.2017.1.test] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr Rev 2017; 38:145-168. [PMID: 28323921 PMCID: PMC5460677 DOI: 10.1210/er.2016-1122] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China, and
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
40
|
Zhang P, Fassett JT, Zhu G, Li J, Hu X, Xu X, Chen Y, Bache RJ. Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression. Vasc Med 2017; 22:179-188. [PMID: 28145161 DOI: 10.1177/1358863x16681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmacologic inhibition of nitric oxide production inhibits growth of coronary collateral vessels. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme that degrades asymmetric dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthase. Here we examined regulation of the ADMA-DDAH1 pathway in a canine model of recurrent myocardial ischemia during the time when coronary collateral growth is known to occur. Under basal conditions, DDAH1 expression was non-uniform across the left ventricular (LV) wall, with expression strongest in the subepicardium. In response to ischemia, DDAH1 expression was up-regulated in the midmyocardium of the ischemic zone, and this was associated with a significant reduction in myocardial interstitial fluid (MIF) ADMA. The decrease in MIF ADMA during ischemia was likely due to increased DDAH1 because myocardial protein arginine N-methyl transferase 1 (PRMT1) and the methylated arginine protein content (the source of ADMA) were unchanged or increased, respectively, at this time. The inflammatory mediators interleukin (IL-1β) and tumor necrosis factor (TNF-α) were also elevated in the midmyocardium where DDAH1 expression was increased. Both of these factors significantly up-regulated DDAH1 expression in cultured human coronary artery endothelial cells. Taken together, these results suggest that inflammatory factors expressed in response to myocardial ischemia contributed to up-regulation of DDAH1, which was responsible for the decrease in MIF ADMA.
Collapse
Affiliation(s)
- Ping Zhang
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John T Fassett
- 2 Department of Pharmacology and Toxicology, Karl Franzen University of Graz, Graz, Austria
| | - Guangshuo Zhu
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jingxin Li
- 3 Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinli Hu
- 4 Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xin Xu
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yingjie Chen
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert J Bache
- 1 Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
41
|
Hou L, Zhang J, Zhang C, Xu Y, Zhu X, Yao C, Liu Y, Li T, Cao J. The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:65-73. [PMID: 27918956 DOI: 10.1016/j.etap.2016.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
Cooking oil fumes (COFs) derived PM2.5 is the major source of indoor air pollution in Asia. For this, a pregnant rat model within different doses of cooking oil fumes (COFs) derived PM2.5 was established in pregnancy in our research. Our previous studies have showed that exposure to COFs-derived PM2.5 was related to adverse pregnancy outcomes. However, the mechanisms of signaling pathways remain unknown. Therefore, this study aimed to investigate the underlying mechanisms induced by COFs-derived PM2.5 injury on umbilical cord blood vessels (UCs) in vitro. Exposure to COFs-derived PM2.5 resulted in changing the expression of eNOS, ET-1, ETRA, and ETRB. In additions, western blot analysis indicated that the HIF-1α/iNOS/NO signaling pathway and VEGF/VEGFR1/iNOS signaling pathway were involved in UCs injury triggered by COFs-derived PM2.5. In conclusion, our data suggested that exposure to COFs-derived PM2.5 resulted in increasing of oxidative stress and inflammation, as well as dysfunction of UCs.
Collapse
Affiliation(s)
- Lijuan Hou
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jian Zhang
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Chao Zhang
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Yachun Xu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Xiaoxia Zhu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Cijiang Yao
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Ying Liu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Tao Li
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jiyu Cao
- The Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Meishan Road 81, Anhui Province, Postal Code 230032, Hefei, Anhui, China.
| |
Collapse
|
42
|
Li TH, Lee PC, Lee KC, Hsieh YC, Tsai CY, Yang YY, Huang SF, Tsai TH, Hsieh SL, Hou MC, Lin HC, Lee SD. Down-regulation of common NFκB-iNOS pathway by chronic Thalidomide treatment improves Hepatopulmonary Syndrome and Muscle Wasting in rats with Biliary Cirrhosis. Sci Rep 2016; 6:39405. [PMID: 28009008 PMCID: PMC5180197 DOI: 10.1038/srep39405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Thalidomide can modulate the TNFα-NFκB and iNOS pathway, which involve in the pathogenesis of hepatopulmonary syndrome (HPS) and muscle wasting in cirrhosis. In bile duct ligated-cirrhotic rats, the increased circulating CD16+ (inflammatory) monocytes and its intracellular TNFα, NFκB, monocyte chemotactic protein (MCP-1) and iNOS levels were associated with increased circulating MCP-1/soluable intercellular cell adehesion molecule-1 (sICAM-1), pulmonary TNFα/NOx, up-regulated M1 polarization, exacerbated angiogenesis and hypoxemia (increased AaPO2) in bronchoalveolar lavage (BAL) fluid and pulmonary homogenates. Meanwhile, a significant correlation was noted between circulating CD16+ monocyte/M1 (%) macrophages in BAL; M1 (%) macrophages in BAL/pulmonary iNOS mRNA expression; pulmonary iNOS mRNA expression/relative pulmonary MVD; pulmonary NOx level/AaPO2; circulating CD16+ monocyte/M1 (%) macrophages in muscle homogenates; 3-nitrotyrosine (representative of peroxynitrite) concentration/M1 (%) macrophages in muscle homogenates. The in vitro data demonstrated an iNOS-dependent inhibition of thalidomide on the TNFα-stimulated angiogenesis and myogenesis in human pulmonary artery endothelial cells (HPAECs) and C2C12 myoblasts. Significantly, the co-culture of CD16+ monocyte from different rats with HPAECs, or co-culture of supernatant of above mixed cultures with HPAECs or C2C12 myoblasts stimulated angiogenesis, migration and myogenesis. Our findings demonstrate that TNFα inhibitor thalidomide markedly diminishes the severity of experimental HPS and muscle wasting by down-regulation of common peripheral and local NFκB-iNOS pathway.
Collapse
Affiliation(s)
- Tzu-Hao Li
- Division of Allergy and Immunology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Chiayi Branch, Taichung Veterans General Hospital, No. 600, Sec. 2, Shixian Rd., West District, Chiayi City, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, No. 155, Sec. 2, Linong St., Taipei, Taiwan
| | - Pei-Chang Lee
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Kuei-Chuan Lee
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy and Immunology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Ying-Ying Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, No. 155, Sec. 2, Linong St., Taipei, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan.,Division of General Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan
| | - Shiang-Fen Huang
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan.,Division of Infection Diseases, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan
| | - Tung-Hu Tsai
- Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan.,Institute of Traditional Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, No. 155, Sec. 2, Linong St., Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan.,Genomics Research Center, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei City, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Division of Gastroenterology &Hepatology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan
| | - Shou-Dong Lee
- Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan.,Department of Medicine, National Yang-Ming University, No. 155, Sec.2, Linong St., Taipei, Taiwan.,Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Beitou District, Taipei
| |
Collapse
|
43
|
Wang LS, Lee CT, Su WL, Huang SC, Wang SC. Delonix regia Leaf Extract (DRLE): A Potential Therapeutic Agent for Cardioprotection. PLoS One 2016; 11:e0167768. [PMID: 27936072 PMCID: PMC5147973 DOI: 10.1371/journal.pone.0167768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022] Open
Abstract
Delonix regia (Boj. Ex. Hook) is a flowering plant in the pea family found in tropical areas and its leaves are used informally to treat diseases in folk medicine. However, the cardioprotective effects in this plant are still unclear. In this study, we found that the Delonix regia leaf extract (DRLE) (400 mg/kg/d) can reduce the mortality rate in an isoproterenol (ISO)-induced heart injury and hypertrophy mouse model. Decreased serum levels of creatine phosphokinase, LDH, GOT, TNF-alpha and increased nitric oxide levels were found in DRLE-treated ISO-injured mice. In the in vitro study, the porcine coronary artery exhibited vasodilation effect induced by DRLE in a dose-dependent manner. In the DRLE toxic test, overdose of DRLE showed the high safety in normal mice and may have the ability to remove the metabolic wastes in blood. In conclusion, we demonstrated for the first time that DRLE has the cardioprotective effects by activating the vasodilation through NO pathway and preventing the myocyte injury via inhibition of TNF-alpha pathway. We suggest that DRLE may act as a promising novel herbal medicine for cardioprotection.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- Department of Chinese Medicine, Tainan Sin-Lau Hospital, Tainan, Taiwan
| | - Chun-Ting Lee
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Lieh Su
- Department of Occupational Therapy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Che Huang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Ghebre YT, Yakubov E, Wong WT, Krishnamurthy P, Sayed N, Sikora AG, Bonnen MD. Vascular Aging: Implications for Cardiovascular Disease and Therapy. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2016; 6:183. [PMID: 28932625 PMCID: PMC5602592 DOI: 10.4172/2161-1025.1000183] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The incidence and prevalence of cardiovascular disease is highest among the elderly, in part, due to deleterious effects of advancing age on the heart and blood vessels. Aging, a known cardiovascular risk factor, is progressively associated with structural and functional changes to the vasculature including hemodynamic disturbance due to increased oxidative stress, premature cellular senescence and impairments in synthesis and/or secretion of endothelium-derived vasoactive molecules. These molecular and physiological changes lead to vessel wall stiffening and thickening, as well as other vascular complications that culminate to loss of vascular tone regulation and endothelial function. Intriguingly, the vessel wall, a biochemically active structure composed of collagen, connective tissue, smooth muscle and endothelial cells, is adversely affected by processes involved in premature or normal aging. Notably, the inner most layer of the vessel wall, the endothelium, becomes senescent and dysfunctional with advancing age. As a result, its ability to release vasoactive molecules such as acetylcholine (ACh), prostacyclin (PGI2), endothelium-derived hyperpolarizing factor (EDHF), and nitric oxide (NO) is reduced and the cellular response to these molecules is also impaired. By contrast, the vascular endothelium increases its generation and release of reactive oxygen (ROS) and nitrogen (RNS) species, vasoconstrictors such as endothelin (ET) and angiotensin (AT), and endogenous inhibitors of NO synthases (NOSs) to block NO. This skews the balance of the endothelium in favor of the release of highly tissue reactive and harmful molecules that promote DNA damage, telomere erosion, senescence, as well as stiffened and hardened vessel wall that is prone to the development of hypertension, diabetes, atherosclerosis and other cardiovascular risk factors. This Review discusses the impact of advancing age on cardiovascular health, and highlights the cellular and molecular mechanisms that underlie age-associated vascular changes. In addition, the role of pharmacological interventions in preventing or delaying age-related cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Eduard Yakubov
- phaRNA Comprehensive RNA Technologies, Houston, Texas, USA
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazish Sayed
- Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
45
|
Penile constitutive nitric oxide synthase expression in rats exposed to unpredictable chronic mild stress: role of inflammation. Int J Impot Res 2016; 29:76-81. [DOI: 10.1038/ijir.2016.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/04/2016] [Accepted: 10/28/2016] [Indexed: 11/08/2022]
|
46
|
Zhu X, Hou L, Zhang J, Yao C, Liu Y, Zhang C, Xu Y, Cao J. The structural and functional effects of fine particulate matter from cooking oil fumes on rat umbilical cord blood vessels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16567-16578. [PMID: 27178289 DOI: 10.1007/s11356-016-6821-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
A growing body of epidemiological evidence has supported the association between maternal exposure to airborne fine particulate matter (PM2.5) during pregnancy and adverse pregnancy outcomes. However, the specific biological mechanisms implicated in the causes of adverse pregnancy outcomes are not well defined. In this study, a pregnant rat model of exposure to different doses of cooking oil fumes (COFs)-derived PM2.5 by tail intravenous injection in different pregnant stages was established. The results indicated that exposure to COFs-derived PM2.5 was associated with adverse pregnancy outcomes, changed the structure of umbilical cord blood vessels, decreased the diameter and lumen area, and increased wall thickness. What's more, a significant increase of maximum contraction tension was observed in the early pregnancy high-dose exposure group and pregnant low-dose exposure group compared to the control group. Based on the maximum contraction tension, acetylcholine (ACh) did not induce vasodilation but caused a dose-dependent constriction, and there were significant differences in the two groups compared to the control group. Exposure to COFs-derived PM2.5 impaired the vasomotor function of umbilical veins by affecting the expression of NO and ET-1. This is the first study that evaluated the association of risk of adverse pregnancy outcomes and pregnant rats exposed to COFs-derived PM2.5 and primarily explored the potential mechanisms of umbilical cord blood vessels injury on a rat model. More detailed vitro and vivo studies are needed to further explore the mechanism in the future.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Lijuan Hou
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jian Zhang
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Cijiang Yao
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Ying Liu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Chao Zhang
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Yachun Xu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jiyu Cao
- The Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China.
| |
Collapse
|
47
|
Olszewska-Pazdrak B, McVicar SD, Rayavara K, Moya SM, Kantara C, Gammarano C, Olszewska P, Fuller GM, Sower LE, Carney DH. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair. Radiat Res 2016; 186:162-74. [PMID: 27388041 DOI: 10.1667/rr14409.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation.
Collapse
Affiliation(s)
- Barbara Olszewska-Pazdrak
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Scott D McVicar
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | - Stephanie M Moya
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Carla Kantara
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| | - Chris Gammarano
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Paulina Olszewska
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | | | - Darrell H Carney
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| |
Collapse
|
48
|
Silva JF, Capettini LSA, da Silva JFP, Sales-Junior P, Cruz JS, Cortes SF, Lemos VS. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice. Vascul Pharmacol 2016; 82:73-81. [PMID: 26988253 DOI: 10.1016/j.vph.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial.
Collapse
Affiliation(s)
- Josiane F Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano S A Capettini
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José F P da Silva
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Steyner F Cortes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Virginia S Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
49
|
Totoson P, Maguin-Gaté K, Nappey M, Wendling D, Demougeot C. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation. PLoS One 2016; 11:e0146744. [PMID: 26761790 PMCID: PMC4711944 DOI: 10.1371/journal.pone.0146744] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/20/2015] [Indexed: 12/30/2022] Open
Abstract
Objectives To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Approach and Results Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Conclusions Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Arthritis, Experimental/blood
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/physiopathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/diagnostic imaging
- Arthritis, Rheumatoid/physiopathology
- Biomarkers/blood
- Chemokines/blood
- Cyclic N-Oxides/pharmacology
- Cyclooxygenase 2/metabolism
- Disease Progression
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Immunization
- Inflammation/blood
- Inflammation/complications
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase Type III/metabolism
- Nitrobenzenes/pharmacology
- Nitroprusside/pharmacology
- Osteoprotegerin/blood
- Radiography
- Rats, Inbred Lew
- Spin Labels
- Sulfonamides/pharmacology
- Superoxides/metabolism
- Time Factors
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Perle Totoson
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Katy Maguin-Gaté
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Maude Nappey
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Daniel Wendling
- Service de Rhumatologie, CHRU Besançon, Besançon, France
- EA 4266, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|
50
|
von Rossum A, Laher I, Choy JC. Immune-mediated vascular injury and dysfunction in transplant arteriosclerosis. Front Immunol 2015; 5:684. [PMID: 25628623 PMCID: PMC4290675 DOI: 10.3389/fimmu.2014.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Solid organ transplantation is the only treatment for end-stage organ failure but this life-saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels within transplanted organs are targeted by the immune system and the resultant vascular damage is a main contributor to acute and chronic graft failure. The vasculature is a unique tissue with specific immunological properties. This review discusses the interactions of the immune system with blood vessels in transplanted organs and how these interactions lead to the development of transplant arteriosclerosis, a leading cause of heart transplant failure.
Collapse
Affiliation(s)
- Anna von Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| | - Ismail Laher
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC , Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| |
Collapse
|