1
|
Mannes AJ, Heiss JD, Berger A, Alewine CC, Butman JA, Hughes MS, Rabbee N, Hayes C, Williams TS, Sapio MR, Iadarola MJ. Treatment of Intractable Cancer Pain with Resiniferatoxin - An Interim Study. NEJM EVIDENCE 2025; 4:EVIDoa2400423. [PMID: 40423401 DOI: 10.1056/evidoa2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
BACKGROUND A substantial number of patients with advanced cancer suffer from refractory pain despite comprehensive medical management. In this article, we evaluate a nonopioid analgesic, resiniferatoxin (RTX), a potent agonist of the transient receptor potential vanilloid 1 (TRPV1) ion channel, which selectively interrupts nociceptive activity transmitted by a subpopulation of dorsal root ganglion neurons. METHODS In this interim analysis of a first-in-human, open-label, Phase 1 study, 19 patients with refractory cancer pain localized to the abdomen and/or lower extremities received one dose of intrathecal RTX. The primary outcome was safety. Secondary outcomes were efficacy assessed over the course of the study using a numerical rating scale measuring the "worst pain" over a 24-hour period. This is a 0 to 10 scale where 0 is "no pain" and 10 is the "worst pain imaginable." Opioid consumption was measured as morphine equivalents used to control pain. RESULTS Over 188 days after RTX injection, a total of 213 treatment-emergent adverse events (AEs) were reported among 19 patients treated, including 37 serious adverse events in 14 patients. Nine deaths occurred an average of 70 days after treatment (range from 11 to 140 days). Many of these events, including death, are consistent with the course of advanced cancer. At least one AE occurred in all 19 patients. Three patients experienced loss of heat sensitivity in the dermatomes exposed to RTX (grades I and II). Seven patients experienced urinary retention lasting more than 24 hours (three were grade III). Five patients had AEs related to a transient increase in the electrocardiographic QT interval that resolved within 24 hours (grades I and II). The only grade IV AE was an unstageable decubitus ulcer. RTX was associated with decreased "worst" pain intensity by 38% (pretreatment 8.4±0.4 vs. posttreatment 5.2±0.6) and reduced opioid consumption by 57% measured at posttreatment day 15. CONCLUSIONS Intrathecal RTX is a single-administration, opioid-sparing analgesic in patients with intractable cancer pain. There were expected and unexpected AEs of various grades with an encouraging initial impact on pain. (Funded by the Intramural Research Program of the National Institutes of Health Clinical Center and others; ClinicalTrials.gov number, NCT00804154).
Collapse
Affiliation(s)
- Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ann Berger
- Pain and Palliative Care Service, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Christine C Alewine
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John A Butman
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Marybeth S Hughes
- Thoracic and Gastrointestinal Oncology Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Division of Surgical Oncology, Department of Surgery, Eastern Virginia Medical School, Norfolk
| | - Nusrat Rabbee
- Biostatistics and Clinical Epidemiology Services, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Christina Hayes
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Tracy S Williams
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Carpenter RS, Lagou MK, Karagiannis GS, Maryanovich M. Neural regulation of the thymus: past, current, and future perspectives. Front Immunol 2025; 16:1552979. [PMID: 40046055 PMCID: PMC11880003 DOI: 10.3389/fimmu.2025.1552979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The thymus is a primary lymphoid organ critical for the development of mature T cells from hematopoietic progenitors. A highly structured organ, the thymus contains distinct regions, precise cytoarchitecture, and molecular signals tightly regulating thymopoiesis. Although the above are well-understood, the structural and functional implications of thymic innervation are largely neglected. In general, neural regulation has become increasingly identified as a critical component of immune cell development and function. The central nervous system (CNS) in the brain coordinates these immunological responses both by direct innervation through peripheral nerves and by neuroendocrine signaling. Yet how these signals, particularly direct neural innervation, may regulate the thymus biology is unclear and understudied. In this review, we highlight historical and current data demonstrating direct neural input to the thymus and assess current evidence of the neural regulation of thymopoiesis. We further discuss the current knowledge gaps and summarize recent advances in techniques that could be used to study how nerves regulate the thymic microenvironment.
Collapse
Affiliation(s)
- Randall S. Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
3
|
Akimov MG, Gretskaya NM, Gorbacheva EI, Khadour N, Sherstyanykh GD, Bezuglov VV. Two-Step Cell Death Induction by the New 2-Arachidonoyl Glycerol Analog and Its Modulation by Lysophosphatidylinositol in Human Breast Cancer Cells. Int J Mol Sci 2025; 26:820. [PMID: 39859533 PMCID: PMC11765598 DOI: 10.3390/ijms26020820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood. We evaluated the mechanism of the anti-proliferative action by 2-AG and the influence of lysophaosphatidylinositol (LPI) on it in six human breast cancer cell lines of different tumor degree (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, and MDA-MB-231) using resazurin test, inhibitor, blocker, and anti-oxidant analysis, and siRNA interference. To avoid acyl migration in 2-AG, we replaced it with the analog 2-arachidonoyl-1,3-difluoropropanol (2-ADFP) newly synthesized by us. Using a molecular docking approach, we showed that at the CB2 receptor, 2-ADFP and 2-AG were very close to each other. However, 2-ADFP demonstrated a stronger affinity towards CB1 in the antagonist-bound conformation. 2-ADFP was anti-proliferative in all the cell lines tested. The toxicity of 2-ADFP was enhanced by LPI. 2-ADFP activity was reduced or prevented by the CB2 and vanilloid receptor 1 (TRPV1) blockers, inositol triphosphate receptor, CREB, and cyclooxygenase 2 inhibitor, and by anti-oxidant addition. Together with the literature data, these results indicate CB2- and TRPV1-dependent COX-2 induction with concomitant cell death induction by the oxidized molecule's metabolites.
Collapse
Affiliation(s)
- Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
| | - Natalia M. Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
| | - Evgenia I. Gorbacheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
| | - Nisreen Khadour
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Galina D. Sherstyanykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (G.D.S.); (V.V.B.)
| |
Collapse
|
4
|
Ogawa T, Yamada S, Fukushi S, Imai Y, Kawada J, Ikeda K, Ohka S, Kaneda S. Formation and Long-Term Culture of hiPSC-Derived Sensory Nerve Organoids Using Microfluidic Devices. Bioengineering (Basel) 2024; 11:794. [PMID: 39199753 PMCID: PMC11352057 DOI: 10.3390/bioengineering11080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.
Collapse
Affiliation(s)
- Takuma Ogawa
- Mechanical Engineering Program, Graduate School of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuya Imai
- Mechanical Engineering Program, Graduate School of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., 3-25-16 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Kanagawa, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan (S.O.)
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8553, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan (S.O.)
| | - Shohei Kaneda
- Mechanical Engineering Program, Graduate School of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
| |
Collapse
|
5
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Sapio MR, King DM, Staedtler ES, Maric D, Jahanipour J, Kurochkina NA, Manalo AP, Ghetti A, Mannes AJ, Iadarola MJ. Expression pattern analysis and characterization of the hereditary sensory and autonomic neuropathy 2 A (HSAN2A) gene with no lysine kinase (WNK1) in human dorsal root ganglion. Exp Neurol 2023; 370:114552. [PMID: 37793538 DOI: 10.1016/j.expneurol.2023.114552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/20/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Inherited painless neuropathies arise due to genetic insults that either block the normal signaling of or destroy the sensory afferent neurons in the dorsal root ganglion (DRG) responsible for transducing noxious stimuli. Complete loss of these neurons leads to profound insensitivity to all sensory modalities including pain. Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare genetic neuropathy characterized by a progressive distal early onset sensory loss. This syndrome is caused by autosomal recessive mutations in the with-no-lysine protein kinase 1 (WNK1) serine-threonine kinase gene. Of interest, disease-associated mutations are found in the large exon, termed "HSN2," which encodes a 498 amino acid domain C-terminal to the kinase domain. These mutations lead to truncation of the HSN2-containing proteins through the addition of an early stop codon (nonsense mutation) leading to loss of the C-terminal domains of this large protein. The present study evaluates the transcripts, gene structure, and protein structure of HSN2-containing WNK1 splice variants in DRG and spinal cord in order to establish the basal expression patterns of WNK1 and HSN2-containing WNK1 splice variants using multiplex fluorescent situ hybridization. We hypothesized that these transcripts would be enriched in pain-sensing DRG neurons, and, potentially, that enrichment in nociceptive neurons was responsible for the painless phenotypes observed. However, our in-depth analyses revealed that the HSN2-WNK1 splice variants were ubiquitously expressed but were not enriched in tachykinin 1-expressing C-fiber neurons, a class of neurons with a highly nociceptive character. We subsequently identified other subpopulations of DRG neurons with higher levels of HSN2-WNK1 expression, including mechanosensory large fibers. These data are inconsistent with the hypothesis that this transcript is enriched in nociceptive fibers, and instead suggest it may be related to general axon maintenance, or that nociceptive fibers are more sensitive to the genetic insult. These findings clarify the molecular and cellular expression pattern of this painless neuropathy gene in human tissue.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana M King
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen S Staedtler
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
| | | | - Allison P Manalo
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Anand U, Anand P, Sodergren MH. Terpenes in Cannabis sativa Inhibit Capsaicin Responses in Rat DRG Neurons via Na +/K + ATPase Activation. Int J Mol Sci 2023; 24:16340. [PMID: 38003528 PMCID: PMC10671062 DOI: 10.3390/ijms242216340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Terpenes in Cannabis sativa exert analgesic effects, but the mechanisms are uncertain. We examined the effects of 10 terpenes on capsaicin responses in an established model of neuronal hypersensitivity. Adult rat DRG neurons cultured with neurotrophic factors NGF and GDNF were loaded with Fura2AM for calcium imaging, and treated with individual terpenes or vehicle for 5 min, followed by 1 µMol capsaicin. In vehicle treated control experiments, capsaicin elicited immediate and sustained calcium influx. Most neurons treated with terpenes responded to capsaicin after 6-8 min. Few neurons showed immediate capsaicin responses that were transient or normal. The delayed responses were found to be due to calcium released from the endoplasmic reticulum, as they were maintained in calcium/magnesium free media, but not after thapsigargin pre-treatment. Terpene inhibition of calcium influx was reversed after washout of medium, in the absence of terpenes, and in the presence of the Na+/K+ ATPase inhibitor ouabain, but not CB1 or CB2 receptor antagonists. Thus, terpenes inhibit capsaicin evoked calcium influx by Na+/K+ ATPase activation. Immunofluorescence showed TRPV1 co-expression with α1β1 Na+/K+ ATPase in most neurons while others were either TRPV1 or α1β1 Na+/K+ ATPase positive.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Mikael Hans Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
- Curaleaf International Ltd., 179 Great Portland Street, London W1W 5PL, UK
| |
Collapse
|
11
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
12
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Lepiarczyk E, Paukszto Ł, Wiszpolska M, Łopieńska-Biernat E, Bossowska A, Majewski MK, Majewska M. Molecular Influence of Resiniferatoxin on the Urinary Bladder Wall Based on Differential Gene Expression Profiling. Cells 2023; 12:cells12030462. [PMID: 36766804 PMCID: PMC9914288 DOI: 10.3390/cells12030462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Resiniferatoxin (RTX) is a potent capsaicin analog used as a drug for experimental therapy to treat neurogenic disorders associated with enhanced nociceptive transmission, including lower urinary tract symptoms. The present study, for the first time, investigated the transcriptomic profile of control and RTX-treated porcine urinary bladder walls. We applied multistep bioinformatics and discovered 129 differentially expressed genes (DEGs): 54 upregulated and 75 downregulated. Metabolic pathways analysis revealed five significant Kyoto Encyclopedia of Genes and Genomes (KEGG) items ('folate biosynthesis', 'metabolic pathways', 'sulfur relay system', 'sulfur metabolism' and 'serotonergic synapse') that were altered after RTX intravesical administration. A thorough analysis of the detected DEGs indicated that RTX treatment influenced the signaling pathways regulating nerve growth, myelination, axon specification, and elongation. Many of the revealed DEGs are involved in the nerve degeneration process; however, some of them were implicated in the initiation of neuroprotective mechanisms. Interestingly, RTX intravesical installation was followed by changes in the expression of genes involved in synaptic plasticity and neuromodulation, including 5-HT, H2S, glutamate, and GABA transmission. The obtained results suggest that the toxin may exert a therapeutic, antinociceptive effect not only by acting on TRPV1 receptors.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-53-34; Fax: +48-89-524-53-07
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
14
|
Ma W, Sapio MR, Manalo AP, Maric D, Dougherty MK, Goto T, Mannes AJ, Iadarola MJ. Anatomical Analysis of Transient Potential Vanilloid Receptor 1 (Trpv1+) and Mu-Opioid Receptor (Oprm1+) Co-expression in Rat Dorsal Root Ganglion Neurons. Front Mol Neurosci 2022; 15:926596. [PMID: 35875671 PMCID: PMC9302591 DOI: 10.3389/fnmol.2022.926596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Primary afferent neurons of the dorsal root ganglia (DRG) transduce peripheral nociceptive signals and transmit them to the spinal cord. These neurons also mediate analgesic control of the nociceptive inputs, particularly through the μ-opioid receptor (encoded by Oprm1). While opioid receptors are found throughout the neuraxis and in the spinal cord tissue itself, intrathecal administration of μ-opioid agonists also acts directly on nociceptive nerve terminals in the dorsal spinal cord resulting in marked analgesia. Additionally, selective chemoaxotomy of cells expressing the TRPV1 channel, a nonselective calcium-permeable ion channel that transduces thermal and inflammatory pain, yields profound pain relief in rats, canines, and humans. However, the relationship between Oprm1 and Trpv1 expressing DRG neurons has not been precisely determined. The present study examines rat DRG neurons using high resolution multiplex fluorescent in situ hybridization to visualize molecular co-expression. Neurons positive for Trpv1 exhibited varying levels of expression for Trpv1 and co-expression of other excitatory and inhibitory ion channels or receptors. A subpopulation of densely labeled Trpv1+ neurons did not co-express Oprm1. In contrast, a population of less densely labeled Trpv1+ neurons did co-express Oprm1. This finding suggests that the medium/low Trpv1 expressing neurons represent a specific set of DRG neurons subserving the opponent processes of both transducing and inhibiting nociceptive inputs. Additionally, the medium/low Trpv1 expressing neurons co-expressed other markers implicated in pathological pain states, such as Trpa1 and Trpm8, which are involved in chemical nociception and cold allodynia, respectively, as well as Scn11a, whose mutations are implicated in familial episodic pain. Conversely, none of the Trpv1+ neurons co-expressed Spp1, which codes for osteopontin, a marker for large diameter proprioceptive neurons, validating that nociception and proprioception are governed by separate neuronal populations. Our findings support the hypothesis that the population of Trpv1 and Oprm1 coexpressing neurons may explain the remarkable efficacy of opioid drugs administered at the level of the DRG-spinal synapse, and that this subpopulation of Trpv1+ neurons is responsible for registering tissue damage.
Collapse
Affiliation(s)
- Wenting Ma
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Matthew R. Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Allison P. Manalo
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD, United States
| | - Mary Kate Dougherty
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Taichi Goto
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- Symptoms Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Michael J. Iadarola
| |
Collapse
|
15
|
Scheff NN, Wall IM, Nicholson S, Williams H, Chen E, Tu NH, Dolan JC, Liu CZ, Janal MN, Bunnett NW, Schmidt BL. Oral cancer induced TRPV1 sensitization is mediated by PAR 2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci Rep 2022; 12:4121. [PMID: 35260737 PMCID: PMC8904826 DOI: 10.1038/s41598-022-08005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
| | - Ian M Wall
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Sam Nicholson
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Hannah Williams
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Elyssa Chen
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Nguyen H Tu
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - John C Dolan
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Cheng Z Liu
- Pathology Department, NYU Langone Health, New York, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health Neuroscience Institute, NYU Langone Health, New York, USA
| | - Brian L Schmidt
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA.
| |
Collapse
|
16
|
PACAP-38 Induces Transcriptomic Changes in Rat Trigeminal Ganglion Cells Related to Neuroinflammation and Altered Mitochondrial Function Presumably via PAC1/VPAC2 Receptor-Independent Mechanism. Int J Mol Sci 2022; 23:ijms23042120. [PMID: 35216232 PMCID: PMC8874739 DOI: 10.3390/ijms23042120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neuropeptide which has diverse effects in both the peripheral and central nervous systems. While its neuroprotective effects have been shown in a variety of disease models, both animal and human data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2) receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38 or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed and transcriptomic changes were analyzed to identify differentially expressed genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE) genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2 receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors. Identification of the target could help to understand key mechanisms of migraine.
Collapse
|
17
|
Tyagi S, Shekhar N, Thakur AK. Protective Role of Capsaicin in Neurological Disorders: An Overview. Neurochem Res 2022; 47:1513-1531. [PMID: 35150419 DOI: 10.1007/s11064-022-03549-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Different pathological conditions that begin with slow and progressive deformations, cause irreversible affliction by producing loss of neurons and synapses. Commonly it is referred to as 'protein misfolding' diseases or proteinopathies and comprises the latest definition of neurological disorders (ND). Protein misfolding dynamics, proteasomal dysfunction, aggregation, defective degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA damage, neuronal Golgi apparatus fragmentation, axonal transport disruption, Neurotrophins (NTFs) dysfunction, neuroinflammatory or neuroimmune processes, and neurohumoral changes are the several mechanisms that embark the pathogenesis of ND. Capsaicin (8-Methyl-N-vanillyl-6-nonenamide) one of the major phenolic components in chili peppers (Capsicum) distinctively triggers the unmyelinated C-fiber and acts on Transient Receptor Potential Vanilloid-1, which is a Ca2+ permeable, non-selective cation channel. Several studies have shown the neuroprotective role of capsaicin against oxidative damage, behavioral impairment, with 6-hydroxydopamine (6-OHDA) induced Parkinson's disease, pentylenetetrazol-induced seizures, global cerebral ischemia, and streptozotocin-induced Alzheimer's disease. Based on these lines of evidence, capsaicin can be considered as a potential constituent to develop suitable neuro-pharmacotherapeutics for the management and treatment of ND. Furthermore, exploring newer horizons and carrying out proper clinical trials would help to bring out the promising effects of capsaicin to be recommended as a neuroprotectant.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India.
| |
Collapse
|
18
|
|
19
|
Iadarola MJ, Brown DC, Nahama A, Sapio MR, Mannes AJ. Pain Treatment in the Companion Canine Model to Validate Rodent Results and Incentivize the Transition to Human Clinical Trials. Front Pharmacol 2021; 12:705743. [PMID: 34421597 PMCID: PMC8375595 DOI: 10.3389/fphar.2021.705743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
One of the biggest challenges for analgesic drug development is how to decide if a potential analgesic candidate will work in humans. What preclinical data are the most convincing, incentivizing and most predictive of success? Such a predicament is not unique to analgesics, and the pain field has certain advantages over drug development efforts in areas like neuropsychiatry where the etiological origins are either unknown or difficult to ascertain. For pain, the origin of the problem frequently is known, and the causative peripheral tissue insult might be observable. The main conundrum centers around evaluation of translational cell- and rodent-based results. While cell and rodent models are undeniably important first steps for screening, probing mechanism of action, and understanding factors of adsorption, distribution metabolism and excretion, two questions arise from such studies. First, are they reliable indicators of analgesic performance of a candidate drug in human acute and chronic pain? Second, what additional model systems might be capable of increasing translational confidence? We address this second question by assessing, primarily, the companion canine model, which can provide particularly strong predictive information for candidate analgesic agents in humans. This statement is mainly derived from our studies with resiniferatoxin (RTX) a potent TRPV1 agonist but also from protein therapeutics using a conjugate of Substance P and saporin. Our experience, to date, is that rodent models might be very well suited for acute pain translation, but companion canine models, and other large animal studies, can augment initial discovery research using rodent models for neuropathic or chronic pain. The larger animal models also provide strong translational predictive capacity for analgesic performance in humans, better predict dosing parameters for human trials and provide insight into behavior changes (bladder, bowel, mood, etc.) that are not readily assessed in laboratory animals. They are, however, not without problems that can be encountered with any experimental drug treatment or clinical trial. It also is important to recognize that pain treatment is a major veterinary concern and is an intrinsically worthwhile endeavor for animals as well as humans.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | | | | | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, United States
| |
Collapse
|
20
|
Harford TJ, Grove L, Rezaee F, Scheraga R, Olman MA, Piedimonte G. RSV infection potentiates TRPV 1-mediated calcium transport in bronchial epithelium of asthmatic children. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1074-L1084. [PMID: 33787326 DOI: 10.1152/ajplung.00531.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is expressed in human bronchial epithelium (HBE), where it transduces Ca2+ in response to airborne irritants. TRPV1 activation results in bronchoconstriction, cough, and mucus production, and may therefore contribute to the pathophysiology of obstructive airway disease. Since children with asthma face the greatest risk of developing virus-induced airway obstruction, we hypothesized that changes in TRPV1 expression, localization, and function in the airway epithelium may play a role in bronchiolitis and asthma in childhood. We sought to measure TRPV1 protein expression, localization, and function in HBE cells from children with versus without asthma, both at baseline and after RSV infection. We determined changes in TRPV1 protein expression, subcellular localization, and function both at baseline and after RSV infection in primary HBE cells from normal children and children with asthma. Basal TRPV1 protein expression was higher in HBE from children with versus without asthma and primarily localized to plasma membranes (PMs). During RSV infection, TRPV1 protein increased more in the PM of asthmatic HBE as compared with nonasthmatic cells. TRPV1-mediated increase in intracellular Ca2+ was greater in RSV-infected asthmatic cells, but this increase was attenuated when extracellular Ca2+ was removed. Nerve growth factor (NGF) recapitulated the effect of RSV on TRPV1 activation in HBE cells. Our data suggest that children with asthma have intrinsically hyperreactive airways due in part to higher TRPV1-mediated Ca2+ influx across epithelial membranes, and this abnormality is further exacerbated by NGF overexpression during RSV infection driving additional Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Lisa Grove
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Mitchell A Olman
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Giovanni Piedimonte
- Department of Pediatrics, Tulane School of Medicine, New Orleans, Louisiana.,Department Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
21
|
Sapio MR, Vazquez FA, Loydpierson AJ, Maric D, Kim JJ, LaPaglia DM, Puhl HL, Lu VB, Ikeda SR, Mannes AJ, Iadarola MJ. Comparative Analysis of Dorsal Root, Nodose and Sympathetic Ganglia for the Development of New Analgesics. Front Neurosci 2021; 14:615362. [PMID: 33424545 PMCID: PMC7793666 DOI: 10.3389/fnins.2020.615362] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Interoceptive and exteroceptive signals, and the corresponding coordinated control of internal organs and sensory functions, including pain, are received and orchestrated by multiple neurons within the peripheral, central and autonomic nervous systems. A central aim of the present report is to obtain a molecularly informed basis for analgesic drug development aimed at peripheral rather than central targets. We compare three key peripheral ganglia: nodose, sympathetic (superior cervical), and dorsal root ganglia in the rat, and focus on their molecular composition using next-gen RNA-Seq, as well as their neuroanatomy using immunocytochemistry and in situ hybridization. We obtained quantitative and anatomical assessments of transmitters, receptors, enzymes and signaling pathways mediating ganglion-specific functions. Distinct ganglionic patterns of expression were observed spanning ion channels, neurotransmitters, neuropeptides, G-protein coupled receptors (GPCRs), transporters, and biosynthetic enzymes. The relationship between ganglionic transcript levels and the corresponding protein was examined using immunohistochemistry for select, highly expressed, ganglion-specific genes. Transcriptomic analyses of spinal dorsal horn and intermediolateral cell column (IML), which form the termination of primary afferent neurons and the origin of preganglionic innervation to the SCG, respectively, disclosed pre- and post-ganglionic molecular-level circuits. These multimodal investigations provide insight into autonomic regulation, nodose transcripts related to pain and satiety, and DRG-spinal cord and IML-SCG communication. Multiple neurobiological and pharmacological contexts can be addressed, such as discriminating drug targets and predicting potential side effects, in analgesic drug development efforts directed at the peripheral nervous system.
Collapse
Affiliation(s)
- Matthew R Sapio
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Fernando A Vazquez
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Amelia J Loydpierson
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jenny J Kim
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Danielle M LaPaglia
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Henry L Puhl
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Van B Lu
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Stephen R Ikeda
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
22
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Juárez-Contreras R, Méndez-Reséndiz KA, Rosenbaum T, González-Ramírez R, Morales-Lázaro SL. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21238882. [PMID: 33255148 PMCID: PMC7734572 DOI: 10.3390/ijms21238882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.
Collapse
Affiliation(s)
- Rebeca Juárez-Contreras
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Karina Angélica Méndez-Reséndiz
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City 14080, Mexico;
| | - Sara Luz Morales-Lázaro
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
- Correspondence:
| |
Collapse
|
24
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
25
|
Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, Datey A, Sahu RP, Goswami C, Chattopadhyay S, Chattopadhyay S. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Arch Virol 2020; 166:139-155. [PMID: 33125586 DOI: 10.1007/s00705-020-04852-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca2+-permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5'-iodoresiniferatoxin (5'-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca2+ imaging that TRPV1 regulates Ca2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.,Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Chandan Mahish
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ankita Datey
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Ram P Sahu
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
26
|
Darmani NA, Henry DA, Zhong W, Chebolu S. Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behav Pharmacol 2020; 31:3-14. [PMID: 31503071 DOI: 10.1097/fbp.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | | | |
Collapse
|
27
|
Gore S, Ukhanov K, Herbivo C, Asad N, Bobkov YV, Martens JR, Dore TM. Photoactivatable Odorants for Chemosensory Research. ACS Chem Biol 2020; 15:2516-2528. [PMID: 32865973 DOI: 10.1021/acschembio.0c00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemosensory system of any animal relies on a vast array of detectors tuned to distinct chemical cues. Odorant receptors and the ion channels of the TRP family are all uniquely expressed in olfactory tissues in a species-specific manner. Great effort has been made to characterize the molecular and pharmacological properties of these proteins. Nevertheless, most of the natural ligands are highly hydrophobic molecules that are not amenable to controlled delivery. We sought to develop photoreleasable, biologically inactive odorants that could be delivered to the target receptor or ion channel and effectively activated by a short light pulse. Chemically distinct ligands eugenol, benzaldehyde, 2-phenethylamine, ethanethiol, butane-1-thiol, and 2,2-dimethylethane-1-thiol were modified by covalently attaching the photoremovable protecting group (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ). The CyHQ derivatives were shown to release the active odorant upon illumination with 365 and 405 nm light. We characterized their bioactivity by measuring activation of recombinant TRPV1 and TRPA1 ion channels expressed in HEK 293 cells and the electroolfactogram (EOG) response from intact mouse olfactory epithelium (OE). Illumination with 405 nm light was sufficient to robustly activate TRP channels within milliseconds of the light pulse. Photoactivation of channels was superior to activation by conventional bath application of the ligands. Photolysis of the CyHQ-protected odorants efficiently activated an EOG response in a dose-dependent manner with kinetics similar to that evoked by the vaporized odorant amyl acetate (AAc). We conclude that CyHQ-based, photoreleasable odorants can be successfully implemented in chemosensory research.
Collapse
Affiliation(s)
- Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Cyril Herbivo
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yuriy V. Bobkov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Choi E, Nahm FS, Han WK, Lee PB, Jo J. Topical agents: a thoughtful choice for multimodal analgesia. Korean J Anesthesiol 2020; 73:384-393. [PMID: 32752601 PMCID: PMC7533183 DOI: 10.4097/kja.20357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
For over a thousand years, various substances have been applied to the skin to treat pain. Some of these substances have active ingredients that we still use today. However, some have been discontinued due to their harmful effect, while others have been long forgotten. Recent concerns regarding the cardiovascular and renal risk from nonsteroidal anti-inflammatory drugs, and issues with opioids, have resulted in increasing demand and attention to non-systemic topical alternatives. There is increasing evidence of the efficacy and safety of topical agents in pain control. Topical analgesics are great alternatives for pain management and are an essential part of multimodal analgesia. This review aims to describe essential aspects of topical drugs that physicians should consider in their practice as part of multimodal analgesia. This review describes the mechanism of popular topical analgesics and also introduces the most recently released and experimental topical medications.
Collapse
Affiliation(s)
- Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Anesthesiology and Pain Medicine Seoul National University College of Medicine, Seoul, Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Pyung-Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Anesthesiology and Pain Medicine Seoul National University College of Medicine, Seoul, Korea
| | - Jihun Jo
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
29
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
30
|
Sharma S, Vijay S, Gore S, Dore TM, Jagannathan R. Measuring Cellular Ion Transport by Magnetoencephalography. ACS OMEGA 2020; 5:4024-4031. [PMID: 32149229 PMCID: PMC7057328 DOI: 10.1021/acsomega.9b03589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The cellular-level process of ion transport is known to generate a magnetic field. A noninvasive magnetoencephalography (MEG) technique was used to measure the magnetic field emanating from HeLa, HEK293, and H9c2(2-1) rat cardiac cells. The addition of a nonlethal dose of ionomycin to HeLa and capsaicin to TRPV1-expressing HEK293 cells resulted in a sudden change in the magnetic field signal consistent with Ca2+ influx, which was also observed by confocal fluorescence microscopy under the same conditions. In contrast, addition of capsaicin to TRPV1-expressing HEK293 cells containing an optimum amount of a TRPV1 antagonist (ruthenium red), resulted in no detectable magnetic or fluorescent signals. These signals confirmed that the measured MEG signals are due to cellular ion transport through the cell membrane. In general, there is evidence that ion channel/transporter activation and ionic flux are linked to cancer. Therefore, our work suggests that MEG could represent a noninvasive method for detecting cancer.
Collapse
Affiliation(s)
- Sudhir
Kumar Sharma
- Engineering
Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Sauparnika Vijay
- Science
Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Sangram Gore
- Science
Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Timothy M. Dore
- Science
Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ramesh Jagannathan
- Engineering
Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| |
Collapse
|
31
|
Role of the TRPV Channels in the Endoplasmic Reticulum Calcium Homeostasis. Cells 2020; 9:cells9020317. [PMID: 32013022 PMCID: PMC7072170 DOI: 10.3390/cells9020317] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
It has been widely established that transient receptor potential vanilloid (TRPV) channels play a crucial role in calcium homeostasis in mammalian cells. Modulation of TRPV channels activity can modify their physiological function leading to some diseases and disorders like neurodegeneration, pain, cancer, skin disorders, etc. It should be noted that, despite TRPV channels importance, our knowledge of the TRPV channels functions in cells is mostly limited to their plasma membrane location. However, some TRPV channels were shown to be expressed in the endoplasmic reticulum where their modulation by activators and/or inhibitors was demonstrated to be crucial for intracellular signaling. In this review, we have intended to summarize the poorly studied roles and functions of these channels in the endoplasmic reticulum.
Collapse
|
32
|
Resiniferatoxin reduces ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord in rats. Eur J Pharmacol 2020; 867:172836. [DOI: 10.1016/j.ejphar.2019.172836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
33
|
O'Leary C, McGahon MK, Ashraf S, McNaughten J, Friedel T, Cincolà P, Barabas P, Fernandez JA, Stitt AW, McGeown JG, Curtis TM. Involvement of TRPV1 and TRPV4 Channels in Retinal Angiogenesis. Invest Ophthalmol Vis Sci 2019; 60:3297-3309. [PMID: 31369032 DOI: 10.1167/iovs.18-26344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate the contribution of TRPV1 and TRPV4 channels to retinal angiogenesis. Methods Primary retinal microvascular endothelial cells (RMECs) were used for RT-PCR, Western blotting, immunolabeling, Ca2+ signaling, and whole-cell patch-clamp studies while localization of TRPV1 also was assessed in retinal endothelial cells using whole mount preparations. The effects of pharmacologic blockers of TRPV1 and TRPV4 on retinal angiogenic activity was evaluated in vitro using sprout formation, cell migration, proliferation, and tubulogenesis assays, and in vivo using the mouse model of oxygen-induced retinopathy (OIR). Heteromultimerization of TRPV1 and TRPV4 channels in RMECs was assessed using proximity ligation assays (PLA) and electrophysiologic recording. Results TRPV1 mRNA and protein expression were identified in RMECs. TRPV1 labelling was found to be mainly localized to the cytoplasm with some areas of staining colocalizing with the plasma membrane. Staining patterns for TRPV1 were broadly similar in endothelial cells of intact vessels within retinal flat mounts. Functional expression of TRPV1 and TRPV4 in RMECs was confirmed by patch-clamp recording. Pharmacologic inhibition of TRPV1 or TRPV4 channels suppressed in vitro retinal angiogenesis through a mechanism involving the modulation of tubulogenesis. Blockade of these channels had no effect on VEGF-stimulated angiogenesis or Ca2+ signals in vitro. PLA and patch-clamp studies revealed that TRPV1 and TRPV4 form functional heteromeric channel complexes in RMECs. Inhibition of either channel reduced retinal neovascularization and promoted physiologic revascularization of the ischemic retina in the OIR mouse model. Conclusions TRPV1 and TRPV4 channels represent promising targets for therapeutic intervention in vasoproliferative diseases of the retina.
Collapse
Affiliation(s)
- Caitriona O'Leary
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Mary K McGahon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Sadaf Ashraf
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jennifer McNaughten
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Thomas Friedel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Patrizia Cincolà
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jose A Fernandez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
34
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
35
|
Ilie MA, Caruntu C, Tampa M, Georgescu SR, Matei C, Negrei C, Ion RM, Constantin C, Neagu M, Boda D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Exp Ther Med 2019; 18:916-925. [PMID: 31384324 PMCID: PMC6639979 DOI: 10.3892/etm.2019.7513] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Capsaicin is a natural protoalkaloid recognized as the main pungent component in hot peppers (Capsicum annuum L.). The capsaicin receptor is highly expressed in the unmyelinated type C nerve fibers originating from small diameter sensory neurons in dorsal root ganglia and cranial nerve ganglia correspondents. Capsaicin and related vanilloids have a variety of effects on primary sensory neurons function, from sensory neuron excitation characterized by local burning sensation and neurogenic inflammation, followed by conduction blockage accompanied by reversible ultrastructural changes of peripheral nociceptive endings (desensitization), going as far as irreversible degenerative changes (neurotoxicity). The main role in capsaicin-induced neurogenic inflammation relies on the capsaicin sensitive, small diameter primary sensory neurons, therefore its evaluation could be used as a diagnostic instrument in functional alterations of cutaneous sensory nerve fibers. Moreover, capsaicin-induced desensitization and neurotoxicity explain the analgesic/anti-nociceptive and anti-inflammatory effects of topical capsaicin and its potential use in the management of painful and inflammatory conditions. In this study, we describe the effects of capsaicin on neurogenic inflammation and nociception, as well as its potential diagnostic value and therapeutic impact in various conditions involving impairment of sensory nerve fibers.
Collapse
Affiliation(s)
- Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Simona-Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Rodica-Mariana Ion
- The National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Bucharest 060021, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Biochemistry, Faculty of Biology, University of Bucharest, Bucharest 020125, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| |
Collapse
|
36
|
Long-term pain relief in canine osteoarthritis by a single intra-articular injection of resiniferatoxin, a potent TRPV1 agonist. Pain 2019; 159:2105-2114. [PMID: 30015705 DOI: 10.1097/j.pain.0000000000001314] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The translational potential of analgesic approaches emerging from basic research can be augmented by client-owned dog trials. We report on a peripheral interventional approach that uses intra-articular injection of the ultrapotent TRPV1 agonist resiniferatoxin (RTX) to produce a selective long-term chemoinactivation of nociceptive primary afferent nerve endings for pain control in naturally occurring canine osteoarthritis. A single injection of 10 µg of RTX, produced suppression of pain, improvement in gait, weight bearing, and improvement in the dog's activities of daily living lasting 4 months or longer. Two to 3 years after the injection, there are no alterations to suggest that removal of inflammatory pain caused accelerated joint degeneration (Charcot joint) in any of the dogs. To amplify the effective use of canine subjects in translational analgesia research, we report a high-quality canine dorsal root ganglion transcriptome. Some targets for analgesia are highly conserved both in protein sequence and level of expression within a target tissue while others diverge substantially from the human. This knowledge is especially important for development of analgesics aimed at peripheral molecular targets and provides a template for informed translational research. The peripheral site of action, long duration of analgesia, apparent safety, and retention of coordination, all resulting from a single dose suggest that intra-articular RTX may be an effective intervention for osteoarthritis pain with few or no side effects and lead to an improved quality of life.
Collapse
|
37
|
Ikegami R, Eshima H, Mashio T, Ishiguro T, Hoshino D, Poole DC, Kano Y. Accumulation of intramyocyte TRPV1-mediated calcium during heat stress is inhibited by concomitant muscle contractions. J Appl Physiol (1985) 2019; 126:691-698. [PMID: 30676872 DOI: 10.1152/japplphysiol.00668.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat stress promotes intramyocyte calcium concentration ([Ca2+]i) accumulation via transient receptor potential vanilloid 1 (TRPV1) channels. We tested the hypothesis that muscle contractile activity concomitant with heat stress would accelerate the increase in [Ca2+]i via TRPV1, further impairing [Ca2+]i homeostasis. Spinotrapezius muscles of adult Wistar rats were exteriorized in vivo and loaded with the fluorescent Ca2+ probe fura 2-AM. Heat stress (muscle surface temperature 40°C) was used as TRPV1 activator. An isometric contraction (100 Hz, 5-10 V, 30 s) was induced electrically concomitant with heat stress. [Ca2+]i was determined for 20 min using in vivo fluorescence microscopy, and the phosphorylation response of TRPV1 was determined by Western blotting. Heat stress induced a significant [Ca2+]i increase of 18.5 ± 8.1% at 20 min and TRPV1 phosphorylation (+231%), which was inhibited by addition of the TRPV1 inhibitor (capsazepine). However, contrary to expectations, the heat stress and isometric contraction condition almost completely inhibited TRPV1 phosphorylation and the consequent [Ca2+]i elevation (<2.8% accumulation during heat stress, P > 0.05). In conclusion, this in vivo physiological model demonstrated that isometric muscle contraction(s) can suppress the phosphorylation response of TRPV1 and maintain [Ca2+]i homeostasis during heat stress. NEW & NOTEWORTHY This investigation is the first document the dynamics of intramyocyte calcium concentration ([Ca2+]i) increase in the myoplasm of skeletal muscle fibers in response to heat stress where the muscle blood flow is preserved. Heat stress at 40°C drives a myoplasmic [Ca2+]i accumulation in concert with transient receptor potential vanilloid 1 (TRPV1) phosphorylation. However, muscle contraction caused TRPV1 channel deactivation by dephosphorylation of TRPV1. TRPV1 inactivation via isometric contraction(s) permits maintenance of [Ca2+]i homeostasis even under high imposed muscle temperature.
Collapse
Affiliation(s)
- Ryo Ikegami
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah School of Medicine , Salt Lake City, Utah
| | - Takuro Mashio
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Tomosada Ishiguro
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University , Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| |
Collapse
|
38
|
Salas MM, Clifford JL, Hayden JR, Iadarola MJ, Averitt DL. Local Resiniferatoxin Induces Long-Lasting Analgesia in a Rat Model of Full Thickness Thermal Injury. PAIN MEDICINE 2018; 18:2453-2465. [PMID: 27794548 DOI: 10.1093/pm/pnw260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective Opioid-based analgesics are a major component of the lengthy pain management of burn patients, including military service members, but are problematic due to central nervous system-mediated side effects. Peripheral analgesia via targeted ablation of nociceptive nerve endings that express the transient receptor potential vanilloid channel 1 (TRPV1) may provide an improved approach. We hypothesized that local injection of the TRPV1 agonist resiniferatoxin (RTX) would produce long-lasting analgesia in a rat model of pain associated with burn injury. Methods Baseline sensitivities to thermal and mechanical stimuli were measured in male and female Sprague-Dawley rats. Under anesthesia, a 100 °C metal probe was placed on the right hind paw for 30 seconds, and sensitivity was reassessed 72 hours following injury. Rats received RTX (0.25 μg/100 μL; ipl) into the injured hind paw, and sensitivity was reassessed across three weeks. Tissues were collected from a separate group of rats at 24 hours and/or one week post-RTX for pathological analyses of the injured hind paw, dorsal spinal cord c-Fos, and primary afferent neuropeptide immunoreactivity. Results Local RTX reversed burn pain behaviors within 24 hours, which lasted through recovery at three weeks. At one week following RTX, decreased c-Fos and primary afferent neuropeptide immunoreactivities were observed in the dorsal horn, while plantar burn pathology was unaltered. Conclusions These results indicate that local RTX induces long-lasting analgesia in a rat model of pain associated with burn. While opioids are undesirable in trauma patients due to side effects, RTX may provide valuable long-term, nonopioid analgesia for burn patients.
Collapse
Affiliation(s)
- Margaux M Salas
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - John L Clifford
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jessica R Hayden
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| |
Collapse
|
39
|
Anstötz M, Lee SK, Maccaferri G. Expression of TRPV1 channels by Cajal-Retzius cells and layer-specific modulation of synaptic transmission by capsaicin in the mouse hippocampus. J Physiol 2018; 596:3739-3758. [PMID: 29806907 DOI: 10.1113/jp275685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS By taking advantage of calcium imaging and electrophysiology, we provide direct pharmacological evidence for the functional expression of TRPV1 channels in hippocampal Cajal-Retzius cells. Application of the TRPV1 activator capsaicin powerfully enhances spontaneous synaptic transmission in the hippocampal layers that are innervated by the axons of Cajal-Retzius cells. Capsaicin-triggered calcium responses and membrane currents in Cajal-Retzius cells, as well as layer-specific modulation of spontaneous synaptic transmission, are absent when the drug is applied to slices prepared from TRPV1- /- animals. We discuss the implications of the functional expression of TRPV1 channels in Cajal-Retzius cells and of the observed TRPV1-dependent layer-specific modulation of synaptic transmission for physiological and pathological network processing. ABSTRACT The vanilloid receptor TRPV1 forms complex polymodal channels that are expressed by sensory neurons and play a critical role in nociception. Their distribution pattern and functions in cortical circuits are, however, much less understood. Although TRPV1 reporter mice have suggested that, in the hippocampus, TRPV1 is predominantly expressed by Cajal-Retzius cells (CRs), direct functional evidence is missing. As CRs powerfully excite GABAergic interneurons of the molecular layers, TRPV1 could play important roles in the regulation of layer-specific processing. Here, we have taken advantage of calcium imaging with the genetically encoded indicator GCaMP6s and patch-clamp techniques to study the responses of hippocampal CRs to the activation of TRPV1 by capsaicin, and have compared the effect of TRPV1 stimulation on synaptic transmission in layers innervated or non-innervated by CRs. Capsaicin induced both calcium responses and membrane currents in ∼50% of the cell tested. Neither increases of intracellular calcium nor whole-cell currents were observed in the presence of the TRPV1 antagonists capsazepine/Ruthenium Red or in slices prepared from TRPV1 knockout mice. We also report a powerful TRPV1-dependent enhancement of spontaneous synaptic transmission onto interneurons with dendritic trees confined to the layers innervated by CRs. In conclusion, our work establishes that functional TRPV1 is expressed by a significant fraction of CRs and we propose that TRPV1 activity may regulate layer-specific synaptic transmission in the hippocampus. Lastly, as CR density decreases during postnatal development, we also propose that functional TRPV1 receptors may be related to mechanisms involved in CR progressive reduction by calcium-dependent toxicity/apoptosis.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA.,Institute for Neuroanatomy, University/University Hospital Hamburg, Martinistr. 52, 20246, Hamburg, Germany
| | - Sun Kyong Lee
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA
| |
Collapse
|
40
|
Sapio MR, Neubert JK, LaPaglia DM, Maric D, Keller JM, Raithel SJ, Rohrs EL, Anderson EM, Butman JA, Caudle RM, Brown DC, Heiss JD, Mannes AJ, Iadarola MJ. Pain control through selective chemo-axotomy of centrally projecting TRPV1+ sensory neurons. J Clin Invest 2018; 128:1657-1670. [PMID: 29408808 DOI: 10.1172/jci94331] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/01/2018] [Indexed: 11/17/2022] Open
Abstract
Agonists of the vanilloid receptor transient vanilloid potential 1 (TRPV1) are emerging as highly efficacious nonopioid analgesics in preclinical studies. These drugs selectively lesion TRPV1+ primary sensory afferents, which are responsible for the transmission of many noxious stimulus modalities. Resiniferatoxin (RTX) is a very potent and selective TRPV1 agonist and is a promising candidate for treating many types of pain. Recent work establishing intrathecal application of RTX for the treatment of pain resulting from advanced cancer has demonstrated profound analgesia in client-owned dogs with osteosarcoma. The present study uses transcriptomics and histochemistry to examine the molecular mechanism of RTX action in rats, in clinical canine subjects, and in 1 human subject with advanced cancer treated for pain using intrathecal RTX. In all 3 species, we observe a strong analgesic action, yet this was accompanied by limited transcriptional alterations at the level of the dorsal root ganglion. Functional and neuroanatomical studies demonstrated that intrathecal RTX largely spares susceptible neuronal perikarya, which remain active peripherally but unable to transmit signals to the spinal cord. The results demonstrate that central chemo-axotomy of the TRPV1+ afferents underlies RTX analgesia and refine the neurobiology underlying effective clinical use of TRPV1 agonists for pain control.
Collapse
Affiliation(s)
- Matthew R Sapio
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - John K Neubert
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Danielle M LaPaglia
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, NIH, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jason M Keller
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Stephen J Raithel
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Eric L Rohrs
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ethan M Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - John A Butman
- Clinical Center, Radiology and Imaging Services, NIH, Bethesda, Maryland, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Dorothy C Brown
- Veterinary Clinical Investigations Center, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - John D Heiss
- Surgical Neurology Branch, NIH, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| | - Michael J Iadarola
- Clinical Center, Department of Perioperative Medicine, NIH, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Raithel SJ, Sapio MR, LaPaglia DM, Iadarola MJ, Mannes AJ. Transcriptional Changes in Dorsal Spinal Cord Persist after Surgical Incision Despite Preemptive Analgesia with Peripheral Resiniferatoxin. Anesthesiology 2018; 128:620-635. [PMID: 29271803 PMCID: PMC11175836 DOI: 10.1097/aln.0000000000002006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nociceptors expressing the ion channel transient receptor potential cation channel, subfamily V, member 1, play an important role in mediating postoperative pain. Signaling from these nociceptors in the peri- and postoperative period can lead to plastic changes in the spinal cord and, when controlled, can yield analgesia. The transcriptomic changes in the dorsal spinal cord after surgery, and potential coupling to transient receptor potential cation channel, subfamily V, member 1-positive nociceptor signaling, remain poorly studied. METHODS Resiniferatoxin was injected subcutaneously into rat hind paw several minutes before surgical incision to inactivate transient receptor potential cation channel, subfamily V, member 1-positive nerve terminals. The effects of resiniferatoxin on postincisional measures of pain were assessed through postoperative day 10 (n = 51). Transcriptomic changes in the dorsal spinal cord, with and without peripheral transient receptor potential cation channel, subfamily V, member 1-positive nerve terminal inactivation, were assessed by RNA sequencing (n = 22). RESULTS Peripherally administered resiniferatoxin increased thermal withdrawal latency by at least twofold through postoperative day 4, increased mechanical withdrawal threshold by at least sevenfold through postoperative day 2, and decreased guarding score by 90% relative to vehicle control (P < 0.05). Surgical incision induced 70 genes in the dorsal horn, and these changes were specific to the ipsilateral dorsal horn. Gene induction with surgical incision persisted despite robust analgesia from resiniferatoxin pretreatment. Many of the genes induced were related to microglial activation, such as Cd11b and Iba1. CONCLUSIONS A single subcutaneous injection of resiniferatoxin before incision attenuated both evoked and nonevoked measures of postoperative pain. Surgical incision induced transcriptomic changes in the dorsal horn that persisted despite analgesia with resiniferatoxin, suggesting that postsurgical pain signals can be blocked without preventing transcription changes in the dorsal horn.
Collapse
Affiliation(s)
- Stephen J Raithel
- From the Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland (S.J.R., M.R.S., D.M.L., M.J.I., A.J.M.); and the Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio (S.J.R.)
| | | | | | | | | |
Collapse
|
42
|
Raoof M, Ashrafganjoui E, Kooshki R, Abbasnejad M, Haghani J, Amanpour S, Zarei MR. Effect of chronic stress on capsaicin-induced dental nociception in a model of pulpitis in rats. Arch Oral Biol 2018; 85:154-159. [DOI: 10.1016/j.archoralbio.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
|
43
|
Richards JR, Lapoint JM, Burillo-Putze G. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment. Clin Toxicol (Phila) 2017; 56:15-24. [DOI: 10.1080/15563650.2017.1349910] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John R. Richards
- Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jeff M. Lapoint
- Department of Emergency Medicine, Southern California Permanente Medical Group, San Diego, CA, USA
| | - Guillermo Burillo-Putze
- Área de Toxicología Clínica, Servicio de Urgencias, Universidad Europea de Canarias, Tenerife, Spain
| |
Collapse
|
44
|
Goldstein RH, Katz B, Lev S, Binshtok AM. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76010. [PMID: 28715544 DOI: 10.1117/1.jbo.22.7.076010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Pain signals are detected by terminals of nociceptive peripheral fibers situated among the keratinocytes and epithelial cells. Despite being key structures for pain-related stimuli detection and transmission, little is known about the functional organization of terminals. This is mainly due to their minute size, rendering them largely inaccessible by conventional experimental approaches. Here, we report the implementation of an ultrafast optical recording approach for studying cultured neurite terminals, which are readily accessible for assay manipulations. Using this approach, we were able to study capsaicin-induced calcium and sodium dynamics in the nociceptive processes, at a near-action potential time resolution. The approach was sensitive enough to detect differences in latency, time-to-peak, and amplitude of capsaicin-induced ion transients along the terminal neurites. Using this approach, we found that capsaicin evokes distinctive calcium signals along the neurite. At the terminal, the signal was insensitive to voltage-gated sodium channel blockers, and showed slower kinetics and smaller signal amplitudes, compared with signals that were measured further up the neurite. These latter signals were mainly abolished by sodium channel blockers. We propose this ultrafast optical recording approach as a model for studying peripheral terminal signaling, forming a basis for studying pain mechanisms in normal and pathological states.
Collapse
Affiliation(s)
- Robert H Goldstein
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Katz
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Shaya Lev
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Alexander M Binshtok
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| |
Collapse
|
45
|
Pecze L, Viskolcz B, Oláh Z. Molecular Surgery Concept from Bench to Bedside: A Focus on TRPV1+ Pain-Sensing Neurons. Front Physiol 2017. [PMID: 28626428 PMCID: PMC5455100 DOI: 10.3389/fphys.2017.00378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
"Molecular neurosurgery" is emerging as a new medical concept, and is the combination of two partners: (i) a molecular neurosurgery agent, and (ii) the cognate receptor whose activation results in the selective elimination of a specific subset of neurons in which this receptor is endogenously expressed. In general, a molecular surgery agent is a selective and potent ligand, and the target is a specific cell type whose elimination is desired through the molecular surgery procedure. These target cells have the highest innate sensitivity to the molecular surgery agent usually due to the highest receptor density being in their plasma membrane. The interaction between the ligand and its receptor evokes an overactivity of the receptor. If the receptor is a ligand-activated non-selective cation channel, the overactivity of receptor leads to excess Ca2+ and Na+ influx into the cell and finally cell death. One of the best known examples of such an interaction is the effect of ultrapotent vanilloids on TRPV1-expressing pain-sensing neurons. One intrathecal resiniferatoxin (RTX) dose allows for the receptor-mediated removal of TRPV1+ neurons from the peripheral nervous system. The TRPV1 receptor-mediated ion influx induces necrotic processes, but only in pain-sensing neurons, and usually within an hour. Besides that, target-specific apoptotic processes are also induced. Thus, as a nano-surgery scalpel, RTX removes the neurons responsible for generating pain and inflammation from the peripheral nervous system providing an option in clinical management for the treatment of morphine-insensitive pain conditions. In the future, the molecular surgery concept can also be exploited in cancer research for selectively targeting the specific tumor cell.
Collapse
Affiliation(s)
- László Pecze
- Unit of Anatomy, Department of Medicine, University of FribourgFribourg, Switzerland
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary
| | - Zoltán Oláh
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of MiskolcMiskolc, Hungary.,Acheuron Ltd.Szeged, Hungary
| |
Collapse
|
46
|
Wang S, Wang S, Asgar J, Joseph J, Ro JY, Wei F, Campbell JN, Chung MK. Ca 2+ and calpain mediate capsaicin-induced ablation of axonal terminals expressing transient receptor potential vanilloid 1. J Biol Chem 2017; 292:8291-8303. [PMID: 28360106 DOI: 10.1074/jbc.m117.778290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Indexed: 01/01/2023] Open
Abstract
Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel in nociceptors. Capsaicin has also been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under the TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore, and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca2+-dependent protease calpain, diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain 2 also decreased ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca2+/calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying the effects of capsaicin on nociceptors.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - Sen Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - Jamila Asgar
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - John Joseph
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | | | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
47
|
Zhao R, Tsang SY. Versatile Roles of Intracellularly Located TRPV1 Channel. J Cell Physiol 2017; 232:1957-1965. [DOI: 10.1002/jcp.25704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Rui Zhao
- School of Life Sciences; The Chinese University of Hong Kong; Hong Kong SAR China
| | - Suk Ying Tsang
- School of Life Sciences; The Chinese University of Hong Kong; Hong Kong SAR China
- State Key Laboratory of Agrobiotechnology; The Chinese University of Hong Kong; Hong Kong SAR China
- Key Laboratory for Regenerative Medicine, Ministry of Education; The Chinese University of Hong Kong; Hong Kong SAR China
- Centre for Novel Biomaterials; The Chinese University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
48
|
Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP 3 Receptors in the Induction of Hyperalgesic Priming. J Neurosci 2017; 37:2032-2044. [PMID: 28115480 DOI: 10.1523/jneurosci.2911-16.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP3) receptor inhibitor prevented the induction of priming by ryanodine. For IP3 induced priming, females were also more sensitive. IP3-induced priming was prevented by pretreatment with inhibitors of the sarcoendoplasmic reticulum calcium ATPase and ryanodine receptor. Antisense to EsRα prevented the induction of priming by low-dose IP3 in females. The induction of priming by an EsRα agonist was ryanodine receptor-dependent and prevented by the IP3 antagonist. Thus, an EsRα-dependent bidirectional interaction between endoplasmic reticulum IP3 and ryanodine receptor-mediated calcium signaling is present in the induction of hyperalgesic priming, in females. In cultured male DRG neurons, IP3 (100 μm) potentiated depolarization-induced transients produced by extracellular application of high-potassium solution (20 mm, K20), in nociceptors incubated with β-estradiol. This potentiation of depolarization-induced calcium transients was blocked by the IP3 antagonist, and not observed in the absence of IP3 IP3 potentiation was also blocked by ryanodine receptor antagonist. The application of ryanodine (2 nm), instead of IP3, also potentiated K20-induced calcium transients in the presence of β-estradiol, in an IP3 receptor-dependent manner. Our results point to an EsRα-dependent, reciprocal interaction between IP3 and ryanodine receptors that contributes to sex differences in hyperalgesic priming.SIGNIFICANCE STATEMENT The present study demonstrates a mechanism that plays a role in the marked sexual dimorphism observed in a model of the transition to chronic pain, hyperalgesic priming. This mechanism involves a reciprocal interaction between the endoplasmic reticulum receptors, IP3 and ryanodine, in the induction of priming, regulated by estrogen receptor α in the nociceptor of female rats. The presence of this signaling pathway modulating the susceptibility of nociceptors to develop plasticity may contribute to our understanding of sex differences observed clinically in chronic pain syndromes.
Collapse
|
49
|
Yamamoto M, Nishiyama M, Iizuka S, Suzuki S, Suzuki N, Aiso S, Nakahara J. Transient receptor potential vanilloid 1-immunoreactive signals in murine enteric glial cells. World J Gastroenterol 2016; 22:9752-9764. [PMID: 27956799 PMCID: PMC5124980 DOI: 10.3748/wjg.v22.i44.9752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the possible involvement of transient receptor potential vanilloid 1 (TRPV1) in maturation of enteric glial cells (EGCs).
METHODS Immunohistochemical and immunocytochemical techniques were used to analyze EGC markers in myenteric plexus (MP) as well as cultured MP cells and EGCs using TRPV1 knockout (KO) mice.
RESULTS We detected TRPV1-immunoreactive signals in EGC in the MP of wild-type (WT) but not KO mice. Expression of glial fibrillary acidic protein (GFAP) immunoreactive signals was lower at postnatal day (PD) 6 in KO mice, though the difference was not clear at PD 13 and PD 21. When MP cells were isolated and cultured from isolated longitudinal muscle-MP preparation from WT and KO mice, the yield of KO EGC was lower than that of WT EGC, while the yield of KO and WT smooth muscle cells showed no difference. Addition of BCTC, a TRPV1 antagonist, to enriched EGC culture resulted in a decrease in the protein ratio of GFAP to S100B, another EGC/astrocyte-specific marker.
CONCLUSION These results address the possibility that TRPV1 may be involved in the maturation of EGC, though further studies are necessary to validate this possibility.
Collapse
|
50
|
Chung MK, Campbell JN. Use of Capsaicin to Treat Pain: Mechanistic and Therapeutic Considerations. Pharmaceuticals (Basel) 2016; 9:ph9040066. [PMID: 27809268 PMCID: PMC5198041 DOI: 10.3390/ph9040066] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Capsaicin is the pungent ingredient of chili peppers and is approved as a topical treatment of neuropathic pain. The analgesia lasts for several months after a single treatment. Capsaicin selectively activates TRPV1, a Ca2+-permeable cationic ion channel that is enriched in the terminals of certain nociceptors. Activation is followed by a prolonged decreased response to noxious stimuli. Interest also exists in the use of injectable capsaicin as a treatment for focal pain conditions, such as arthritis and other musculoskeletal conditions. Recently injection of capsaicin showed therapeutic efficacy in patients with Morton’s neuroma, a painful foot condition associated with compression of one of the digital nerves. The relief of pain was associated with no change in tactile sensibility. Though injection evokes short term pain, the brief systemic exposure and potential to establish long term analgesia without other sensory changes creates an attractive clinical profile. Short-term and long-term effects arise from both functional and structural changes in nociceptive terminals. In this review, we discuss how local administration of capsaicin may induce ablation of nociceptive terminals and the clinical implications.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD 21201, USA.
| | | |
Collapse
|