1
|
Zhang C, Li Y, Samad A, Zheng P, Ji Z, Chen F, Zhang H, Jin T. Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. Int J Biol Macromol 2022; 194:42-49. [PMID: 34856215 DOI: 10.1016/j.ijbiomac.2021.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
phiYY is a foremost member of Cystoviridae isolated from Pseudomonas aeruginosa. Its P4 protein with NTPase activity is a molecular motor for their genome packing during viral particle assembly. Previously studies on the P4 from four Pseudomonas phages phi6, phi8, phi12 and phi13 reveal that despite of belonging to the same protein family, they are unique in sequence, structure and biochemical properties. To better understand the structure and function of phiYY P4, four crystal structures of phiYY P4 in apo-form or combined with different ligands were solved at the resolution between 1.85 Å and 2.43 Å, which showed drastic conformation change of the H1 motif in ligand-bound forms compared with in apo-form, a four residue-mutation at the ligand binding pocket abolished its ATPase activity. Furthermore, the truncation mutation of the 50 residues at the C-terminal did not impair the hexamerization and ATP hydrolysis.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuelong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Ji
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| |
Collapse
|
2
|
Kwon S, Sung BJ. Effects of solvent quality and non-equilibrium conformations on polymer translocation. J Chem Phys 2018; 149:244907. [PMID: 30599703 DOI: 10.1063/1.5048059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conformation and its relaxation of a single polymer depend on solvent quality in a polymer solution: a polymer collapses into a globule in a poor solvent, while the polymer swells in a good solvent. When one translocates a polymer through a narrow pore, a drastic conformational change occurs such that the kinetics of the translocation is expected to depend on the solvent quality. However, the effects of solvent quality on the translocation kinetics have been controversial. In this study, we employ a coarse-grained model for a polymer and perform Langevin dynamics simulations for the driven translocation of a polymer in various types of solvents. We estimate the free energy of polymer translocation using steered molecular dynamics simulations and Jarzynski's equality and find that the free energy barrier for the translocation increases as the solvent quality becomes poorer. The conformational entropy contributes most to the free energy barrier of the translocation in a good solvent, while a balance between entropy and energy matters in a poor solvent. Interestingly, contrary to what is expected from the free energy profile, the translocation kinetics is a non-monotonic function of the solvent quality. We find that for any type of solvent, the polymer conformation stays far away from the equilibrium conformation during translocation due to an external force and tension propagation. However, the degree of tension propagation differs depending on the solvent quality as well as the magnitude of the external force: the tension propagation is more significant in a good solvent than in a poor solvent. We illustrate that such differences in tension propagation and non-equilibrium conformations between good and poor solvents are responsible for the complicated non-monotonic effects of solvent quality on the translocation kinetics.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
3
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
4
|
El Omari K, Meier C, Kainov D, Sutton G, Grimes JM, Poranen MM, Bamford DH, Tuma R, Stuart DI, Mancini EJ. Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution. Nucleic Acids Res 2013; 41:9396-410. [PMID: 23939620 PMCID: PMC3814363 DOI: 10.1093/nar/gkt713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, ɸ12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from ɸ6, ɸ8 and ɸ13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in ɸ8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in ɸ12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the ɸ12 enzyme.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, Department of Environmental Research, Siauliai University, Vilniaus gatvė 88, 76285 Siauliai, Lithuania, Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK, Department of Biosciences, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland, Institute of Biotechnology, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland and Astbury Centre for Structural Molecular Biology and School of Cellular and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Morra R, Lee BM, Shaw H, Tuma R, Mancini EJ. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. FEBS Lett 2012; 586:2513-21. [PMID: 22749909 PMCID: PMC3476528 DOI: 10.1016/j.febslet.2012.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
Abstract
CHD4, the core subunit of the Nucleosome Remodelling and Deacetylase (NuRD) complex, is a chromatin remodelling ATPase that, in addition to a helicase domain, harbors tandem plant homeo finger and chromo domains. By using a panel of domain constructs we dissect their roles and demonstrate that DNA binding, histone binding and ATPase activities are allosterically regulated. Molecular shape reconstruction from small-angle X-ray scattering reveals extensive domain-domain interactions, which provide a structural explanation for the regulation of CHD4 activities by intramolecular domain communication. Our results demonstrate functional interdependency between domains within a chromatin remodeller.
Collapse
Affiliation(s)
- Rosa Morra
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Benjamin M. Lee
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Heather Shaw
- Ludwig Institute for Cancer Research Ltd., Oxford University, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology and Institute of Cellular and Molecular Biology, University of Leeds, LS2 9JT, United Kingdom
| | - Erika J. Mancini
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
6
|
Abstract
P4 proteins are hexameric RNA packaging ATPases of dsRNA bacteriophages of the Cystoviridae family. P4 hexamers are integral part of the inner polymerase core and play several essential roles in the virus replication cycle. P4 proteins are structurally related to the hexameric helicases and translocases of superfamily 4 (SF4) and other RecA-like ATPases. Recombinant P4 proteins retain their 5' to 3' helicase and translocase activity in vitro and thus serve as a model system for studying the mechanism of action of hexameric ring helicases and RNA translocation. This review summarizes the different roles that P4 proteins play during virus assembly, genome packaging, and transcription. Structural and mechanistic details of P4 action are laid out to and subsequently compared with those of the related hexameric helicases and other packaging motors.
Collapse
Affiliation(s)
- Erika J Mancini
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
7
|
Schwartz C, Fang H, Huang L, Guo P. Sequential action of ATPase, ATP, ADP, Pi and dsDNA in procapsid-free system to enlighten mechanism in viral dsDNA packaging. Nucleic Acids Res 2011; 40:2577-86. [PMID: 22110031 PMCID: PMC3315319 DOI: 10.1093/nar/gkr841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and double-stranded DNA (dsDNA) viruses contain an AAA(+) ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.
Collapse
Affiliation(s)
- Chad Schwartz
- The School of Environmental, Energy, Biological, and Medical Engineering (SEEBME), Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Roman Tuma
- The Astbury Centre for Structural Molecular Biology, Institute of Cellular and Molecular Biology, University of Leeds Leeds UK
| |
Collapse
|
9
|
Thomsen ND, Berger JM. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 2009; 139:523-34. [PMID: 19879839 PMCID: PMC2772833 DOI: 10.1016/j.cell.2009.08.043] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/13/2009] [Accepted: 08/18/2009] [Indexed: 01/07/2023]
Abstract
Hexameric helicases couple ATP hydrolysis to processive separation of nucleic acid duplexes, a process critical for gene expression, DNA replication, and repair. All hexameric helicases fall into two families with opposing translocation polarities: the 3'-->5' AAA+ and 5'-->3' RecA-like enzymes. To understand how a RecA-like hexameric helicase engages and translocates along substrate, we determined the structure of the E. coli Rho transcription termination factor bound to RNA and nucleotide. Interior nucleic acid-binding elements spiral around six bases of RNA in a manner unexpectedly reminiscent of an AAA+ helicase, the papillomavirus E1 protein. Four distinct ATP-binding states, representing potential catalytic intermediates, are coupled to RNA positioning through a complex allosteric network. Comparative studies with E1 suggest that RecA and AAA+ hexameric helicases use different portions of their chemomechanical cycle for translocating nucleic acid and track in opposite directions by reversing the firing order of ATPase sites around the hexameric ring. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Collapse
Affiliation(s)
- Nathan D. Thomsen
- Department of Molecular and Cell Biology, Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - James M. Berger
- Department of Molecular and Cell Biology, Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA,Correspondence:
| |
Collapse
|
10
|
Wei H, Cheng RH, Berriman J, Rice WJ, Stokes DL, Katz A, Morgan DG, Gottlieb P. Three-dimensional structure of the enveloped bacteriophage phi12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell. PLoS One 2009; 4:e6850. [PMID: 19727406 PMCID: PMC2733035 DOI: 10.1371/journal.pone.0006850] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022] Open
Abstract
Background Bacteriophage φ12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA) segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae. Methodology/Principal Findings We present structural studies of cystovirus φ12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated φ12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC). We find that in the nucleocapsid (NC), the φ12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in φ6 NC's but the detailed structure of the entire φ12 P8 layer is distinct from that found in the best classified cystovirus species φ6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7. Conclusions/Significance In conclusion, we have determined that the φ12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis.
Collapse
Affiliation(s)
- Hui Wei
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York (CCNY), New York, New York, United States of America
| | - R. Holland Cheng
- Department of Cellular and Molecular Biology, University of California at Davis, Davis, California, United States of America
| | - John Berriman
- The New York Structural Biology Center, New York, New York, United States of America
| | - William J. Rice
- The New York Structural Biology Center, New York, New York, United States of America
| | - David L. Stokes
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- The New York Structural Biology Center, New York, New York, United States of America
| | - A. Katz
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York, United States of America
| | - David Gene Morgan
- Nanoscience Center, Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Gottlieb
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York (CCNY), New York, New York, United States of America
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Xiao F, Zhang H, Guo P. Novel mechanism of hexamer ring assembly in protein/RNA interactions revealed by single molecule imaging. Nucleic Acids Res 2008; 36:6620-32. [PMID: 18940870 PMCID: PMC2582624 DOI: 10.1093/nar/gkn669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many nucleic acid-binding proteins and the AAA+ family form hexameric rings, but the mechanism of hexamer assembly is unclear. It is generally believed that the specificity in protein/RNA interaction relies on molecular contact through a surface charge or 3D structure matching via conformational capture or induced fit. The pRNA of bacteriophage phi29 DNA-packaging motor also forms a ring, but whether the pRNA ring is a hexamer or a pentamer is under debate. Here, single molecule studies elucidated a mechanism suggesting the specificity and affinity in protein/RNA interaction relies on pRNA static ring formation. A combined pRNA ring-forming group was very specific for motor binding, but the isolated individual members of the ring-forming group bind to the motor nonspecifically. pRNA did not form a ring prior to motor binding. Only those RNAs that formed a static ring, via the interlocking loops, stayed on the motor. Single interlocking loop interruption resulted in pRNA detachment. Extension or reduction of the ring circumference failed in motor binding. This new mechanism was tested by redesigning two artificial RNAs that formed hexamer and packaged DNA. The results confirmed the stoichiometry of pRNA on the motor was the common multiple of two and three, thus, a hexamer.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Biomedical Engineering, College of Engineering/College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | |
Collapse
|
12
|
Hu GB, Wei H, Rice WJ, Stokes DL, Gottlieb P. Electron cryo-tomographic structure of cystovirus phi 12. Virology 2008; 372:1-9. [PMID: 18022662 PMCID: PMC2692713 DOI: 10.1016/j.virol.2007.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 09/21/2007] [Accepted: 10/02/2007] [Indexed: 11/20/2022]
Abstract
Bacteriophage phi 12 is a member of the Cystoviridae virus family and contains a genome consisting of three segments of double-stranded RNA (dsRNA). This virus family contains eight identified members, of which four have been classified in regard to their complete genomic sequence and encoded viral proteins. A phospholipid envelope that contains the integral proteins P6, P9, P10, and P13 surrounds the viral particles. In species phi 6, host infection requires binding of a multimeric P3 complex to type IV pili. In species varphi8, phi 12, and phi 13, the attachment apparatus is a heteromeric protein assembly that utilizes the rough lipopolysaccharide (rlps) as a receptor. In phi 8 the protein components are designated P3a and P3b while in species phi 12 proteins P3a and P3c have been identified in the complex. The phospholipid envelope of the cystoviruses surrounds a nucleocapsid (NC) composed of two shells. The outer shell is composed of protein P8 with a T=13 icosahedral lattice while the primary component of the inner shell is a dodecahedral frame composed of dimeric protein P1. For the current study, the 3D architecture of the intact phi 12 virus was obtained by electron cryo-tomography. The nucleocapsid appears to be centered within the membrane envelope and possibly attached to it by bridging structures. Two types of densities were observed protruding from the membrane envelope. The densities of the first type were elongated, running parallel, and closely associated to the envelope outer surface. In contrast, the second density was positioned about 12 nm above the envelope connected to it by a flexible low-density stem. This second structure formed a torroidal structure termed "the donut" and appears to inhibit BHT-induced viral envelope fusion.
Collapse
Affiliation(s)
- Guo-Bin Hu
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Hui Wei
- Department of Microbiology and Immunology, The Sophie Davis School of Biomedical Education, The City College of New York, NY 10031
| | - William J. Rice
- The New York Structural Biology Center, 89 Convent Ave, New York, NY 10027
| | - David L. Stokes
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
- The New York Structural Biology Center, 89 Convent Ave, New York, NY 10027
| | - Paul Gottlieb
- Department of Microbiology and Immunology, The Sophie Davis School of Biomedical Education, The City College of New York, NY 10031
- Ph.D. Program in Biology, The Graduate School and University Center, The City University of New York, 10016
| |
Collapse
|
13
|
Kainov DE, Mancini EJ, Telenius J, Lísal J, Grimes JM, Bamford DH, Stuart DI, Tuma R. Structural basis of mechanochemical coupling in a hexameric molecular motor. J Biol Chem 2008; 283:3607-3617. [PMID: 18057007 DOI: 10.1074/jbc.m706366200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The P4 protein of bacteriophage phi12 is a hexameric molecular motor closely related to superfamily 4 helicases. P4 converts chemical energy from ATP hydrolysis into mechanical work, to translocate single-stranded RNA into a viral capsid. The molecular basis of mechanochemical coupling, i.e. how small approximately 1 A changes in the ATP-binding site are amplified into nanometer scale motion along the nucleic acid, is not understood at the atomic level. Here we study in atomic detail the mechanochemical coupling using structural and biochemical analyses of P4 mutants. We show that a conserved region, consisting of superfamily 4 helicase motifs H3 and H4 and loop L2, constitutes the moving lever of the motor. The lever tip encompasses an RNA-binding site that moves along the mechanical reaction coordinate. The lever is flanked by gamma-phosphate sensors (Asn-234 and Ser-252) that report the nucleotide state of neighboring subunits and control the lever position. Insertion of an arginine finger (Arg-279) into the neighboring catalytic site is concomitant with lever movement and commences ATP hydrolysis. This ensures cooperative sequential hydrolysis that is tightly coupled to mechanical motion. Given the structural conservation, the mutated residues may play similar roles in other hexameric helicases and related molecular motors.
Collapse
Affiliation(s)
- Denis E Kainov
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Erika J Mancini
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Jelena Telenius
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Jiří Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - Jonathan M Grimes
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Dennis H Bamford
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland
| | - David I Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| | - Roman Tuma
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter P. O. Box 65, Helsinki FIN-00014, Finland.
| |
Collapse
|
14
|
Astier Y, Kainov DE, Bayley H, Tuma R, Howorka S. Stochastic detection of motor protein-RNA complexes by single-channel current recording. Chemphyschem 2007; 8:2189-94. [PMID: 17886244 DOI: 10.1002/cphc.200700179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A label- and immobilization-free approach to detecting the reversible formation of complexes between nucleic acids and proteins at the single-molecule level is described. The voltage-driven translocation of individual oligoribonucleotides through a nanoscale protein pore is observed by single-channel current recordings. The oligoribonucleotide 5'-C25A(25)-3' gives rise to current blockades with an average duration of approximately 0.5 ms. In the presence of the RNA-binding ATPase P4, a viral packaging motor from bacteriophage phi8, longer events of tens to hundreds of milliseconds are observed. Upon addition of ATP the long events disappear, indicating the dissociation of the P4RNA complex. The frequency of events also depends on the concentration of P4 and the length of the oligoribonucleotide, thereby confirming the specificity of the P4RNA events. This study shows that single-channel current recordings can be used to monitor RNA-protein complex formation, thus opening up a new means to examine the motor activity of RNA- or DNA-processing enzymes.
Collapse
Affiliation(s)
- Yann Astier
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, UK
| | | | | | | | | |
Collapse
|
15
|
Jäälinoja HT, Huiskonen JT, Butcher SJ. Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8. Structure 2007; 15:157-67. [PMID: 17292834 DOI: 10.1016/j.str.2006.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/30/2022]
Abstract
The enveloped dsRNA bacteriophages phi6 and phi8 are the two most distantly related members of the Cystoviridae family. Their structure and function are similar to that of the Reoviridae but their assembly can be conveniently studied in vitro. Electron cryomicroscopy and three-dimensional icosahedral reconstruction were used to determine the structures of the phi6 virion (14 A resolution), phi8 virion (18 A resolution), and phi8 core (8.5 A resolution). Spikes protrude 2 nm from the membrane bilayer in phi6 and 7 nm in phi8. In the phi6 nucleocapsid, 600 copies of P8 and 72 copies of P4 interact with the membrane, whereas in phi8 it is only P4 and 60 copies of a minor protein. The major polymerase complex protein P1 forms a dodecahedral shell from 60 asymmetric dimers in both viruses, but the alpha-helical fold has apparently diverged. These structural differences reflect the different host ranges and entry and assembly mechanisms of the two viruses.
Collapse
Affiliation(s)
- Harri T Jäälinoja
- Centre of Excellence in Virus Research and Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
16
|
Huiskonen JT, Jäälinoja HT, Briggs JAG, Fuller SD, Butcher SJ. Structure of a hexameric RNA packaging motor in a viral polymerase complex. J Struct Biol 2006; 158:156-64. [PMID: 17095250 DOI: 10.1016/j.jsb.2006.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 11/27/2022]
Abstract
Packaging of the Cystovirus varphi8 genome into the polymerase complex is catalysed by the hexameric P4 packaging motor. The motor is located at the fivefold vertices of the icosahedrally symmetric polymerase complex, and the symmetry mismatch between them may be critical for function. We have developed a novel image-processing approach for the analysis of symmetry-mismatched structures and applied it to cryo-electron microscopy images of P4 bound to the polymerase complex. This approach allowed us to solve the three-dimensional structure of the P4 in situ to 15-A resolution. The C-terminal face of P4 was observed to interact with the polymerase complex, supporting the current view on RNA translocation. We suggest that the symmetry mismatch between the two components may facilitate the ring opening required for RNA loading prior to its translocation.
Collapse
Affiliation(s)
- Juha T Huiskonen
- Institute of Biotechnology and Faculty of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
17
|
Lambert PJ, Whitman AG, Dyson OF, Akula SM. Raman spectroscopy: the gateway into tomorrow's virology. Virol J 2006; 3:51. [PMID: 16805914 PMCID: PMC1526436 DOI: 10.1186/1743-422x-3-51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/28/2006] [Indexed: 01/14/2023] Open
Abstract
In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.
Collapse
Affiliation(s)
- Phelps J Lambert
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Audy G Whitman
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Ossie F Dyson
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
18
|
Affiliation(s)
- Minna M Poranen
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
19
|
Xiao F, Moll WD, Guo S, Guo P. Binding of pRNA to the N-terminal 14 amino acids of connector protein of bacteriophage phi29. Nucleic Acids Res 2005; 33:2640-9. [PMID: 15886394 PMCID: PMC1092275 DOI: 10.1093/nar/gki554] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.
Collapse
Affiliation(s)
| | | | | | - Peixuan Guo
- To whom correspondence should be addressed. Tel: +1 765 494 7561; Fax: +1 765 496 1795;
| |
Collapse
|
20
|
Abstract
P4 is a hexameric ATPase that serves as the RNA packaging motor in double-stranded RNA bacteriophages from the Cystoviridae family. P4 shares sequence and structural similarities with hexameric helicases. A structure-based mechanism for mechano-chemical coupling has recently been proposed for P4 from bacteriophage phi12. However, coordination of ATP hydrolysis among the subunits and coupling with RNA translocation remains elusive. Here we present detailed kinetic study of nucleotide binding, hydrolysis, and product release by phi12 P4 in the presence of different RNA and DNA substrates. Whereas binding affinities for ATP and ADP are not affected by RNA binding, the hydrolysis step is accelerated and the apparent cooperativity is increased. No nucleotide binding cooperativity is observed. We propose a stochastic-sequential cooperativity model to describe the coordination of ATP hydrolysis within the hexamer. In this model the apparent cooperativity is a result of hydrolysis stimulation by ATP and RNA binding to neighboring subunits rather than cooperative nucleotide binding. The translocation step appears coupled to hydrolysis, which is coordinated among three neighboring subunits. Simultaneous interaction of neighboring subunits with RNA makes the otherwise random hydrolysis sequential and processive.
Collapse
Affiliation(s)
- Jirí Lísal
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
21
|
Lísal J, Lam TT, Kainov DE, Emmett MR, Marshall AG, Tuma R. Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat Struct Mol Biol 2005; 12:460-6. [PMID: 15834422 DOI: 10.1038/nsmb927] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/22/2005] [Indexed: 11/09/2022]
Abstract
Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage phi8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines.
Collapse
Affiliation(s)
- Jirí Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 2004; 118:743-55. [PMID: 15369673 DOI: 10.1016/j.cell.2004.09.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 07/22/2004] [Accepted: 08/21/2004] [Indexed: 11/25/2022]
Abstract
Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including apo, substrate analog bound, and product bound. Substrate and product binding have been observed as both binary complexes and ternary complexes with divalent cations. These structures reveal large movements of the putative RNA binding loop, which are coupled with nucleotide binding and hydrolysis, indicating how ATP hydrolysis drives RNA translocation through cooperative conformational changes. Two distinct conformations of bound nucleotide triphosphate suggest how hydrolysis is activated by RNA binding. This provides a model for chemomechanical coupling for a prototype of the large family of hexameric helicases and oligonucleotide translocating enzymes.
Collapse
Affiliation(s)
- Erika J Mancini
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Kainov DE, Lísal J, Bamford DH, Tuma R. Packaging motor from double-stranded RNA bacteriophage phi12 acts as an obligatory passive conduit during transcription. Nucleic Acids Res 2004; 32:3515-21. [PMID: 15247341 PMCID: PMC484169 DOI: 10.1093/nar/gkh680] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Double-stranded RNA viruses sequester their genomes within a protein shell, called the polymerase complex. Translocation of ssRNA into (packaging) and out (transcription) of the polymerase complex are essential steps in the life cycle of the dsRNA bacteriophages of the Cystoviridae family (phi6-phi14). Both processes require a viral molecular motor P4, an NTPase, which bears structural and functional similarities to hexameric helicases. In effect, switching between the packaging and the transcription mode requires the translocation direction of the P4 motor to reverse. However, the mechanism of the reversal remains elusive. Here we characterize the P4 protein from bacteriophage phi12 and exploit its purine nucleotide specificity to delineate P4 role in transcription. The results indicate that while P4 actively translocates RNA during packaging it acts as a passive conduit for RNA export. The directionality switching is accomplished via the regulation of P4 NTPase activity within the polymerase core.
Collapse
Affiliation(s)
- Denis E Kainov
- Institute of Biotechnology and Faculty of Biological Science, Viikki Biocenter, University of Helsinki, PO Box 65, Viikinkaari 1, Helsinki FIN-00014, Finland
| | | | | | | |
Collapse
|