1
|
Lee S, Richman H, Yu Y. Nanocluster-mediated signaling crosstalk between FcγR and TLR4 in macrophage inflammatory responses. Sci Rep 2025; 15:12856. [PMID: 40229305 PMCID: PMC11997114 DOI: 10.1038/s41598-025-96679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Receptor crosstalk, the interaction between different receptors to modulate signaling, is crucial for fine-tuning the inflammatory responses of innate immune cells. Although the synergistic crosstalk between Toll-like receptor (TLR)4 and Fc gamma receptor (FcγR) is well documented, the detailed mechanism underlying this synergy remains unclear. In this study, we addressed this knowledge gap by imaging the molecular organization of TLR4 and FcγR on the macrophage cell surface and correlating it with their synergistic co-activation using ligands functionalized on lipid bilayers. We confirmed that co-activation of TLR4 and FcγR enhances whole-cell pro-inflammatory responses and tyrosine phosphorylation at the receptor level. Super-resolution microscopy revealed that TLR4 and FcγR each form discrete nanoclusters after ligand stimulation, and their synergistic co-activation increases both the size and spatial overlap of these nanoclusters. Contrary to previous assumptions that TLR4 and FcγR form heterodimers during their crosstalk, our results emphasize the critical role of nanoscale spatial organization between distinct receptor clusters in modulating innate immune responses. Additionally, these findings align with similar receptor interaction mechanisms that we previously reported in other receptor pairs, such as Dectin-1/TLR2 and FcγR/TLR2, suggesting that nanocluster interactions may represent a predominant mechanism governing crosstalk between TLRs and ITAM-containing receptors.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Hunter Richman
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Ybarra TK, Bishop GA. TRAF3 regulation of proximal TLR signaling in B cells. J Leukoc Biol 2024; 116:210-223. [PMID: 38489541 PMCID: PMC11271984 DOI: 10.1093/jleuko/qiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.
Collapse
Affiliation(s)
- Tiffany K Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| | - Gail A Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- VA Medical Center, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
4
|
Curson JE, Liu L, Luo L, Muusse TW, Lucas RM, Gunther KS, Vajjhala PR, Abrol R, Jones A, Kapetanovic R, Stacey KJ, Stow JL, Sweet MJ. TLR4 phosphorylation at tyrosine 672 activates the ERK/c-FOS signaling module for LPS-induced cytokine responses in macrophages. Eur J Immunol 2023; 53:e2250056. [PMID: 37058370 PMCID: PMC10947571 DOI: 10.1002/eji.202250056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
TLRs engage numerous adaptor proteins and signaling molecules, enabling a complex series of post-translational modifications (PTMs) to mount inflammatory responses. TLRs themselves are post-translationally modified following ligand-induced activation, with this being required to relay the full spectrum of proinflammatory signaling responses. Here, we reveal indispensable roles for TLR4 Y672 and Y749 phosphorylation in mounting optimal LPS-inducible inflammatory responses in primary mouse macrophages. LPS promotes phosphorylation at both tyrosine residues, with Y749 phosphorylation being required for maintenance of total TLR4 protein levels and Y672 phosphorylation exerting its pro-inflammatory effects more selectively by initiating ERK1/2 and c-FOS phosphorylation. Our data also support a role for the TLR4-interacting membrane proteins SCIMP and the SYK kinase axis in mediating TLR4 Y672 phosphorylation to permit downstream inflammatory responses in murine macrophages. The corresponding residue in human TLR4 (Y674) is also required for optimal LPS signaling responses. Our study, thus, reveals how a single PTM on one of the most widely studied innate immune receptors orchestrates downstream inflammatory responses.
Collapse
Affiliation(s)
- James E.B. Curson
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Liping Liu
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Timothy W. Muusse
- School of Chemistry and Molecular Biosciences (SCMB) and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Richard M. Lucas
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Kimberley S. Gunther
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences (SCMB) and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Alun Jones
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences (SCMB) and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Birkle TJY, Brown GC. Syk inhibitors protect against microglia-mediated neuronal loss in culture. Front Aging Neurosci 2023; 15:1120952. [PMID: 37009452 PMCID: PMC10050448 DOI: 10.3389/fnagi.2023.1120952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Microglia are brain macrophages and play beneficial and/or detrimental roles in many brain pathologies because of their inflammatory and phagocytic activity. Microglial inflammation and phagocytosis are thought to be regulated by spleen tyrosine kinase (Syk), which is activated by multiple microglial receptors, including TREM2 (Triggering Receptor Expressed on Myeloid Cells 2), implicated in neurodegeneration. Here, we have tested whether Syk inhibitors can prevent microglia-dependent neurodegeneration induced by lipopolysaccharide (LPS) in primary neuron-glia cultures. We found that the Syk inhibitors BAY61-3606 and P505-15 (at 1 and 10 μM, respectively) completely prevented the neuronal loss induced by LPS, which was microglia-dependent. Syk inhibition also prevented the spontaneous loss of neurons from older neuron-glia cultures. In the absence of LPS, Syk inhibition depleted microglia from the cultures and induced some microglial death. However, in the presence of LPS, Syk inhibition had relatively little effect on microglial density (reduced by 0-30%) and opposing effects on the release of two pro-inflammatory cytokines (IL-6 decreased by about 45%, TNFα increased by 80%). Syk inhibition also had no effect on the morphological transition of microglia exposed to LPS. On the other hand, inhibition of Syk reduced microglial phagocytosis of beads, synapses and neurons. Thus, Syk inhibition in this model is most likely neuroprotective by reducing microglial phagocytosis, however, the reduced microglial density and IL-6 release may also contribute. This work adds to increasing evidence that Syk is a key regulator of the microglial contribution to neurodegenerative disease and suggests that Syk inhibitors may be used to prevent excessive microglial phagocytosis of synapses and neurons.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Forsythiaside A prevents zymosan A-induced cell migration in neutrophil-differentiated HL-60 cells via PD-1/PD-L1 pathway. Heliyon 2023; 9:e13490. [PMID: 36865477 PMCID: PMC9970906 DOI: 10.1016/j.heliyon.2023.e13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Neutrophils, which account for more than 80% of leukocyte, play an important role in resolution of inflammation. Immune checkpoint molecules could be potential biomarkers in immunosuppression. Forsythiaside A (FTA), a main constituent of Forsythia suspensa (Thunb.) Vahl, provides a very significant anti-inflammatory activity. Here we defined the immunological mechanisms of FTA by taking programmed cell death-1 (PD-1)/programmed cell death-Ligand 1 (PD-L1) pathway into consideration. FTA could inhibited cell migration in HL-60-derived neutrophils in vitro, and this action appeared to be mediated via PD-1/PD-L1 depended JNK and p38 MAPK pathways. In vivo, FTA prevented PD-L1+ neutrophils infiltration and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and interferon-gamma (IFN-γ) after zymosan A-induced peritonitis. PD-1/PD-L1 inhibitor could abolish the suppression of FTA. The expression of inflammatory cytokines and chemokines were positively correlated with PD-L1. Molecular docking showed that FTA could bind to PD-L1. Taken together, FTA might prevent neutrophils infiltration to exert inflammation resolution through PD-1/PD-L1 pathway.
Collapse
|
8
|
Inomata M, Amano S, Abe M, Hayashi T, Sakagami H. Innate immune response of human periodontal ligament fibroblasts via the Dectin-1/Syk pathway. J Med Microbiol 2022; 71. [PMID: 36748551 DOI: 10.1099/jmm.0.001627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. A diverse microbiota including fungi exists in the subgingival sites of patients with chronic periodontitis. The cell wall of Candida albicans, the most abundant fungal species, contains β-glucan. Dectin-1 binds β-glucan and participates in fungal recognition.Gap statement. Human periodontal ligament fibroblasts (PDLFs) are present in the periodontal ligament and synthesize immunomodulatory cytokines that influence the local response to infections. However, the expression and role of Dectin-1 in PDLFs have not been explored.Aim. This study aimed to determine if PDLFs express Dectin-1 and induce innate immune responses through Dectin-1 and the signalling molecule Syk.Methodology. The expression of Dectin-1 in PDLFs was determined by flow cytometry, western blotting and confocal microscopy. Real-time PCR and Western blotting were used to determine the immune response of PDLFs stimulated with β-glucan-rich zymosan and C. albicans.Results. Dectin-1 was constitutively expressed in PDLFs. Zymosan induced the expression of cytokines, including IL6, IL1B and IL17A, and the chemokine IL8. Zymosan also induced the expression of the antimicrobial peptide β-defensin-1 (DEFB1). Further, the phosphorylation of Syk and NF-κB occurred upon Dectin-1 activation. Notably, heat-killed C. albicans induced the expression of IL6, IL17A, IL8 and DEFB1, and this activation was suppressed by the Syk inhibitor, R406.Conclusion. These findings indicate that the Dectin-1/Syk pathway induces an innate immune response of PDLFs, which may facilitate the control of oral infections such as candidiasis and periodontitis.
Collapse
Affiliation(s)
- Megumi Inomata
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| | - Masayo Abe
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Toru Hayashi
- Department of Anatomy Science, School of Allied Health Sciences, Kitasato University, Kitasato, Japan
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
9
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
10
|
Tang Q, Tu B, Jiang X, Zhang J, Bai L, Meng P, Zhang L, Qin X, Wang B, Chen C, Zou Z. Exposure to carbon black nanoparticles during pregnancy aggravates lipopolysaccharide-induced lung injury in offspring: an intergenerational effect. Am J Physiol Lung Cell Mol Physiol 2021; 321:L900-L911. [PMID: 34585979 DOI: 10.1152/ajplung.00545.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon black nanoparticles (CBNPs) are one of the most frequently used nanoparticles. Exposure to CBNPs during pregnancy (PrE to CBNPs) can directly induce inflammation, lung injury, and genotoxicity in dams and results in abnormalities in offspring. However, whether exposure to CBNPs during pregnancy enhances the susceptibility of offspring to environmental stimuli remains unknown. To address this issue, in this study, we intranasally treated pregnant mice with mock or CBNPs from gestational day (GD) 9 to GD18, and F1 and F2 offspring were normally obtained. By intratracheal instillation of mice with lipopolysaccharide (LPS) to trigger a classic animal model for acute lung injury, we intriguingly found that after LPS treatment, F1 and F2 offspring after exposure during pregnancy to CBNPs both exhibited more pronounced lung injury symptoms, including more degenerative histopathological changes, vascular leakage, elevated MPO activity, and activation of inflammation-related signaling transduction, compared with F1 and F2 offspring in the mock group, suggesting PrE to CBNPs would aggravate LPS-induced lung injury in offspring, and this effect was intergenerational. We also observed that PrE to CBNPs upregulated the mRNA expression of DNA methyltransferases (Dnmt) 1/3a/3b and DNA hypermethylation in both F1 and F2 offspring, which might partially account for the intergenerational effect. Together, our study demonstrates for the first time that PrE to CBNPs can enhance sensitivity to LPS in both F1 and F2 offspring, and this intergenerational effect may be related to DNA hypermethylation caused by CBNPs.
Collapse
Affiliation(s)
- Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Zhang H, Liu B, Jiang S, Wu JF, Qi CH, Mohammadtursun N, Li Q, Li L, Zhang H, Sun J, Dong JC. Baicalin ameliorates cigarette smoke-induced airway inflammation in rats by modulating HDAC2/NF-κB/PAI-1 signalling. Pulm Pharmacol Ther 2021; 70:102061. [PMID: 34314854 DOI: 10.1016/j.pupt.2021.102061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease distinguished by airway remodelling and progressive inflammation. PAI-1 is an important regulator of fibrosis. Recent studies have shown that PAI-1 seems to be involved in COPD progression. Elevated levels of PAI-1 have been found in the lungs of patients with acute inflammation. PAI-1 has been shown to regulate the levels of proinflammatory cytokines in the lungs, such as tumour necrosis factor (TNF)-α and interleukin (IL)-6, indicating that PAI-1 may play a fundamental role during inflammation. In the present study, we investigated the anti-inflammatory role of baicalin, the main active component of Scutellaria baicalensis, against cigarette smoke (extract) (CS/CSE)-induced airway inflammation in vivo and in vitro. For the in vivo study, SD rats were exposed to CS for 1 h/day, 6 days/week, for 24 weeks and treated with baicalin (40, 80 and 160 mg/kg) or budesonide (0.2 mg/kg). For this study, HBE cells were pretreated with baicalin (10, 20, 40 μM) or dexamethasone (10-7 M) and then exposed to CSE. We found that baicalin treatment could ameliorate CS-induced airway inflammatory infiltration in rats and decrease PAI-1 expression. The ELISA results showed that baicalin significantly inhibited the levels of TNF-α and IL-1β in CS/CSE-exposed rats and cells. Mechanistic studies showed that baicalin enhanced histone deacetylase 2 (HDAC2) protein expression and inhibited the expression of NF-κB and its downstream target PAI-1, and these effects were reversed by the HDAC2 inhibitor CAY-10683. In conclusion, baicalin ameliorated CS-induced airway inflammation in rats, and these effects were partially attributed to the modulation of HDAC2/NF-κB/PAI-1 signalling.
Collapse
Affiliation(s)
- Hu Zhang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Baojun Liu
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Shan Jiang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jin-Feng Wu
- Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Chun-Hui Qi
- Department of Respiratory Medicine, Qingpu District Traditional Chinese Medicine Hospital, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Nabijan Mohammadtursun
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Qiuping Li
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Lulu Li
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Hongying Zhang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jing Sun
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Jing-Cheng Dong
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
12
|
da Cunha LR, Muniz-Junqueira MI, Dos Santos Borges TK. Impact of polyphenols in phagocyte functions. J Inflamm Res 2019; 12:205-217. [PMID: 31686890 PMCID: PMC6708886 DOI: 10.2147/jir.s193749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Polyphenols are a broad group of substances with potential health benefits found in plant species. Several of these compounds are capable of influencing the activation of intracellular signaling pathways, such as NF-kB, MAPK and JAK-STAT, responsible for the production of various inflammatory mediators such as tumor necrosis factor α (TNF-α) and interleukin 1 beta (IL-1β) and 12 (IL-12), enzymes involved in the production of reactive species such as inducible nitric oxide synthase (iNOS) and superoxide dehydrogenase (SOD), as well as enzymes involved in the production of eicosanoids, such as cyclooxygenase (COX) and lipoxygenase (LO). There is increased interest in the use of polyphenol-rich foods because of their immunomodulatory effect; however, the mechanisms used during macrophage responses are extremely complex and little is known about the effects of polyphenols on these cells. As such, this review summarizes the current view of polyphenol influences on macrophages.
Collapse
Affiliation(s)
- Leandro Rodrigues da Cunha
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | | | | |
Collapse
|
13
|
Al-Harbi NO, Nadeem A, Ahmad SF, Alanazi MM, Aldossari AA, Alasmari F. Amelioration of sepsis-induced acute kidney injury through inhibition of inflammatory cytokines and oxidative stress in dendritic cells and neutrophils respectively in mice: Role of spleen tyrosine kinase signaling. Biochimie 2019; 158:102-110. [DOI: 10.1016/j.biochi.2018.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
|
14
|
Michalak B, Piwowarski JP, Granica S, Waltenberger B, Atanasov AG, Khan SY, Breuss JM, Uhrin P, Żyżyńska-Granica B, Stojakowska A, Stuppner H, Kiss AK. Eupatoriopicrin Inhibits Pro-inflammatory Functions of Neutrophils via Suppression of IL-8 and TNF-alpha Production and p38 and ERK 1/2 MAP Kinases. JOURNAL OF NATURAL PRODUCTS 2019; 82:375-385. [PMID: 30653318 DOI: 10.1021/acs.jnatprod.8b00939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During chronic inflammation, neutrophils acting locally as effector cells not only activate antibacterial defense but also promote the inflammatory response. Interleukin 8 (IL-8), the main cytokine produced by activated neutrophils, positively correlates with the severity of respiratory tract diseases. By screening European plants traditionally used for treating respiratory tract diseases, we found that extracts of aerial parts of Eupatorium cannabinum inhibit IL-8 release from neutrophils. Using bioassay-guided fractionation, we identified five sesquiterpene lactones, eupatoriopicrin (1), 5'-deoxyeupatoriopicrin (2), hiyodorilactone A (3), 3-hydroxy-5'- O-acetyleupatoriopicrin = hiyodorilactone D (4), and hiyodorilactone B (5), that efficiently (IC50 < 1 μM) inhibited IL-8 and TNF-α release in lipopolysaccharide (LPS)-stimulated human neutrophils. Moreover, all these sesquiterpene lactones suppressed the adhesion of human neutrophils to an endothelial monolayer by downregulating the expression of the β2 integrin CD11b/CD18 on the neutrophil surface. Furthermore, eupatoriopicrin efficiently suppressed LPS-induced phosphorylation of p38 MAPK and ERK and attenuated neutrophil infiltration in the thioglycolate-induced peritonitis model in mice. Altogether, these results demonstrate the potential of the sesquiterpene lactone eupatoriopicrin as a lead substance for targeting inflammation.
Collapse
Affiliation(s)
- Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy , Medical University of Warsaw , Warsaw 02-097 , Poland
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy , Medical University of Warsaw , Warsaw 02-097 , Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy , Medical University of Warsaw , Warsaw 02-097 , Poland
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innsbruck 6020 , Austria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Science , Jastrzębiec 05-552 , Poland
- Department of Pharmacognosy , University of Vienna , Vienna 1010 , Austria
| | - Shafaat Y Khan
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
- Department of Zoology , University of Sargodha , Sargodha 40010 , Pakistan
| | - Johannes M Breuss
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna 1090 , Austria
| | - Barbara Żyżyńska-Granica
- Department of Pharmacodynamics, Faculty of Pharmacy , Medical University of Warsaw , Warsaw 02-097 , Poland
| | - Anna Stojakowska
- Institute of Pharmacology, Department of Phytochemistry , Polish Academy of Sciences , Kraków 30-024 , Poland
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innsbruck 6020 , Austria
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy , Medical University of Warsaw , Warsaw 02-097 , Poland
| |
Collapse
|
15
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Harbi MM, Ibrahim KE, Kundu S, Attia SM, Alanazi WA, AlSharari SD. Inhibition of spleen tyrosine kinase signaling protects against acute lung injury through blockade of NADPH oxidase and IL-17A in neutrophils and γδ T cells respectively in mice. Int Immunopharmacol 2019; 68:39-47. [PMID: 30611000 DOI: 10.1016/j.intimp.2018.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is one of the most serious complications in critically ill patients which often leads to morbidity and mortality. ALI characterized by severe inflammation of lungs occurs due to uncontrolled inflammatory immune response. However, the immunological mechanism(s) are far from being understood. The spleen tyrosine kinase (SYK), a key component of immune receptor signaling, plays a critical role in the modulation of inflammatory signaling in different immune cells. However, its role in ALI remains to be explored. Therefore, in this study, we investigated the effect of R406, a SYK inhibitor in lipopolysaccharide (LPS)-induced ALI mouse model. LPS led to increased SYK expression in neutrophils and gamma delta (γδ) T cells. This was associated with increased neutrophilic airway inflammation, vascular permeability, myeloperoxidase activity in the lung with upregulated expression of NADPH oxidase (NOX2)/MCP-1/TNF-α in neutrophils and IL-17A in γδ T cells/lung. Pulmonary inflammation was associated with higher mortality in mice with ALI. Inhibition of SYK signaling using R406 in the lung led to blockade of neutrophilic airway inflammation, vascular permeability, pro-inflammatory cytokine release and oxidative stress in innate immune cells, i.e. γδ T cells and neutrophils and the lung. R406 administered LPS group had better survival rate than LPS group. This suggests that SYK upregulation in γδ T cells and neutrophils plays an important role in inflammatory process during ALI. In conclusion, R406 exhibited a great potential to block the LPS-induced airway inflammation and mortality which could be developed as a potential future therapy in ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Swati Kundu
- Department of Biochemistry, South Campus, University of Delhi, New Delhi, India
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Engels NS, Waltenberger B, Michalak B, Huynh L, Tran H, Kiss AK, Stuppner H. Inhibition of Pro-Inflammatory Functions of Human Neutrophils by Constituents of Melodorum fruticosum Leaves. Chem Biodivers 2018; 15:e1800269. [PMID: 30193010 PMCID: PMC6468251 DOI: 10.1002/cbdv.201800269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
Abstract
In an initial screening, the dichloromethane extract from the leaves of Melodorum fruticosum showed distinct inhibitory effects on the release of interleukin-8 (IL-8) in human neutrophils. Therefore, the aim of the present study was the phytochemical and pharmacological investigation of this extract, to better understand which compounds might be responsible for the anti-inflammatory effect. Phytochemical analysis led to the isolation of 12 known compounds and two new natural products, 5-hydroxy-6-(2-hydroxybenzyl)-4',7-dimethoxyflavanone (13) and 2',4'-dihydroxy-3'-(2-hydroxybenzyl)-4,6'-dimethoxychalcone (14). The influence of the isolated compounds on the production and release of the pro-inflammatory factors IL-8, tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and adhesion molecules (CD62L and CD11b) in human neutrophils was evaluated. Three constituents, melodamide A, 2',4'-dihydroxy-4,6'-dimethoxychalcone, and 2',6'-dihydroxy-4'-methoxychalcone, showed significant inhibition of IL-8 release (IC50 =6.6, 8.6, and 11.6 μm, respectively) and TNF-α production (IC50 =4.5, 13.3, and 6.2 μm, respectively).
Collapse
Affiliation(s)
- Nora S Engels
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Loi Huynh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy, 41-43 Đinh Tiên Hoàng, Bến Nghé, Quận 1, Hồ Chí Minh, Vietnam
| | - Hung Tran
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy, 41-43 Đinh Tiên Hoàng, Bến Nghé, Quận 1, Hồ Chí Minh, Vietnam
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Influence of Preparation Methods of Chitooligosaccharides on Their Physicochemical Properties and Their Anti-Inflammatory Effects in Mice and in RAW264.7 Macrophages. Mar Drugs 2018; 16:md16110430. [PMID: 30400250 PMCID: PMC6265923 DOI: 10.3390/md16110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
The methods to obtain chitooligosaccharides are tightly related to the physicochemical properties of the end products. Knowledge of these physicochemical characteristics is crucial to describing the biological functions of chitooligosaccharides. Chitooligosaccharides were prepared either in a single-step enzymatic hydrolysis using chitosanase, or in a two-step chemical-enzymatic hydrolysis. The hydrolyzed products obtained in the single-step preparation were composed mainly of 42% fully deacetylated oligomers plus 54% monoacetylated oligomers, and they attenuated the inflammation in lipopolysaccharide-induced mice and in RAW264.7 macrophages. However, chitooligosaccharides from the two-step preparation were composed of 50% fully deacetylated oligomers plus 27% monoacetylated oligomers and, conversely, they promoted the inflammatory response in both in vivo and in vitro models. Similar proportions of monoacetylated and deacetylated oligomers is necessary for the mixtures of chitooligosaccharides to achieve anti-inflammatory effects, and it directly depends on the preparation method to which chitosan was submitted.
Collapse
|
18
|
Levistilide A Ameliorates NLRP3 Expression Involving the Syk-p38/JNK Pathway and Peripheral Obliterans in Rats. Mediators Inflamm 2018; 2018:7304096. [PMID: 30158835 PMCID: PMC6109531 DOI: 10.1155/2018/7304096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/23/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation is one of the most important pathogeneses of thromboangiitis obliterans (TAO). The NLRP3 inflammasome plays a vital role in the body's immune response and disease development. It can be activated by numerous types of pathogens or danger signals. As the core of the inflammatory response, the NLRP3 inflammasome may provide a new target for the treatment of various inflammatory diseases. Levistilide A (LA) is a phthalide dimer isolated from umbelliferous plants. Its pharmacological effect is largely unknown. This study revealed the effects of LA on endothelial cell activation, NLRP3, IL-1β, TNF-α, IL-32, and CCL-2, VCAM-1, MCP-1, and the spleen tyrosine kinase (Syk)--p38/JNK signaling axis and its effect on vasculitis in rats. Results LA inhibited endothelial activation and the expression of IL-1β, TNF-α, IL-32, CCL-2, VCAM-1, and MCP-1. LA directly obstructed Syk phosphorylation and activity in a dose-dependent manner, inhibited the activity of p38 and JNK, and reduced the expression of NLRP3 in human umbilical vein endothelial cells and vascular tissue of rats with vasculitis. Conclusion LA suppressed NLRP3 gene expression by blocking the Syk--p38/JNK pathway and reduced damage to the rats' limbs in the thromboangiitis obliterans model.
Collapse
|
19
|
Polumuri SK, Haile LA, Ireland DDC, Verthelyi D. Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep 2018; 8:11477. [PMID: 30065306 PMCID: PMC6068171 DOI: 10.1038/s41598-018-29850-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins can induce immune responses that affect their safety and efficacy. Product aggregates and innate immune response modulating impurities (IIRMI) are risk factors of product immunogenicity. In this study, we use Intravenous Immunoglobulin (IVIG), Avastin, and Human Serum Albumin (HSA) to explore whether increased aggregates activate innate immune cells or modify the response to IIRMI. We show that increased aggregates (shaken or stirred) in IVIG and Avastin, but not HSA, induced activation of MAPKs (pp38, pERK and pJNK) and transcription of immune-related genes including IL8, IL6, IL1β, CSF1, CCL2, CCL7, CCL3, CCL24, CXCL2, IRAK1, EGR2, CEBPβ, PPARg and TNFSF15 in human PBMC. The immunomodulatory effect was primarily mediated by FcγR, but not by TLR. Interestingly, increased aggregates in IVIG or Avastin magnified innate immune responses to TLR2/4 agonists, but diminished responses to TLR3/9 agonists. This study shows that IIRMI and aggregates can modify the activity of immune cells potentially modifying the milieu where the products are delivered highlighting the complex interplay of different impurities on product immunogenicity risk. Further, we show that aggregates could modify the sensitivity of PBMC-based assays designed to detect IIRMI. Understanding and managing immunogenicity risk is a critical component of product development and regulation.
Collapse
Affiliation(s)
- Swamy Kumar Polumuri
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Lydia A Haile
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
20
|
Michalak B, Filipek A, Chomicki P, Pyza M, Woźniak M, Żyżyńska-Granica B, Piwowarski JP, Kicel A, Olszewska MA, Kiss AK. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells. Front Pharmacol 2018; 9:401. [PMID: 29740324 PMCID: PMC5928392 DOI: 10.3389/fphar.2018.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MSn) extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release) and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biological activity, and we included the positive control quercetin. Methods: The effect on IL-1β, TNF-α, IL-8, and TGF-α production by leukocytes was measured by enzyme-linked immunosorbent assay (ELISA). The surface expression of adhesion molecules was analyzed with flow cytometry, and the neutrophil attachment to the endothelial cells was assessed fluorimetrically. The effects on p38MAPK, ERK1/2 and JNK phosphorylation were determined using western blots. Results: Leaf extracts had the effect of decreasing TNF-α production in neutrophils and monocyte/macrophage cells. The bio-guided fractionation led to the isolation of the following lignan aglycones: (+)-pinoresinol, (+)-epipinoresinol, (-)-matairesinol, (+)-phillygenin, and (-)-arctigenin. Only phillygenin was able to stimulate the anti-inflammatory function of macrophages by inducing TGF-β release and IL-10 receptor surface expression. Arctigenin, phillygenin, and a metabolite produced by the gut microbiota, enterolactone, decreased TNF-α and IL-1β production and neutrophil adhesion to endothelial cells, probably by attenuating the p38 and ERK kinase pathways. Conclusion:Forsythia x intermedia is a valuable source of active lignans, which may be potential candidates for treating inflammatory diseases that are associated with the excessive production of cytokines such as TNF-α and IL-1β.
Collapse
Affiliation(s)
- Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Chomicki
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Pyza
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Woźniak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Żyżyńska-Granica
- Department of Pharmacodynamics, Faculty of Pharmacy, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Kicel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Monika A Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Woźniak M, Michalak B, Wyszomierska J, Dudek MK, Kiss AK. Effects of Phytochemically Characterized Extracts From Syringa vulgaris and Isolated Secoiridoids on Mediators of Inflammation in a Human Neutrophil Model. Front Pharmacol 2018; 9:349. [PMID: 29695965 PMCID: PMC5904404 DOI: 10.3389/fphar.2018.00349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Aim of the study: The aim of the present study was to investigate the effects of phytochemically characterized extracts connected with the traditional use (infusions and ethanolic extracts) of different parts of Syringa vulgaris (common lilac) on the pro-inflammatory functions of neutrophils. Active compounds were isolated from the most promising extract(s) using bioassay-guided fractionation, and their activity and molecular mechanisms of action were determined. Methods: The extracts were characterized using a HPLC-DAD- MSn method. The effects on ROS, MMP-9, TNF-α, IL-8, and MCP-1 production by neutrophils were measured using luminol-dependent chemiluminescence and enzyme-linked immunosorbent assay (ELISA) methods. The effects on p38MAPK, ERK1/2, JNK phosphorylation, and NF-kB p65 translocation were determined using western blots. Results: The major compounds detected in the extracts and infusions belong to structural groups, including caffeic acid derivatives, flavonoids, and iridoids. All extracts and infusions were able to significantly reduce ROS and IL-8 production. Bioassay-guided fractionation led to the isolation of the following secoiridoids: 2″-epiframeroside, oleonuezhenide, oleuropein, ligstroside, neooleuropein, hydroxyframoside, and framoside. Neooleuropein appeared to be the most active compound in the inhibition of cytokine production by attenuating the MAP kinase pathways. Conclusion: The present study demonstrated that common lilac, which is a traditionally used medicinal plant in Europe, is a valuable source of active compounds, especially neooleuropein.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Michalak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Wyszomierska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences, Lodz, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Abstract
Macrophages (MØs) are a key cell type of both the innate and the adaptive immune response and can tailor their response to prevailing conditions. To sense the host's status, MØs employ two classes of receptors: Toll-like receptors (TLRs), which are sensors for pathogen-derived material, and Fcγ receptors (FcγRs) that are detectors of the adaptive immune response. How MØs integrate the input from these various sensors is not understood and is the focus of active study. Here, we review the recent literature on the molecular mechanisms of TLR and FcgR crosstalk and synergy, and discuss the implications of these findings. This overview suggests a multilayered mechanism of receptor synergy that allows the MØ to fine-tune its response to prevailing conditions and provides ideas for future investigation.
Collapse
Affiliation(s)
- Michelle Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12008, USA
| | - James Drake
- Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12008, USA
| |
Collapse
|
23
|
Alhazmi A, Choi J, Ulanova M. Syk inhibitor R406 downregulates inflammation in an in vitro model of Pseudomonas aeruginosa infection. Can J Physiol Pharmacol 2017; 96:182-190. [PMID: 29020462 DOI: 10.1139/cjpp-2017-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 μmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1β, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.
Collapse
Affiliation(s)
- Alaa Alhazmi
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Joshua Choi
- b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
24
|
Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, Palaniyar N. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Sci Rep 2017; 7:3409. [PMID: 28611461 PMCID: PMC5469795 DOI: 10.1038/s41598-017-03257-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/27/2017] [Indexed: 01/07/2023] Open
Abstract
Neutrophils cast neutrophil extracellular traps (NETs) to ensnare microbial pathogens. Nevertheless, the molecular rheostats that regulate NETosis in response to bacteria are not clearly established. We hypothesized that stress-activated protein kinase or c-Jun N-terminal Kinase (SAPK/JNK) is a molecular switch that turns on NETosis in response to increasing concentrations of lipopolysaccharide (LPS)- and Gram-negative bacteria. Here we show that Escherichia coli LPS (0111:B4; 10–25 μg/ml), but not phorbol myristate acetate (PMA), activates JNK in human neutrophils in a dose-dependent manner. JNK inhibitors SP600125 and TCSJNK6o, and a TLR4 inhibitor TAK242 suppress reactive oxygen species production and NETosis in LPS-, but not PMA-treated neutrophils. Diphenyleneiodonium suppresses LPS-induced NETosis, confirming that endotoxin induces NADPH oxidase-dependent NETosis. Immunoblots, Sytox Green assays, and confocal microscopy of cleaved caspase-3 and nuclear morphology show that JNK inhibition does not induce apoptosis in LPS-stimulated neutrophils. JNK inhibition also suppresses NETosis induced by two typical Gram-negative bacteria, E. coli and Pseudomonas aeruginosa. Therefore, we propose that neutrophils use a TLR4-dependent, JNK-mediated molecular sensing mechanism to initiate NADPH oxidase-dependent suicidal NETosis in response to increasing concentrations of LPS, and Gram-negative bacteria. The LPS-TLR4-JNK activation axis determines the fate of these cells: to be or not to be NETotic neutrophils.
Collapse
Affiliation(s)
- Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Armin Farahvash
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David N Douda
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Johann-Christoph Licht
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil Sweezey
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Berntsen HF, Fonnum F, Walaas SI, Bogen IL. Low-Chlorinated Non-Dioxin-like Polychlorinated Biphenyls Present in Blood and Breast Milk Induce Higher Levels of Reactive Oxygen Species in Neutrophil Granulocytes than High-Chlorinated Congeners. Basic Clin Pharmacol Toxicol 2016; 119:588-597. [PMID: 27194217 DOI: 10.1111/bcpt.12620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/02/2016] [Indexed: 11/30/2022]
Abstract
Despite their ban several decades ago, polychlorinated biphenyls (PCBs) still pose a health threat to human beings due to their persistent and accumulative nature and continued presence in the environment. Non-dioxin-like (NDL)-PCBs have earlier been found to have effects on the immune system, including human neutrophil granulocytes. The aim of this study was to investigate the differences between ortho-chlorinated NDL-PCBs with a low or high degree of chlorination in their capability to induce the production of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We used some of the congeners occurring at the highest levels in blood, breast milk and food: PCB 52 representing the low-chlorinated congeners and PCB 180 the high-chlorinated congeners. In addition, the extensively studied PCB 153 was included as a reference compound. ROS production was assessed with the luminol-amplified chemiluminescence and DCF fluorescence assays. The involvement of intracellular signalling mechanisms was investigated using different pharmacological substances. At high concentrations (10-20 μM), PCB 52 induced more ROS than PCB 153 and PCB 180. The role of extracellular signal-regulated kinase (ERK) 1/2 and/or ERK 5 signalling in PCB-induced ROS production was implicated through the reduction in ROS in the presence of the specific inhibitor U0126, whereas reduced ROS production after the use of SB203580 and SP600125 indicated the involvement of the p38 mitogen-activated protein kinase (MAPK) and c-Jun amino-terminal kinase (JNK) pathways, respectively. In addition, the calcineurin inhibitor FK-506, the intracellular calcium chelator BAPTA-AM and the antioxidant vitamin E reduced the levels of ROS. The intracellular signalling mechanisms involved in ROS production in human neutrophil granulocytes appeared to be similar for PCB 52, PCB 153 and PCB 180. Based on the results from the present and previous studies, we conclude that for abundant ortho-chlorinated PCBs found in the blood, low-chlorinated congeners induce higher production of ROS in neutrophil granulocytes than high-chlorinated congeners. This could be relevant during acute exposure scenarios when high concentrations of PCBs are present.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, Oslo, Norway
| | - Frode Fonnum
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sven Ivar Walaas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Inger Lise Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Yin H, Zhou H, Kang Y, Zhang X, Duan X, Alnabhan R, Liang S, Scott DA, Lamont RJ, Shang J, Wang H. Syk negatively regulates TLR4-mediated IFNβ and IL-10 production and promotes inflammatory responses in dendritic cells. Biochim Biophys Acta Gen Subj 2015; 1860:588-98. [PMID: 26708990 DOI: 10.1016/j.bbagen.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND While Syk has been shown to associate with TLR4, the immune consequences of Syk-TLR interactions and related molecular mechanisms are unclear. METHODS Gain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting. RESULTS Syk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr-Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K-Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses. CONCLUSIONS Syk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K-Akt and NF-κB signaling pathways. GENERAL SIGNIFICANCE Syk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.
Collapse
Affiliation(s)
- Hui Yin
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Huaxin Zhou
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Xiaoju Zhang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Ridab Alnabhan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China.
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
27
|
Choi HJ, Park SY, Cho JH, Park JW, Sohn JH, Kim YJ, Oh JW, Han JS. The TLR4-associated phospholipase D1 activation is crucial for Der f 2-induced IL-13 production. Allergy 2015; 70:1569-79. [PMID: 26335962 DOI: 10.1111/all.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND House dust mites (HDMs) are the most important source of indoor aeroallergens that contribute to the rising incidence of allergic diseases such as allergic asthma. The major HDM, Der f 2, induces inflammatory cytokine expression. Little is known about the signaling pathway involved. OBJECTIVE We wanted to define the Der f 2 signaling pathway from its receptor to the transcription factor responsible for IL-13 expression and production. METHODS Human bronchial epithelial cells were stimulated with Der f 2. The release and gene expression of IL-13 were measured by means of ELISA and RT-PCR, respectively. In the airway inflammation mouse model, airway responses were assessed using ELISA, histology, BAL fluid, and methacholine responsiveness. RESULTS Here, we show that Der f 2 binds to TLR4 and induces IL-13 expression and production. In the airway inflammation mouse model, Der f 2-induced IL-13 production significantly decreased with treatment of TAK-242, a novel TLR4 inhibitor. Activation of TLR4 by Der f 2 requires the recruitment and activation of Syk, which leads to phosphorylation of PLCγ and membrane translocation of PKCα. p38 MAPK is then activated by PKCα and stimulates PLD1 activity by phosphorylating the Thr147 residue of PLD1. PLD1 activation enhanced binding of ROCK1 to ATF-2 and leads to increased expression of IL-13. CONCLUSION Our data extend the knowledge for a variety of possible roles of PLD1 in allergic disorders including asthma pathogenesis and suggest possible candidacy of PLD1 as a molecular target for novel therapeutic approaches.
Collapse
Affiliation(s)
- H.-J. Choi
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology; College of Medicine; Hanyang University; Seoul Korea
| | - S.-Y. Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology; College of Medicine; Hanyang University; Seoul Korea
| | - J. H. Cho
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology; College of Medicine; Hanyang University; Seoul Korea
| | - J.-W. Park
- Department of Internal Medicine and Institute of Allergy; College of Medicine; Yonsei University; Seoul Korea
| | - J.-H. Sohn
- Department of Internal Medicine and Institute of Allergy; College of Medicine; Yonsei University; Seoul Korea
| | - Y.-J. Kim
- Department of Internal Medicine and Institute of Allergy; College of Medicine; Yonsei University; Seoul Korea
| | - J.-W. Oh
- Department of Pediatrics; College of Medicine; Hanyang University; Seoul Korea
| | - J.-S. Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology; College of Medicine; Hanyang University; Seoul Korea
| |
Collapse
|
28
|
Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1α, and IP-10 via similar but distinct signaling pathways in murine macrophages. Immunobiology 2015; 220:1067-74. [DOI: 10.1016/j.imbio.2015.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/18/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
|
29
|
Xu M, Wang S, Qi Y, Chen L, Frank JA, Yang XH, Zhang Z, Shi X, Luo J. Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Mol Carcinog 2015; 55:1002-11. [PMID: 26014148 DOI: 10.1002/mc.22343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate that alcohol consumption is associated with an increased risk of colorectal cancer (CRC). In addition to promoting carcinogenesis, alcohol may also accelerate the progression of existing CRC. We hypothesized that alcohol may enhance the aggressiveness of CRC. In this study, we investigated the effect of alcohol on the migration/invasion and metastasis of CRC. Alcohol increased the migration/invasion of colorectal cancer cells (DLD1, HCT116, HT29, and SW480) in a concentration-dependent manner. Among these colon cancer cell lines, HCT116 cells were most responsive while HT29 cells were the least responsive to ethanol-stimulated cell migration/invasion. These in vitro results were supported by animal studies which demonstrated that ethanol enhanced the metastasis of colorectal cancer cells to the liver and lung. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays an important role in regulating tumor microenvironment and metastasis. Alcohol increased the expression of MCP-1 and its receptor CCR2 at both protein and mRNA levels. The pattern of alcohol-induced alterations in MCP-1 expression was consistent with its effect on migration/invasion; HCT116 cells displayed the highest up-regulation of MCP-1/CCR2 in response to alcohol exposure. An antagonist of CCR2 blocked alcohol-stimulated migration. Alcohol caused an initial cytosolic accumulation of β-catenin and its subsequent nuclear translocation by inhibiting GSK3β activity. Alcohol stimulated the activity of MCP-1 gene promoter in a β-catenin-dependent manner. Furthermore, knock-down of MCP-1/CCR2 or β-catenin was sufficient to inhibit alcohol-induced cell migration/invasion. Together, these results suggested that alcohol may promote the metastasis of CRC through modulating GSK3β/β-catenin/MCP-1 pathway.
Collapse
Affiliation(s)
- Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Siying Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky.,Pathophysiological Department, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yuanlin Qi
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Li Chen
- Pathophysiological Department, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
30
|
Shirshev SV. Molecular mechanisms of hormonal and hormonal-cytokine control of immune tolerance in pregnancy. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814050079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Brungs S, Kolanus W, Hemmersbach R. Syk phosphorylation - a gravisensitive step in macrophage signalling. Cell Commun Signal 2015; 13:9. [PMID: 25644261 PMCID: PMC4326470 DOI: 10.1186/s12964-015-0088-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recognition of pathogen patterns followed by the production of reactive oxygen species (ROS) during the oxidative burst is one of the major functions of macrophages. This process is the first line of defence and is crucial for the prevention of pathogen-associated diseases. There are indications that the immune system of astronauts is impaired during spaceflight, which could result in an increased susceptibility to infections. Several studies have indicated that the oxidative burst of macrophages is highly impaired after spaceflight, but the underlying mechanism remained to be elucidated. Here, we investigated the characteristics of reactive oxygen species production during the oxidative burst after pathogen pattern recognition in simulated microgravity by using a fast-rotating Clinostat to mimic the condition of microgravity. Furthermore, spleen tyrosine kinase (Syk) phosphorylation, which is required for ROS production, and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) to the nucleus were monitored to elucidate the influence of altered gravity on macrophage signalling. RESULTS Simulated microgravity leads to significantly diminished ROS production in macrophages upon zymosan, curdlan and lipopolysaccharide stimulation. To address the signalling mechanisms involved, Syk phosphorylation was examined, revealing significantly reduced phosphorylation in simulated microgravity compared to normal gravity (1 g) conditions. In contrast, a later signalling step, the translocation of NF-κB to the nucleus, demonstrated no gravity-dependent alterations. CONCLUSIONS The results obtained in simulated microgravity show that ROS production in macrophages is a highly gravisensitive process, caused by a diminished Syk phosphorylation. In contrast, NF-κB signalling remains consistent in simulated microgravity. This difference reveals that early signalling steps, such as Syk phosphorylation, are affected by microgravity, whereas the lack of effects in later steps might indicate adaptation processes. Taken together, this study clearly demonstrates that macrophages display impaired signalling upon pattern recognition when exposed to simulated microgravity conditions, which if verified in real microgravity this may be one reason why astronauts display higher susceptibility to infections.
Collapse
Affiliation(s)
- Sonja Brungs
- Biomedical Research Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147, Koeln, Germany.
| | - Waldemar Kolanus
- Molecular Immunology, LIMES Institute, University of Bonn, Carl-Troll Str. 31, 53115, Bonn, Germany.
| | - Ruth Hemmersbach
- Biomedical Research Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147, Koeln, Germany.
| |
Collapse
|
32
|
p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 2014; 4:7405. [PMID: 25502009 PMCID: PMC4264013 DOI: 10.1038/srep07405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
In CNS lesions, “reactive astrocytes” form a prominent cellular response. However, the nature of this astrocyte immune activity is not well understood. In order to study astrocytic immune responses to inflammation and injury, we generated mice with conditional deletion of p38α (MAPK14) in GFAP+ astrocytes. We studied the role of p38α signaling in astrocyte immune activation both in vitro and in vivo, and simultaneously examined the effects of astrocyte activation in CNS inflammation. Our results showed that specific subsets of cytokines (TNFα, IL-6) and chemokines (CCL2, CCL4, CXCL1, CXCL2, CXCL10) are critically regulated by p38α signaling in astrocytes. In an in vivo CNS inflammation model of intracerebral injection of LPS, we observed markedly attenuated astrogliosis in conditional GFAPcre p38α−/− mice. However, GFAPcre p38α−/− mice showed marked upregulation of CCL2, CCL3, CCL4, CXCL2, CXCL10, TNFα, and IL-1β compared to p38αfl/fl cohorts, suggesting that in vivo responses to LPS after GFAPcre p38α deletion are complex and involve interactions between multiple cell types. This finding was supported by a prominent increase in macrophage/microglia and neutrophil recruitment in GFAPcre p38α−/− mice compared to p38αfl/fl controls. Together, these studies provide important insights into the critical role of p38α signaling in astrocyte immune activation.
Collapse
|
33
|
Kolb JP, Casella CR, SenGupta S, Chilton PM, Mitchell TC. Type I interferon signaling contributes to the bias that Toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Sci Signal 2014; 7:ra108. [PMID: 25389373 PMCID: PMC4459894 DOI: 10.1126/scisignal.2005442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by Toll-like receptor 4 (TLR4) is mediated by either of two adaptor proteins: myeloid differentiation marker 88 (MyD88) or Toll-interleukin-1 (IL-1) receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF). Whereas MyD88-mediated signaling leads to proinflammatory responses, TRIF-mediated signaling leads to less toxic immunostimulatory responses that are beneficial in boosting vaccine responses. The hypothesis that monophosphorylated lipid A structures act as TRIF-biased agonists of TLR4 offered a potential mechanism to explain their clinical value as vaccine adjuvants, but studies of TRIF-biased agonists have been contradictory. In experiments with mouse dendritic cells, we found that irrespective of the agonist used, TLR4 functioned as a TRIF-biased signaling system through a mechanism that depended on the autocrine and paracrine effects of type I interferons. The TLR4 agonist synthetic lipid A induced expression of TRIF-dependent genes at lower concentrations than were necessary to induce the expression of genes that depend on MyD88-mediated signaling. Blockade of type I interferon signaling selectively decreased the potency of lipid A (increased the concentration required) in inducing the expression of TRIF-dependent genes, thereby eliminating adaptor bias. These data may explain how high-potency TLR4 agonists can act as clinically useful vaccine adjuvants by selectively activating TRIF-dependent signaling events required for immunostimulation, without or only weakly activating potentially harmful MyD88-dependent inflammatory responses.
Collapse
Affiliation(s)
- Joseph P Kolb
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Carolyn R Casella
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Shuvasree SenGupta
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Paula M Chilton
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
34
|
Low pH environmental stress inhibits LPS and LTA-stimulated proinflammatory cytokine production in rat alveolar macrophages. BIOMED RESEARCH INTERNATIONAL 2013; 2013:742184. [PMID: 24288685 PMCID: PMC3830824 DOI: 10.1155/2013/742184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs) is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2) and TLR4, using isolated rat alveolar macrophages (aMØs). We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-α, MCP-1, and IFN-β). LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway) and TLR4 signaling (MyD88 and TRIF pathways). The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.
Collapse
|
35
|
Lin YC, Huang DY, Chu CL, Lin YL, Lin WW. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013; 6:ra71. [PMID: 23962979 DOI: 10.1126/scisignal.2003973] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) are a major family of pattern recognition receptors, and they play a crucial role in innate immune responses. Activation of TLR4 signaling at the plasma membrane by its ligand lipopolysaccharide (LPS) stimulates a proinflammatory pathway dependent on the E3 ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6) and the kinase TAK1 (transforming growth factor β-activated kinase 1), whereas TLR4 signaling at endosomes stimulates the production of type I interferons (IFNs) through a pathway that depends on TRAF3 and the kinase TBK1 (TANK-binding kinase-1). We found that the nonreceptor tyrosine kinase Syk partially mediated the endocytosis of TLR4, but it also played a dual role in TLR4-mediated signaling. LPS-dependent stimulation of TLR4 in Syk-deficient macrophages led to enhanced activation of TAK1 and increased production of proinflammatory cytokines compared to that in wild-type macrophages. In contrast, Syk-deficient macrophages exhibited decreased TLR4-dependent activation of TBK1 signaling and production of type I IFNs. We found that Syk was present in both TRAF6- and TRAF3-containing signaling complexes; however, the LPS-dependent, lysine 63-linked ubiquitination of TRAF6 and TRAF3 was oppositely regulated by Syk. We identified the domains of Syk that interacted with TRAF3, TRAF6, TAK1, and TBK1, factors activated by multiple TLRs, which suggests that Syk may act as a common regulator of various TLR responses. Together, our results demonstrate the opposing regulatory roles of Syk in TLR-mediated TRAF6 and TRAF3 signaling pathways, which suggests that Syk may fine-tune the innate immune response to lessen inflammation.
Collapse
Affiliation(s)
- Ying-Cing Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Chiu YH, Lu YC, Ou CC, Lin SL, Tsai CC, Huang CT, Lin MY. Lactobacillus plantarum MYL26 induces endotoxin tolerance phenotype in Caco-2 cells. BMC Microbiol 2013; 13:190. [PMID: 23937116 PMCID: PMC3751156 DOI: 10.1186/1471-2180-13-190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Crohn's disease and ulcerative colitis are the major types of chronic inflammatory bowel disease occurring in the colon and small intestine. A growing body of research has proposed that probiotics are able to attenuate the inflammatory symptoms of these diseases in vitro and in vivo. However, the mechanism of probiotic actions remains unclear. RESULTS Our results suggested Lactobacillus plantarum MYL26 inhibited inflammation in Caco-2 cells through regulation of gene expressions of TOLLIP, SOCS1, SOCS3, and IκBα, rather than SHIP-1 and IRAK-3. CONCLUSIONS We proposed that live/ heat-killed Lactobacillus plantarum MYL26 and bacterial cell wall extract treatments impaired TLR4-NFκb signal transduction through Tollip, SOCS-1 and SOCS-3 activation, thus inducing LPS tolerance. Our findings suggest that either heat-killed probiotics or probiotic cell wall extracts are able to attenuate inflammation through pathways similar to that of live bacteria.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan
| | - Chu-Chyn Ou
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiao-Lin Lin
- Department of Neurology, Chong Guang Hospital, MiaoLi County, Taiwan
| | - Chin-Chi Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | - Chien-Tsai Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| |
Collapse
|
37
|
Miller YI, Choi SH, Wiesner P, Bae YS. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 2013; 167:990-9. [PMID: 22776094 DOI: 10.1111/j.1476-5381.2012.02097.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is the best known for its involvement in immune receptor signalling, mediated by binding of SYK tandem Src-homology 2 domains to tandem phosphotyrosine in immunoreceptor tyrosine-based activation motifs (ITAMs). ITAM adaptors or ITAM-containing receptor tails mediate signalling from B- and T-cell receptors, Fc receptors and many C-type lectins, including dectin-1. Recent data point to constitutive binding of SYK to the cytoplasmic domain of toll-like receptor-4 (TLR4). This SYK-TLR4 binding increases upon TLR4 dimerization and phosphorylation, and SYK plays a prominent role in TLR4 signalling in response to LPS in neutrophils and monocytes. SYK also plays an important role in TLR4-mediated macrophage responses to minimally oxidized low-density lipoprotein (mmLDL), which is a form of oxidized LDL relevant to development of human atherosclerosis. Interestingly, mmLDL-induced effects in macrophages, which occur via TLR4, are predominantly MyD88 independent. This unmasks the role of the SYK branch of TLR4 signalling, which mediates modest cytokine release via activation of AP-1 transcription and robust reactive oxygen species generation and cytoskeletal rearrangements. The latter results in extensive membrane ruffling and macropinocytosis, leading to lipoprotein uptake and foam cell formation, a hallmark of atherosclerotic lesions. Because inhibitors of SYK activity, such as fostamatinib, are in advanced clinical trials for rheumatoid arthritis and other autoimmune diseases, understanding the role of SYK in signalling via TLR4 is of immediate importance. This signalling pathway seems to be particularly important in TLR4 activation by host-derived, damage-associated molecular pattern ligands, such as mmLDL, relevant to development of atherosclerosis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
38
|
Cohen G, Raupachova J, Hörl WH. The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrol Dial Transplant 2012; 28:421-9. [PMID: 23229930 DOI: 10.1093/ndt/gfs454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The activation of polymorphonuclear leucocytes (PMNLs) causes inflammation and as a result cardiovascular disease, which is a main risk factor for increased morbidity and mortality in patients with chronic kidney disease. Toxins accumulating in uraemic patients play a major role in modulating essential PMNL functions and apoptosis, the latter being crucial for a coordinated resolution of inflammation. One uraemic toxin is phenylacetic acid (PAA). We therefore investigated whether PAA contributes to the deranged immune response in uraemia by modulating PMNL activities. METHODS PMNL oxidative burst, phagocytosis and surface expression of the activation markers CD11b and CD18 were measured by flow cytometry in whole blood from healthy subjects in the presence and absence of PAA. Spontaneous apoptosis of isolated PMNLs was assessed by evaluating morphological features under the fluorescence microscope and by measuring the DNA content by flow cytometry. PMNL chemotaxis was tested by the under-agarose method. RESULTS PAA significantly enhanced the stimulation of PMNL oxidative burst by Escherichia coli, phagocytosis of E. coli by PMNLs and the expression of CD11b and CD18 at the PMNL surface. PAA significantly decreased PMNL apoptosis resulting in an increased percentage of viable cells. PAA affected neither the oxidative burst stimulated by phorbol-12-myristate-13-acetate nor PMNL chemotaxis. CONCLUSIONS PAA increases the activation of various PMNL functions and the expression of surface activation markers, while it attenuates PMNL apoptotic cell death. Therefore, PAA may contribute to the inflammatory state and consequently to increased cardiovascular risk in uraemic patients.
Collapse
Affiliation(s)
- Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
39
|
Effect of locally administered Syk siRNA on allergen-induced arthritis and asthma. Mol Immunol 2012; 53:52-9. [PMID: 22796951 DOI: 10.1016/j.molimm.2012.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022]
Abstract
New approaches for the treatment of inflammatory disorders such as rheumatic arthritis (RA) and inflammatory lung disease (asthma) are needed because a significant population of patients do not experience sustained relief with currently available therapies. The tyrosine kinase Syk plays a crucial role in inflammatory signaling pathways and has gained much attention as a potential target for treatment of inflammatory disorders. We have shown that our Syk siRNA injected directly into limb joints of arthritic mice, diminishes joint swelling and reduces levels of Syk kinase and inflammatory cytokines in joint tissue. Further, our Syk siRNA, administered via nasal instillation, inhibits recruitment of inflammatory cells to the bronchoalveolar fluid of allergen-sensitized mice. We propose that targeting Syk via localized application of Syk siRNA provides an opportunity for specific knockdown of Syk kinase with minimal potential for systemic effects.
Collapse
|
40
|
Qian ZY, Shen LJ, Wang F, Ruan YH. Pretreatment with Panax notoginseng saponins protects against small intestinal ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:1178-1183. [DOI: 10.11569/wcjd.v20.i14.1178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism underlying the protective effect of Panax notoginseng saponins (PNS) against intestinal ischemia-reperfusion injury in rats.
METHODS: A rat model of intestinal ischemia-reperfusion injury was generated. Rats were divided into four groups: sham-operation group, model control group, low- (200 mg/kg) and high-dose (400 mg/kg) PNS groups. After pretreatment with PNS, plasma levels of D-lactate and lipopolysaccharide (LPS) were determined.Samples of the liver, spleen, mesenteric lymph nodes and blood were taken for culturing aerobic bacteria. The expression of NF-κB and TNF-α in the intestine was detected by immunohistochemistry. Cell apoptosis in the intestine was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay.
RESULTS: The number of positive bacterial cultures in the liver, spleen, mesenteric lymph nodes and blood was significantly lower in the PNS group than in the model control group (all P < 0.05). Plasma levels of D-lactate and LPS were significantly lower in the PNS group (200 mg/kg, 400 mg/kg) than in the model control group (LPS: 461 EU/L, 320 EU/L vs 570 EU/L; D-lactate: 0.37 mmol/L, 0.31 mmol/L vs 0.44 mmol/L, both P < 0.05). Treatment with PNS reduced the expression of NF-κB and TNF-α and the number of apoptotic cells in intestinal tissue (all P < 0.05).
CONCLUSION: Pretreatment with PNS protects against intestinal ischemia-reperfusion injury in rats possibly by reducing mucosal cell apoptosis and down-regulating NF-κB and TNF-α expression in the small intestine.
Collapse
|
41
|
Lu R, Pan H, Shively JE. CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS Pathog 2012; 8:e1002597. [PMID: 22496641 PMCID: PMC3320586 DOI: 10.1371/journal.ppat.1002597] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/08/2012] [Indexed: 01/07/2023] Open
Abstract
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation. Pathogens often evade the immune system by directly binding to and inhibiting neutrophils, abundant white cells that accumulate at the site of infection. For example Gram-negative Neisseria pathogens, such as those that cause gonorrhea or meningitis, bind the neutrophil receptor CEACAM1. Gram-negative bacteria express lipopolysaccharide (LPS) that interacts with toll-like receptor-4 (TLR4) on neutrophils. Since CEACAM1 is an inhibitory receptor, we hypothesized that LPS activation of TLR4 would be inhibited. In this paper we show that this is the case and that the mechanism of LPS inhibition involves induction of a complex between the LPS receptor TLR4, CEACAM1 and an activating kinase called Syk. In the presence of CEACAM1, an inhibitory phosphatase (opposes the kinase) is recruited to the complex that prevents the activation of Syk. The net effect is the inhibition of the pathway that normally leads to the production of the pro-inflammatory cytokine IL-1β. We show that this inhibition is lost in CEACAM1 deficient neutrophils leading to hyper production of IL-1β. We think that CEACAM1 fine-tunes the normal inflammatory response at the site of infection preventing hyper-inflammation, but in the case of Gram-negative pathogens that actually bind to neutrophils, inflammation is further blunted, favoring the infectious process.
Collapse
Affiliation(s)
- Rongze Lu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Hao Pan
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - John E. Shively
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Park DW, Lee HK, Jeong TW, Kim JS, Bae YS, Chin BR, Baek SH. The JAK2-Akt-glycogen synthase kinase-3β signaling pathway is involved in toll-like receptor 2-induced monocyte chemoattractant protein-1 regulation. Mol Med Rep 2012; 5:1063-7. [PMID: 22218715 PMCID: PMC3493083 DOI: 10.3892/mmr.2012.741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/21/2011] [Indexed: 12/27/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is an essential cytokine for the migration of monocytes into vessels, and is also involved in the pathogenesis of atherosclerosis. In this study, we investigated the importance of janus kinase 2 (JAK2) and the function of the Akt and glycogen synthase kinase-3β (GSK3β) pathway in toll-like receptor (TLR2)-mediated MCP-1 expression. The TLR2 agonist, Pam3CSK4, induced MCP-1 expression in the Raw264.7 cell line. The induction of MCP-1 was seen in the bone marrow-derived macrophages of wild-type mice but not in TLR2 knockout mice. The TLR2-mediated MCP-1 induction was myeloid differentiation primary response gene 88 (MyD88)-independent. By contrast, the inactivation of JAK2 attenuated TLR2-mediated MCP-1 expression. The JAK inhibitor suppressed the phosphorylation of GSK3β as well as Akt by Pam3CSK4 stimulation. While the inactivation of Akt by LY294002 suppressed TLR2-mediated MCP-1 induction, the inactivation of GSK3β by LiCl potentiated TLR2-mediated MCP-1 induction. Furthermore, Akt inhibitor suppressed TLR2-mediated phosphorylation of GSK3β. Taken together, these results suggest that a MyD88-independent pathway exists in TLR2 signaling; the JAK2-Akt-GSK3β pathway is a novel MyD88-independent pathway for MCP-1 induction.
Collapse
Affiliation(s)
- Dae-Weon Park
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, 210 Main Building, College of Medicine, Yeungnam University, Daegu 705-802, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Suppression of the stem cell antigen-1 response and granulocyte lineage expansion by alcohol during septicemia. Crit Care Med 2011; 39:2121-30. [PMID: 21602669 DOI: 10.1097/ccm.0b013e31821e89dc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Granulocytopenia frequently occurs in alcohol abusers with severe bacterial infection, which strongly correlates with poor clinical outcome. Knowledge of the molecular mechanisms underlying the granulopoietic response to bacterial infection remains limited. This study investigated the involvement of stem cell antigen-1 expression by granulocyte lineage-committed progenitors in the granulopoietic response to septicemia and how alcohol affected this response. DESIGN : Laboratory investigation. SETTING University laboratory. SUBJECTS Male Balb/c mice. INTERVENTIONS Thirty mins after intraperitoneal injection of alcohol (20% ethanol in saline at 5 g of ethanol/kg) or saline, mice received an intravenous Escherichia coli challenge. MEASUREMENTS AND MAIN RESULTS E. coli septicemia activated stem cell antigen-1 expression by marrow immature granulocyte differentiation antigen-1 precursors which correlated with an increase in proliferation, granulocyte macrophage colony-forming unit production, and expansion of this granulopoietic precursor cell pool. Acute alcohol treatment suppressed stem cell antigen-1 activation and inhibited the infection-induced increases in proliferation, granulocyte macrophage colony-forming unit production, and expansion the of immature granulocyte differentiation antigen-1 precursor cell population. Consequently, recovery of the marrow mature granulocyte differentiation antigen-1 cell population after E. coli challenge was impaired. Stem cell antigen-1 was induced in sorted granulocyte differentiation antigen-1, stem cell antigen-1' cells by lipopolysaccharide-stimulated C-Jun kinase activation that was also inhibited by alcohol. Furthermore, stem cell antigen-1 knockout mice failed to expand the marrow immature granulocyte differentiation antigen-1 cell pool and demonstrated fewer newly produced granulocytes in the circulation after the E. coli challenge. CONCLUSIONS Alcohol suppresses the stem cell antigen-1 response in granulocyte lineage-committed precursors and restricts granulocyte production during septicemia, which may serve as a novel mechanism underlying impaired host defense in alcohol abusers.
Collapse
|
44
|
Avila M, Gonzalez-Espinosa C. Signaling through Toll-like receptor 4 and mast cell-dependent innate immunity responses. IUBMB Life 2011; 63:873-80. [PMID: 21905201 DOI: 10.1002/iub.555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/12/2011] [Indexed: 12/17/2022]
Abstract
Signal transduction through Toll-like receptors (TLRs) has been one of the main topics in immunology research in recent years. Because of their signaling particularities based on the homotypic recognition of protein domains in multiple adaptors and selective activation of protein kinases, TLRs have become a paradigm to study ligand recognition coupled to dynamic and highly specific transcriptional and secretory responses in immune cells. Particularly, deleterious effects of Gram-negative bacteria-associated immune reactions has promoted intense research in the field, leading to the description of a number of canonical molecules connecting lipopolysaccharide-induced TLR4 activation with NFκB-dependent transcription. However, the diversity of immune cell phenotypes and the activity of distinct immune receptors in the same cell, strongly suggest that a number of elements in TLR4 signaling cascade, such as novel coreceptors, tyrosine kinases, and molecules regulating the secretion of preformed mediators remain to be described. Recent investigations have placed the mast cells, widely known by their role on allergic responses, as important effectors of innate immunity reactions against Gram-negative bacteria. Their remarkable capacity of cytokine storage, synthesis and release, and the large number of inflammatory reactions controlled by their activation, suggest the existence of new modulators of TLR4 signaling in this particular cell type.
Collapse
Affiliation(s)
- Martin Avila
- Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | |
Collapse
|
45
|
Activation of the PI3K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells. Cell Signal 2011; 23:866-75. [DOI: 10.1016/j.cellsig.2011.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/13/2011] [Indexed: 12/21/2022]
|
46
|
Lipopolysaccharide-induced intestinal motility disturbances are mediated by c-Jun NH2-terminal kinases. Dig Liver Dis 2011; 43:277-85. [PMID: 21168375 DOI: 10.1016/j.dld.2010.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/09/2010] [Accepted: 10/17/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) is a causative agent of sepsis. Many alterations, such as intestinal motility disturbances, have been attributed to LPS. AIMS Here we investigated the role of c-Jun NH(2)-terminal kinases (JNK) in the effect of LPS on intestinal motility, the oxidative stress status and the cyclooxygenese-2 (COX-2) expression. METHODS Rabbits were injected with either (1) saline, (2) LPS, (3) SP600125, a specific JNK inhibitor, or (4) SP600125+LPS. Duodenal contractility was studied in an organ bath. The formation of products of oxidative damage to proteins (carbonyls) and lipids [malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA)] was quantified by spectrophotometry in the intestine and plasma. The protein expression of p-JNK, total JNK, and COX-2 was measured by Western blot, and p-JNK was localized by immunohistochemistry. RESULTS LPS decreased the contractions evoked by acetylcholine and prostaglandin E(2) and KCl-induced contractions. LPS increased phospho-JNK and COX-2 expressions and the levels of carbonyls and MDA+4-HDA. SP600125 blocked the effect of LPS on the acetylcholine, prostaglandin E(2), and KCl-induced contractions, the levels of carbonyls and MDA+4-HDA, and the p-JNK and COX-2 expressions. p-JNK was detected in the smooth muscle cells of duodenum. CONCLUSION Our results suggest that JNK is involved in the mechanism of action of LPS in the intestine.
Collapse
|
47
|
Stevens M, Peelman L, De Spiegeleer B, Pezeshki A, Van De Walle G, Duchateau L, Burvenich C. Differential gene expression of the toll-like receptor-4 cascade and neutrophil function in early- and mid-lactating dairy cows. J Dairy Sci 2011; 94:1277-88. [DOI: 10.3168/jds.2010-3563] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/24/2010] [Indexed: 12/29/2022]
|
48
|
Jia X, Liu B, Ye M, Liu H, Shi X. Silica induces cell cycle changes through PI-3K/AP-1 pathway in human embryo lung fibroblast cells. Cell Biochem Funct 2011; 28:613-9. [PMID: 20941752 DOI: 10.1002/cbf.1699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to silica is associated with progressive pulmonary inflammation and fibrosis. Our previous study had demonstrated silica exposure could cause cell cycle alternation and activator protein-1 (AP-1) activation. This study showed that silica exposure induced phosphorylation of p70S6 kinase (p70S6K) and Akt in human embryo lung fibroblasts (HELFs). These changes were blocked by overexpression of dominant-negative mutants of phosphatidylinositol-3 kinase (Δp85) or Akt (DN-Akt), respectively. Moreover, pretreatment of cells with rapamycin, a specific p70S6K inhibitor, could inhibit silica-induced cell cycle alteration, AP-1 activation, and phosphorylation of p70S6K, but had no effect on Akt phosphorylation. This suggested that phosphatidylinositol-3 kinase (PI-3K)/AP-1 pathway was likely responsible for cell cycle changes. Furthermore, we observed the effect of the pathway on cell cycle regulatory proteins. Our results indicated that inactivation of PI-3K, Akt, or p70S6K could inhibit silica-induced overexpression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) and decreased expression of E2F-4. Taken together, silica could induce cell cycle changes through PI-3K/ AP-1 pathway in HELFs.
Collapse
Affiliation(s)
- Xiaowei Jia
- National Institute of Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. FIBROGENESIS & TISSUE REPAIR 2010; 3:21. [PMID: 20964825 PMCID: PMC2984459 DOI: 10.1186/1755-1536-3-21] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/21/2010] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans, single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of fibrogenesis and facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jinsheng Guo
- Division of Liver Diseases, Mount Sinai Hospital, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
50
|
Gelbard HA, Dewhurst S, Maggirwar SB, Kiebala M, Polesskaya O, Gendelman HE. Rebuilding synaptic architecture in HIV-1 associated neurocognitive disease: a therapeutic strategy based on modulation of mixed lineage kinase. Neurotherapeutics 2010; 7:392-8. [PMID: 20880503 PMCID: PMC2948545 DOI: 10.1016/j.nurt.2010.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022] Open
Abstract
Work from our laboratories has validated mixed lineage kinase type 3 (MLK3) as an enzyme pathologically activated in the CNS by human immunodeficiency virus 1 (HIV-1) neurotoxins. In this review, we discuss MLK3 activation in the context of the neuropathogenesis of HIV-1 associated neurocognitive deficits (HAND). We use findings from the literature to substantiate the neuropathologic relevance of MLK3 to neurodegenerative disease, with an emphasis on Parkinson's disease that shares a number of important phenotypic and neuropathologic characteristics with HAND. We discuss signal transduction pathways downstream from MLK3 activation, with an emphasis on their involvement in microglia and neurons in preclinical models of HAND. Finally, we make a case for pharmacologic intervention targeted at inhibition of MLK3 as a strategy to reverse HAND, in light of the fact that combination antiretroviral therapy, despite successfully managing systemic infection of HIV-1, has been largely unsuccessful in eradicating HAND.
Collapse
Affiliation(s)
- Harris A Gelbard
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | | | |
Collapse
|