1
|
Chen X, Yao L, Ma S, Yuan X, Yang Y, Yuan Y, Liu Y, Liu L, Wang H, Yang W, Gellert M. How RAG1/2 evolved from ancestral transposases to initiate V(D)J recombination without transposition. RESEARCH SQUARE 2025:rs.3.rs-5443361. [PMID: 39989977 PMCID: PMC11844651 DOI: 10.21203/rs.3.rs-5443361/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The RAG1/2 recombinase, which initiates V(D)J recombination in jawed vertebrates, evolved from RNaseH-like transposases such as Transib and ProtoRAG 1. However, its post-cleavage transposase activity is strictly suppressed. Previous structural studies have focused only on the conserved core domains of RAG1/2, leaving the regulatory mechanisms of the non-core regions unclear. To investigate how RAG1/2 suppresses transposition and regulates DNA cleavage, we determined cryo-EM structures of nearly full-length RAG1/2 complexed with cleaved Recombination Signal Sequences (RSS) in a Signal-End Complex (SEC), at resolutions up to 2.95 Å. Two key structures, SEC-0 and SEC-PHD, reveal distinct regulatory roles of RAG2, which is absent in Transib transposase. SEC-0 displays a closed conformation, revealing that the core RAG2 facilitates sequential DNA cleavage by stabilizing the RSS-cleaved states in a "spring-loaded" mechanism. SEC-PHD reveals how RAG2's non-core PHD and Acidic Hinge (AH) domains, which are absent in ProtoRAG, inhibit target DNA binding in transposition. Histone H3K4me3, which recruits RAG1/2 to RSS sites, does not influence RAG1/2 binding to V, D or J gene segments bordered by RSS 2. In contrast, the suppressed transposition can be activated by H3K4me3 peptides that dislodge the inhibitory PHD domain 3,4. To achieve this de-repression in vivo, however, would require an unlikely close placement of two nucleosomes flanking a target DNA bent by nearly 180°. Our structural and biochemical results elucidate how RAG1 has acquired RAG2 and utilizes its core and non-core domains to enhance V(D)J recombination and suppress transposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan Liu
- National Institutes of Health
| | | | | | | |
Collapse
|
2
|
Smith AL, Scott JNF, Boyes J. The ESC: The Dangerous By-Product of V(D)J Recombination. Front Immunol 2019; 10:1572. [PMID: 31333681 PMCID: PMC6620893 DOI: 10.3389/fimmu.2019.01572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination generates antigen receptor diversity by mixing and matching individual variable (V), diversity (D), and joining (J) gene segments. An obligate by-product of many of these reactions is the excised signal circle (ESC), generated by excision of the DNA from between the gene segments. Initially, the ESC was believed to be inert and formed to protect the genome from reactive broken DNA ends but more recent work suggests that the ESC poses a substantial threat to genome stability. Crucially, the recombinase re-binds to the ESC, which can result in it being re-integrated back into the genome, to cause potentially oncogenic insertion events. In addition, very recently, the ESC/recombinase complex was found to catalyze breaks at recombination signal sequences (RSSs) throughout the genome, via a “cut-and-run” mechanism. Remarkably, the ESC/recombinase complex triggers these breaks at key leukemia driver genes, implying that this reaction could be a significant cause of lymphocyte genome instability. Here, we explore these alternate pathways and discuss their relative dangers to lymphocyte genome stability.
Collapse
Affiliation(s)
- Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
4
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
5
|
Mechanistic basis for RAG discrimination between recombination sites and the off-target sites of human lymphomas. Mol Cell Biol 2011; 32:365-75. [PMID: 22064481 DOI: 10.1128/mcb.06187-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.
Collapse
|
6
|
Abstract
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
7
|
Arbuckle JL, Rahman NS, Zhao S, Rodgers W, Rodgers KK. Elucidating the domain architecture and functions of non-core RAG1: the capacity of a non-core zinc-binding domain to function in nuclear import and nucleic acid binding. BMC BIOCHEMISTRY 2011; 12:23. [PMID: 21599978 PMCID: PMC3124419 DOI: 10.1186/1471-2091-12-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/20/2011] [Indexed: 12/19/2022]
Abstract
Background The repertoire of the antigen-binding receptors originates from the rearrangement of immunoglobulin and T-cell receptor genetic loci in a process known as V(D)J recombination. The initial site-specific DNA cleavage steps of this process are catalyzed by the lymphoid specific proteins RAG1 and RAG2. The majority of studies on RAG1 and RAG2 have focused on the minimal, core regions required for catalytic activity. Though not absolutely required, non-core regions of RAG1 and RAG2 have been shown to influence the efficiency and fidelity of the recombination reaction. Results Using a partial proteolysis approach in combination with bioinformatics analyses, we identified the domain boundaries of a structural domain that is present in the 380-residue N-terminal non-core region of RAG1. We term this domain the Central Non-core Domain (CND; residues 87-217). Conclusions We show how the CND alone, and in combination with other regions of non-core RAG1, functions in nuclear localization, zinc coordination, and interactions with nucleic acid. Together, these results demonstrate the multiple roles that the non-core region can play in the function of the full length protein.
Collapse
Affiliation(s)
- Janeen L Arbuckle
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
8
|
Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proc Natl Acad Sci U S A 2010; 107:22487-92. [PMID: 21149691 DOI: 10.1073/pnas.1014958107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene assembly of the variable domain of antigen receptors is initiated by DNA cleavage by the RAG1-RAG2 protein complex at sites flanking V, D, and J gene segments. Double-strand breaks are produced via a single-strand nick that is converted to a hairpin end on coding DNA and a blunt end on the neighboring recombination signal sequence. We demonstrate that the C-terminal regions of purified murine RAG1 (aa 1009-1040) and RAG2 (aa 388-520, including a plant homeodomain [PHD domain]) collaborate to inhibit the hairpinning stage of DNA cleavage. The C-terminal region of RAG2 stabilizes the RAG1/2 heterotetramer but destabilizes the RAG-DNA precleavage complex. This destabilization is reversed by binding of the PHD domain to a histone H3 peptide trimethylated on lysine 4 (H3K4me3). The addition of H3K4me3 likewise alleviates the RAG1/RAG2 C-terminus-mediated inhibition of hairpinning and the PHD-mediated inhibition of transposition activity. Thus a negative regulatory function of the noncore regions of RAG1/2 limits the RAG endonuclease activity in the absence of an activating methylated histone tail bound to the complex.
Collapse
|
9
|
Ramsden DA, Weed BD, Reddy YVR. V(D)J recombination: Born to be wild. Semin Cancer Biol 2010; 20:254-60. [PMID: 20600921 PMCID: PMC2942997 DOI: 10.1016/j.semcancer.2010.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 06/08/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022]
Abstract
Vertebrates employ V(D)J recombination to generate diversity for an adaptive immune response. Born of a transposon, V(D)J recombination could conceivably cause more trouble than its worth. However, of the two steps required for transposon mobility (excision and integration) this particular transposon's integration step appears mostly blocked in cells. The employment of a transposon as raw material to develop adaptive immunity was thus a less-risky choice than it might have been … but is it completely risk-free?
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | | |
Collapse
|
10
|
Grundy GJ, Ramón-Maiques S, Dimitriadis EK, Kotova S, Biertümpfel C, Heymann JB, Steven AC, Gellert M, Yang W. Initial stages of V(D)J recombination: the organization of RAG1/2 and RSS DNA in the postcleavage complex. Mol Cell 2009; 35:217-27. [PMID: 19647518 DOI: 10.1016/j.molcel.2009.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/27/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
Abstract
To obtain structural information on the early stages of V(D)J recombination, we isolated a complex of the core RAG1 and RAG2 proteins with DNA containing a pair of cleaved recombination signal sequences (RSS). Stoichiometric and molecular mass analysis established that this signal-end complex (SEC) contains two protomers each of RAG1 and RAG2. Visualization of the SEC by negative-staining electron microscopy revealed an anchor-shaped particle with approximate two-fold symmetry. Consistent with a parallel arrangement of DNA and protein subunits, the N termini of RAG1 and RAG2 are positioned at opposing ends of the complex, and the DNA chains beyond the RSS nonamer emerge from the same face of the complex, near the RAG1 N termini. These first images of the V(D)J recombinase in its postcleavage state provide a framework for modeling RAG domains and their interactions with DNA.
Collapse
Affiliation(s)
- Gabrielle J Grundy
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
During B cell and T cell development, the lymphoid-specific proteins RAG-1 and RAG-2 act together to initiate the assembly of antigen receptor genes through a series of site-specific somatic DNA rearrangements that are collectively called variable-diversity-joining (V(D)J) recombination. In the past 20 years, a great deal has been learned about the enzymatic activities of the RAG-1-RAG-2 complex. Recent studies have identified several new and exciting regulatory functions of the RAG-1-RAG-2 complex. Here we discuss some of these functions and suggest that the RAG-1-RAG-2 complex nucleates a specialized subnuclear compartment that we call the 'V(D)J recombination factory'.
Collapse
|
12
|
H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell 2009; 34:535-44. [PMID: 19524534 DOI: 10.1016/j.molcel.2009.05.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/31/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
The PHD finger of the RAG2 polypeptide of the RAG1/RAG2 complex binds to the histone H3 modification, trimethylated lysine 4 (H3K4me3), and in some manner increases V(D)J recombination. In the absence of biochemical studies of H3K4me3 on purified RAG enzyme activity, the precise role of H3K4me3 remains unclear. Here, we find that H3K4me3 stimulates purified RAG enzymatic activity at both the nicking (2- to 5-fold) and hairpinning (3- to 11-fold) steps of V(D)J recombination. Remarkably, this stimulation can be achieved with free H3K4me3 peptide (in trans), indicating that H3K4me3 functions via two distinct mechanisms. It not only tethers the RAG enzyme complex to a region of DNA, but it also induces a substantial increase in the catalytic turnover number (k(cat)) of the RAG complex. The H3K4me3 catalytic stimulation applies to suboptimal cryptic RSS sites located at H3K4me3 peaks that are critical in the inception of human T cell acute lymphoblastic lymphomas.
Collapse
|
13
|
Shlyakhtenko LS, Gilmore J, Kriatchko AN, Kumar S, Swanson PC, Lyubchenko YL. Molecular mechanism underlying RAG1/RAG2 synaptic complex formation. J Biol Chem 2009; 284:20956-65. [PMID: 19502597 DOI: 10.1074/jbc.m109.028977] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Two lymphoid cell-specific proteins, RAG1 and RAG2 (RAG), initiate V(D)J recombination by assembling a synaptic complex with recombination signal sequences (RSSs) abutting two different antigen receptor gene coding segments, and then introducing a DNA double strand break at the end of each RSS. Despite the biological importance of this system, the structure of the synaptic complex, and the RAG protein stoichiometry and arrangement of DNA within the synaptosome, remains poorly understood. Here we applied atomic force microscopy to directly visualize and characterize RAG synaptic complexes. We report that the pre-cleavage RAG synaptic complex contains about twice the protein content as a RAG complex bound to a single RSS, with a calculated mass consistent with a pair of RAG heterotetramers. In the synaptic complex, the RSSs are predominantly oriented in a side-by-side configuration with no DNA strand crossover. The mass of the synaptic complex, and the conditions under which it is formed in vitro, favors an association model of assembly in which isolated RAG-RSS complexes undergo synapsis mediated by RAG protein-protein interactions. The replacement of Mg2+ cations with Ca2+ leads to a dramatic change in protein stoichiometry for all RAG-RSS complexes, suggesting that the cation composition profoundly influences the type of complex assembled.
Collapse
Affiliation(s)
- Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | |
Collapse
|
14
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
15
|
Jones JM, Simkus C. The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development. Arch Immunol Ther Exp (Warsz) 2009; 57:105-16. [PMID: 19333736 DOI: 10.1007/s00005-009-0011-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/28/2009] [Indexed: 11/27/2022]
Abstract
The enormous repertoire of the vertebrate specific immune system relies on the rearrangement of discrete gene segments into intact antigen receptor genes during the early stages of B-and T-cell development. This V(D)J recombination is initiated by a lymphoid-specific recombinase comprising the RAG1 and RAG2 proteins, which introduces double-strand breaks in the DNA adjacent to the coding segments. Much of the biochemical research into V(D)J recombination has focused on truncated or "core" fragments of RAG1 and RAG2, which lack approximately one third of the amino acids from each. However, genetic analyses of SCID and Omenn syndrome patients indicate that residues outside the cores are essential to normal immune development. This is in agreement with the striking degree of conservation across all vertebrate classes in certain non-core domains. Work from multiple laboratories has shed light on activities resident within these domains, including ubiquitin ligase activity and KPNA1 binding by the RING finger domain of RAG1 and the recognition of specific chromatin modifications as well as phosphoinositide binding by the PHD module of RAG2. In addition, elements outside of the cores are necessary for regulated protein expression and turnover. Here the current state of knowledge is reviewed regarding the non-core regions of RAG1 and RAG2 and how these findings contribute to our broader understanding of recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular and Cellular Sciences, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
16
|
Kisielow P, Miazek A, Cebrat M. NWC, a new gene within RAG locus: could it keep GOD under control? Int J Immunogenet 2009; 35:395-9. [PMID: 18976445 DOI: 10.1111/j.1744-313x.2008.00791.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NWC, newly discovered, evolutionarily conserved gene within recombination activating gene (RAG) locus is constitutively expressed in all cells except lymphocytes, in which it is developmentally regulated by RAG1 promoter. In lymphocytes, NWC promoter, which is located within RAG2 intron and drives expression of NWC in non-lymphocytes, is inactive. Here, a hypothesis on the role of transcription of NWC in lymphocyte-specific regulation of RAG expression and their suppression in all other cells is presented. It is proposed that during development, inactivation of NWC promoter and the placement of NWC under the control of RAG1 promoter releases RAG genes from permanent suppression and allows their lymphocyte specific expression but at the same time subjects them to transcriptional feedback inhibition type of suppression which could permit for a stringent control over their threat to genome stability and oncogenic potential.
Collapse
Affiliation(s)
- P Kisielow
- Department of Tumor Immunology, Laboratory of Transgenesis and Lymphocyte Biology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | | | | |
Collapse
|
17
|
Matthews AGW, Oettinger MA. Regulation of RAG transposition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:16-31. [PMID: 19731798 DOI: 10.1007/978-1-4419-0296-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
V(D)J recombination is initiated by the lymphoid specific proteins RAG1 and RAG2, which together constitute the V(D)J recombinase. However, the RAG 1/2 complex can also act as a transposase, inserting the broken DNA molecules generated during V(D)J recombination into an unrelated piece of DNA. This process, termed RAG transposition, can potentially cause insertional mutagenesis, chromosomal translocations and genomic instability. This review focuses on the mechanism and regulation of RAG transposition. We first provide a brief overview of the biochemistry of V(D)J recombination. We then discuss the discovery of RAG transposition and present an overview of the RAG transposition pathway. Using this pathway as a framework, we discuss the factors and forces that regulate RAG transposition.
Collapse
Affiliation(s)
- Adam G W Matthews
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
18
|
Raval P, Kriatchko AN, Kumar S, Swanson PC. Evidence for Ku70/Ku80 association with full-length RAG1. Nucleic Acids Res 2008; 36:2060-72. [PMID: 18281312 PMCID: PMC2330247 DOI: 10.1093/nar/gkn049] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 11/13/2022] Open
Abstract
Antigen receptor genes are assembled by a site-specific DNA rearrangement process called V(D)J recombination. This process proceeds through two distinct phases: a cleavage phase in which the RAG1 and RAG2 proteins introduce DNA double-strand breaks at antigen receptor gene segments, and a joining phase in which the resulting DNA breaks are processed and repaired via the non-homologous end-joining (NHEJ) repair pathway. Genetic and biochemical evidence suggest that the RAG proteins play an active role in guiding the repair of DNA breaks introduced during V(D)J recombination to the NHEJ pathway. However, evidence for specific association between the RAG proteins and any of the factors involved in NHEJ remains elusive. Here we present evidence that two components of the NHEJ pathway, Ku70 and Ku80, interact with full-length RAG1, providing a biochemical link between the two phases of V(D)J recombination.
Collapse
Affiliation(s)
| | | | | | - Patrick C. Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Zhang M, Swanson PC. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. J Biol Chem 2008; 283:6717-27. [PMID: 18187418 DOI: 10.1074/jbc.m710301200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
V(D)J recombination is a process integral to lymphocyte development. However, this process is not always benign, since certain lymphoid malignancies exhibit recurrent chromosomal abnormalities, such as translocations and deletions, that harbor molecular signatures suggesting an origin from aberrant V(D)J recombination. Translocations involving LMO2, TAL1, Ttg-1, and Hox11, as well as a recurrent interstitial deletion at 1p32 involving SIL/SCL, are cited examples of illegitimate V(D)J recombination. Previous studies using extrachromosomal substrates reveal that cryptic recombination signal sequences (cRSSs) identified near the translocation breakpoint in these examples support V(D)J recombination with efficiencies ranging from about 30- to 20,000-fold less than bona fide V(D)J recombination signals. To understand the molecular basis for these large differences, we investigated the binding and cleavage of these cRSSs by the RAG1/2 proteins that initiate V(D)J recombination. We find that the RAG proteins comparably bind all cRSSs tested, albeit more poorly than a consensus RSS. We show that four cRSSs that support levels of V(D)J recombination above background levels in cell culture (LMO2, TAL1, Ttg-1, and SIL) are also cleaved by the RAG proteins in vitro with efficiencies ranging from 18 to 70% of a consensus RSS. Cleavage of LMO2 and Ttg-1 by the RAG proteins can also be detected in cell culture using ligation-mediated PCR. In contrast, Hox11 and SCL are nicked but not cleaved efficiently in vitro, and cleavage at other adventitious sites in plasmid substrates may also limit the ability to detect recombination activity at these cRSSs in cell culture.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
20
|
Vanura K, Montpellier B, Le T, Spicuglia S, Navarro JM, Cabaud O, Roulland S, Vachez E, Prinz I, Ferrier P, Marculescu R, Jäger U, Nadel B. In vivo reinsertion of excised episomes by the V(D)J recombinase: a potential threat to genomic stability. PLoS Biol 2007; 5:e43. [PMID: 17298184 PMCID: PMC1820826 DOI: 10.1371/journal.pbio.0050043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 12/12/2006] [Indexed: 01/16/2023] Open
Abstract
It has long been thought that signal joints, the byproducts of V(D)J recombination, are not involved in the dynamics of the rearrangement process. Evidence has now started to accumulate that this is not the case, and that signal joints play unsuspected roles in events that might compromise genomic integrity. Here we show both ex vivo and in vivo that the episomal circles excised during the normal process of receptor gene rearrangement may be reintegrated into the genome through trans-V(D)J recombination occurring between the episomal signal joint and an immunoglobulin/T-cell receptor target. We further demonstrate that cryptic recombination sites involved in T-cell acute lymphoblastic leukemia–associated chromosomal translocations constitute hotspots of insertion. Eventually, the identification of two in vivo cases associating episomal reintegration and chromosomal translocation suggests that reintegration events are linked to genomic instability. Altogether, our data suggest that V(D)J-mediated reintegration of episomal circles, an event likely eluding classical cytogenetic screenings, might represent an additional potent source of genomic instability and lymphoid cancer. Lymphoid cells recognize billions of pathogens as a result of gene rearrangements that generate pathogen-specific B- and T-cell receptors. This genetic reshuffling, called V(D)J recombination, occasionally misfires and damages genomic integrity. When such aberrations dysregulate proto-oncogenes, cancer ensues. It has become increasingly clear that multiple oncogenes acting in different cellular pathways can cooperate to cause cancer. Nevertheless, in the case of T-cell acute lymphoblastic leukemia, about a third of cases display oncogene activation in the absence of identified aberration, suggesting the presence of additional mechanisms of chromosomal alteration. In the hunt for such mechanisms, episomal circles (DNA segments that are excised during V(D)J recombination) have recently drawn attention. Moreover, signal joints, short sequences formed after gene rearrangements, once considered harmless, now appear to take part in events that might compromise genomic integrity. Using ex vivo recombination assays and genetically modified mice, we demonstrate that episomal circles may be reintegrated into the genome through recombination occurring between the episomal signal joints and a T-cell receptor target. Furthermore, we show that cryptic recombination sites located in the vicinity of oncogenes constitute hotspots of episomal insertion. Altogether, our results suggest that reintegration of excised episomal circles constitute a potential source of genomic instability and cancer in leukemia and lymphoma. Episomal DNA circles are the by-products of immunoreceptor gene rearrangements in lymphoid cells. Episomal circles can be reintegrated into the genome by
trans-V(D)J recombination and cause oncogene deregulation.
Collapse
Affiliation(s)
- Katrina Vanura
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Bertrand Montpellier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Trang Le
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Jean-Marc Navarro
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Olivier Cabaud
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Elodie Vachez
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
| | - Rodrig Marculescu
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- Institut National de la Santé et de la Recherche Médicale U631, Marseille, France
- Centre National de la Recherche Scientifique UMR6102, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Curry JD, Schulz D, Guidos CJ, Danska JS, Nutter L, Nussenzweig A, Schlissel MS. Chromosomal reinsertion of broken RSS ends during T cell development. ACTA ACUST UNITED AC 2007; 204:2293-303. [PMID: 17785508 PMCID: PMC2118463 DOI: 10.1084/jem.20070583] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The V(D)J recombinase catalyzes DNA transposition and translocation both in vitro and in vivo. Because lymphoid malignancies contain chromosomal translocations involving antigen receptor and protooncogene loci, it is critical to understand the types of “mistakes” made by the recombinase. Using a newly devised assay, we characterized 48 unique TCRβ recombination signal sequence (RSS) end insertions in murine thymocyte and splenocyte genomic DNA samples. Nearly half of these events targeted “cryptic” RSS-like elements. In no instance did we detect target-site duplications, which is a hallmark of recombinase-mediated transposition in vitro. Rather, these insertions were most likely caused by either V(D)J recombination between a bona fide RSS and a cryptic RSS or the insertion of signal circles into chromosomal loci via a V(D)J recombination-like mechanism. Although wild-type, p53, p53 x scid, H2Ax, and ATM mutant thymocytes all showed similar levels of RSS end insertions, core-RAG2 mutant thymocytes showed a sevenfold greater frequency of such events. Thus, the noncore domain of RAG2 serves to limit the extent to which the integrity of the genome is threatened by mistargeting of V(D)J recombination.
Collapse
Affiliation(s)
- John D Curry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Raghavan SC, Gu J, Swanson PC, Lieber MR. The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. DNA Repair (Amst) 2007; 6:751-9. [PMID: 17307402 PMCID: PMC2692700 DOI: 10.1016/j.dnarep.2006.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/15/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India. <>
| | | | | | | |
Collapse
|
23
|
Posey JE, Pytlos MJ, Sinden RR, Roth DB. Target DNA structure plays a critical role in RAG transposition. PLoS Biol 2006; 4:e350. [PMID: 17105341 PMCID: PMC1618415 DOI: 10.1371/journal.pbio.0040350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 08/22/2006] [Indexed: 11/19/2022] Open
Abstract
Antigen receptor gene rearrangements are initiated by the RAG1/2 protein complex, which recognizes specific DNA sequences termed RSS (recombination signal sequences). The RAG recombinase can also catalyze transposition: integration of a DNA segment bounded by RSS into an unrelated DNA target. For reasons that remain poorly understood, such events occur readily in vitro, but are rarely detected in vivo. Previous work showed that non-B DNA structures, particularly hairpins, stimulate transposition. Here we show that the sequence of the four nucleotides at a hairpin tip modulates transposition efficiency over a surprisingly wide (>100-fold) range. Some hairpin targets stimulate extraordinarily efficient transposition (up to 15%); one serves as a potent and specific transposition inhibitor, blocking capture of targets and destabilizing preformed target capture complexes. These findings suggest novel regulatory possibilities and may provide insight into the activities of other transposases.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Malgorzata J Pytlos
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas, United States of America
| | - Richard R Sinden
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas, United States of America
| | - David B Roth
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Abstract
The origin of the recombination-activating genes (RAGs) is considered to be a foundation hallmark for adaptive immunity, characterised by the presence of antigen receptor genes that provide the ability to recognise and respond to specific peptide antigens. In vertebrates, a diverse repertoire of antigen-specific receptors, T cell receptors and immunoglobulins is generated by V(D)J recombination performed by the RAG-1 and RAG-2 protein complex. RAG homologues were identified in many jawed vertebrates. Despite their crucial importance, no homologues have been found in jawless vertebrates and invertebrates. This paper focuses on the RAG homologues in humans and other vertebrates for which the genome is completely sequenced, and also discusses the main contribution of the use of RAG homologues in phylogenetics and vertebrate evolution. Since mutations in both genes cause a spectrum of severe combined immunodeficiencies, including the Omenn syndrome (OS), these topics are discussed in detail. Finally, the relevance to genomic diversity and implications to immunomics are addressed. The search for homologues could enlighten us about the evolutionary processes that shaped the adaptive immune system. Understanding the diversity of the adaptive immune system is crucially important for the design and development of new therapies to modulate the immune responses in humans and/or animal models.
Collapse
Affiliation(s)
- Maristela Martins de Camargo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Laila Alves Nahum
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Kriatchko AN, Anderson DK, Swanson PC. Identification and characterization of a gain-of-function RAG-1 mutant. Mol Cell Biol 2006; 26:4712-28. [PMID: 16738334 PMCID: PMC1489120 DOI: 10.1128/mcb.02487-05] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 01/18/2006] [Accepted: 04/07/2006] [Indexed: 12/28/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination by cleaving DNA at recombination signal sequences through sequential nicking and transesterification reactions to yield blunt signal ends and coding ends terminating in a DNA hairpin structure. Ubiquitous DNA repair factors then mediate the rejoining of broken DNA. V(D)J recombination adheres to the 12/23 rule, which limits rearrangement to signal sequences bearing different lengths of DNA (12 or 23 base pairs) between the conserved heptamer and nonamer sequences to which the RAG proteins bind. Both RAG proteins have been subjected to extensive mutagenesis, revealing residues required for one or both cleavage steps or involved in the DNA end-joining process. Gain-of-function RAG mutants remain unidentified. Here, we report a novel RAG-1 mutation, E649A, that supports elevated cleavage activity in vitro by preferentially enhancing hairpin formation. DNA binding activity and the catalysis of other DNA strand transfer reactions, such as transposition, are not substantially affected by the RAG-1 mutation. However, 12/23-regulated synapsis does not strongly stimulate the cleavage activity of a RAG complex containing E649A RAG-1, unlike its wild-type counterpart. Interestingly, wild-type and E649A RAG-1 support similar levels of cleavage and recombination of plasmid substrates containing a 12/23 pair of signal sequences in cell culture; however, E649A RAG-1 supports about threefold more cleavage and recombination than wild-type RAG-1 on 12/12 plasmid substrates. These data suggest that the E649A RAG-1 mutation may interfere with the RAG proteins' ability to sense 12/23-regulated synapsis.
Collapse
Affiliation(s)
- Aleksei N Kriatchko
- Dept. of Medical Microbiology and Immunology, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
26
|
Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol Cell Biol 2006; 26:1558-68. [PMID: 16449665 PMCID: PMC1367191 DOI: 10.1128/mcb.26.4.1558-1568.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to their essential roles in V(D)J recombination, the RAG proteins have been found to catalyze transposition in vitro, but it has been difficult to demonstrate transposition by the RAG proteins in vivo in vertebrate cells. As genomic instability and chromosomal translocations are common outcomes of transposition in other species, it is critical to understand if the RAG proteins behave as a transposase in vertebrate cells. To facilitate this, we have developed an episome-based assay to detect products of RAG-mediated transposition in the human embryonic kidney cell line 293T. Transposition events into the target episome, accompanied by characteristic target site duplications, were detected at a low frequency using RAG1 and either truncated "core" RAG2 or full-length RAG2. More frequently, insertion of the RAG-generated signal end fragment into the target was accompanied by deletions or more complex rearrangements, and our data indicate that these events occur by a mechanism that is distinct from transposition. An assay to detect transposition from an episome into the human genome failed to detect bona fide transposition events but instead yielded chromosome deletion and translocation events involving the signal end fragment mobilized by the RAG proteins. These assays provide a means of assessing RAG-mediated transposition in vivo, and our findings provide insight into the potential for the products of RAG-mediated DNA cleavage to cause genome instability.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | | | | |
Collapse
|
27
|
Bergeron S, Anderson DK, Swanson PC. RAG and HMGB1 proteins: purification and biochemical analysis of recombination signal complexes. Methods Enzymol 2006; 408:511-28. [PMID: 16793390 DOI: 10.1016/s0076-6879(06)08032-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two lymphoid cell-specific proteins, called RAG-1 and RAG-2, initiate the process of antigen receptor gene rearrangement, termed V(D)J recombination, by assembling a protein-DNA complex with two recombination signal sequences (RSSs), each of which adjoins a different receptor gene segment, and then introducing a DNA double strand break at the end of each RSS. The study of RAG-RSS complex assembly and activity has been facilitated by the development of methods to purify the RAG proteins and members of the HMG-box family of high mobility group proteins such as HMGB1 that promote RAG binding and cleavage activity in vitro. This chapter describes the purification of recombinant truncated and full-length RAG-1 and RAG-2 expressed transiently in mammalian cells, as well as the purification of bacterially expressed full-length HMGB1. In addition, it details several experimental procedures used in our laboratory to study RAG-RSS complex formation and function in vitro.
Collapse
Affiliation(s)
- Serge Bergeron
- Creighton University, Medical Microbiology and Immunology, Omaha, Nebraska, USA
| | | | | |
Collapse
|
28
|
Abstract
It has been unclear why certain defined DNA regions are consistently sites of chromosomal translocations. Some of these are simply sequences of recognition by endogenous recombination enzymes, but most are not. Recent progress indicates that some of the most common fragile sites in human neoplasm assume non-B DNA structures, namely deviations from the Watson-Crick helix. Because of the single strandedness within these non-B structures, they are vulnerable to structure-specific nucleases. Here we summarize these findings and integrate them with other recent data for non-B structures at sites of consistent constitutional chromosomal translocations.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
29
|
Raghavan SC, Tong J, Lieber MR. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining. DNA Repair (Amst) 2005; 5:278-85. [PMID: 16275127 DOI: 10.1016/j.dnarep.2005.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.
Collapse
Affiliation(s)
- Sathees C Raghavan
- USC Norris Comprehensive Cancer Center Room 5428, Department of Pathology, Biochemistry & Molecular Biology, University of Southern California, Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
30
|
West KL, Singha NC, De Ioannes P, Lacomis L, Erdjument-Bromage H, Tempst P, Cortes P. A direct interaction between the RAG2 C terminus and the core histones is required for efficient V(D)J recombination. Immunity 2005; 23:203-12. [PMID: 16111638 DOI: 10.1016/j.immuni.2005.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/01/2005] [Accepted: 07/13/2005] [Indexed: 11/18/2022]
Abstract
V(D)J recombination is a tightly controlled process of somatic recombination whose regulation is mediated in part by chromatin structure. Here, we report that RAG2 binds directly to the core histone proteins. The interaction with histones is observed in developing lymphocytes and within the RAG1/RAG2 recombinase complex in a manner that is dependent on the RAG2 C terminus. Amino acids within the plant homeo domain (PHD)-like domain as well as a conserved acidic stretch of the RAG2 C terminus that is considered to be a linker region are important for this interaction. Point mutations that disrupt the RAG2-histone association inhibit the efficiency of the V(D)J recombination reaction at the endogenous immunoglobulin locus, with the most dramatic effect in the V to DJ(H) rearrangement.
Collapse
Affiliation(s)
- Kelly L West
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bergeron S, Madathiparambil T, Swanson PC. Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro. J Biol Chem 2005; 280:31314-24. [PMID: 15994314 PMCID: PMC5992625 DOI: 10.1074/jbc.m503063200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination through synapsis and cleavage of a 12/23 pair of V(D)J recombination signal sequences (RSS). RAG-RSS complex assembly and activity in vitro is promoted by high mobility group proteins of the "HMG-box" family, exemplified by HMGB1. How HMGB1 stimulates the DNA binding and cleavage activity of the RAG complex remains unclear. HMGB1 contains two homologous HMG-box DNA binding domains, termed A and B, linked by a stretch of basic residues to a highly acidic C-terminal tail. To identify determinants of HMGB1 required for stimulation of RAG-mediated RSS binding and cleavage, we prepared an extensive panel of mutant HMGB1 proteins and tested their ability to augment RAG-mediated RSS binding and cleavage activity. Using a combination of mobility shift and in-gel cleavage assays, we find that HMGB1 promotes RAG-mediated cleavage largely through the activity of box B, but optimal stimulation requires a functional A box tethered in the correct orientation. Box A or B mutants fail to promote RAG synaptic complex formation, but this defect is alleviated when the acidic tail is removed from these mutants.
Collapse
Affiliation(s)
| | | | - Patrick C. Swanson
- An American Cancer Society Research Scholar. To whom correspondence should be addressed: Dept. of Medical Microbiology and Immunology, Creighton University Medical Center, 2500 California Plaza, Omaha, NE, 68178. Tel.: 402-280-2716; Fax: 402-280-1875;
| |
Collapse
|
32
|
Elkin SK, Ivanov D, Ewalt M, Ferguson CG, Hyberts SG, Sun ZYJ, Prestwich GD, Yuan J, Wagner G, Oettinger MA, Gozani OP. A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J Biol Chem 2005; 280:28701-10. [PMID: 15964836 DOI: 10.1074/jbc.m504731200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAG1 and RAG2 proteins catalyze V(D)J recombination and are essential for generation of the diverse repertoire of antigen receptor genes and effective immune responses. RAG2 is composed of a "core" domain that is required for the recombination reaction and a C-terminal nonessential or "non-core" region. Recent evidence has emerged arguing that the non-core region plays a critical regulatory role in the recombination reaction, and mutations in this region have been identified in patients with immunodeficiencies. Here we present the first structural data for the RAG2 protein, using NMR spectroscopy to demonstrate that the C terminus of RAG2 contains a noncanonical PHD finger. All of the non-core mutations of RAG2 that are implicated in the development of immunodeficiencies are located within the PHD finger, at either zinc-coordinating residues or residues adjacent to an alpha-helix on the surface of the domain that participates in binding to the signaling molecules, phosphoinositides. Functional analysis of disease and phosphoinositide-binding mutations reveals novel intramolecular interactions within the non-core region and suggests that the PHD finger adopts two distinct states. We propose a model in which the equilibrium between these states modulates recombination activity. Together, these data identify the PHD finger as a novel and functionally important domain of RAG2.
Collapse
Affiliation(s)
- Sheryl K Elkin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Antigen receptor genes exist in the germline in a "split" configuration and are assembled in developing B and T lymphocytes by V(D)J recombination. This site-specific recombination reaction is initiated by a complex containing the RAG1 and RAG2 proteins and completed by general DNA repair factors. RAG1 and RAG2, like the adaptive immune system itself, are found exclusively in jawed vertebrates, and are thought to have entered the vertebrate genome by horizontal transmission as components of a transposable element. This review discusses the structure of antigen receptor genes and the mechanisms by which they are assembled and diversified, and then goes on to consider the evolutionary implications of the arrival of the hypothetical "RAG transposon".
Collapse
Affiliation(s)
- David G Schatz
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
34
|
Chatterji M, Tsai CL, Schatz DG. New concepts in the regulation of an ancient reaction: transposition by RAG1/RAG2. Immunol Rev 2005; 200:261-71. [PMID: 15242411 DOI: 10.1111/j.0105-2896.2004.00167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lymphoid-specific factors, recombination-activating gene 1 (RAG1) and RAG2, initiate V(D)J recombination by introducing DNA double-stand breaks at specific sites in the genome. In addition to this critical endonuclease activity, the RAG proteins catalyze other chemical reactions that can affect the outcome of V(D)J recombination, one of which is transposition. While the transposition activity of the RAG proteins is thought to have been critical for the evolution of modern antigen-receptor loci, it has also been proposed to contribute to chromosomal translocations and lymphoid malignancy. A major challenge has been to determine how the transposition activity of the RAG proteins is regulated in vivo. Although a variety of mechanisms have been suggested by recent studies, a clear resolution of this issue remains elusive.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
35
|
De P, Rodgers KK. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol Rev 2005; 200:70-82. [PMID: 15242397 DOI: 10.1111/j.0105-2896.2004.00154.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
V(D)J recombination generates functional immunoglobulin and T-cell receptor genes in developing lymphocytes. The recombination-activating gene 1 (RAG1) and RAG2 proteins catalyze site-specific DNA cleavage in this recombination process. Biochemical studies have identified catalytically active regions of each protein, referred to as the core regions. Here, we review our progress in the identification and characterization, in biophysical and biochemical terms, of topologically independent domains within both the non-core and core regions of RAG1. Previous characterizations of a structural domain identified in the non-core region of RAG1 from residues 265-380, referred to as the zinc-binding dimerization domain, are discussed. This domain contains two zinc-binding motifs, a RING finger and a C2H2 zinc finger. Core RAG1 also consists of multiple domains, each of which functions individually in one or more of the essential macromolecular interactions formed by the intact core protein. Two structural domains referred to as the central and the C-terminal domains that include residues 528-760 and 761-979 of RAG1, respectively, have been identified. The interactions of the central and C-terminal domains in core RAG1 with the recombination signal sequence (RSS) have contributed additional insight to a developing model for the RAG1-RSS complex.
Collapse
Affiliation(s)
- Pallabi De
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|
36
|
Abstract
The genes that encode immunoglobulins and T-cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination-activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post-cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington DC, USA
| | | |
Collapse
|
37
|
Abstract
Developing B and T cells assemble gene segments in order to create the variable regions of immunoglobulin and T-cell receptors required by our adaptive immune response. The chemistry of this recombination pathway requires a specific nuclease and a more general repair pathway for double-strand breaks. A complex of the recombination-activating gene 1 (RAG1) and RAG2 proteins provides the nuclease activity. In fact, RAG1 and RAG2 probably coordinate many steps involving the coding and signaling DNA sequences. Studies using deletion and truncation mutants of the RAG proteins demonstrate that each of these contain a functional core region, representing about two-thirds of the polypeptides. While the core regions are sufficient to catalyze recombination in test systems, the full-length proteins seem to show more complicated behaviors in vivo. A plausible explanation is that regions outside the core help in the proper regulation of recombination. The non-core region of RAG1 has been found to contain a ubiquitin ligase. Regulatory functions may contribute to autoregulation of the proteins involved, fidelity of the reaction, protection of the cell from translocations, coordination of recombination with the cell cycle, and possibly modification of the chromatin structure of target DNA.
Collapse
Affiliation(s)
- Moshe J Sadofsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
38
|
Talukder SR, Dudley DD, Alt FW, Takahama Y, Akamatsu Y. Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. Nucleic Acids Res 2004; 32:4539-49. [PMID: 15328366 PMCID: PMC516053 DOI: 10.1093/nar/gkh778] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RAG1 and RAG2 play a central role in V(D)J recombination, a process for antigen receptor gene assembly. The truncated 'core' regions of RAGs are sufficient to catalyze the recombination reaction, although with lower joining efficiency than full-length proteins. To investigate the role of the non-core regions of RAGs in the end-joining phase of antigen receptor rearrangement, we analyzed recombination products isolated from core RAG1 and core RAG2 knock-in mice. Here, we report that the truncation of RAGs increases the frequency of aberrant recombination in vivo. Signal joints (SJs) associated with V-to-D recombination of core RAG1 knock-in mice were normal, whereas those of core RAG2 knock-in mice were highly imprecise, containing large deletions and additions, and in some cases coding sequences. In contrast, we found an elevated level of imprecise D-to-J associated SJs for both core RAG1- and RAG2-expressing mice. Likewise, sequences of coding joints (CJs) were also affected by the expression of core RAGs. Finally, sequences found at the junctions of rearranged T-cell receptor loci were highly influenced by differences in rearranging recombination signal sequence pairs. We provide the first evidence that the non-core regions of RAGs have critical functions in the proper assembly and resolution of recombination intermediates in endogenous antigen receptor loci.
Collapse
Affiliation(s)
- Sadiqur R Talukder
- Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan and Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
39
|
De P, Peak MM, Rodgers KK. DNA cleavage activity of the V(D)J recombination protein RAG1 is autoregulated. Mol Cell Biol 2004; 24:6850-60. [PMID: 15254250 PMCID: PMC444861 DOI: 10.1128/mcb.24.15.6850-6860.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/07/2003] [Accepted: 05/12/2004] [Indexed: 01/13/2023] Open
Abstract
RAG1 and RAG2 catalyze the first DNA cleavage steps in V(D)J recombination. We demonstrate that the isolated central domain of RAG1 has inherent single-stranded (ss) DNA cleavage activity, which does not require, but is enhanced by, RAG2. The central domain, therefore, contains the active-site residues necessary to perform hydrolysis of the DNA phosphodiester backbone. Furthermore, the catalytic activity of this domain on ss DNA is abolished by addition of the C-terminal domain of RAG1. The inhibitory effects of this latter domain are suppressed on substrates containing double-stranded (ds) DNA. Together, the activities of the reconstituted domains on ss versus mixed ds-ss DNA approximate the activity of intact RAG1 in the presence of RAG2. We propose how the combined actions of the RAG1 domains may function in V(D)J recombination and also in aberrant cleavage reactions that may lead to genomic instability in B and T lymphocytes.
Collapse
Affiliation(s)
- Pallabi De
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
40
|
Abstract
Since the discovery that the recombination-activating gene (RAG) proteins were capable of transposition in vitro, investigators have been trying to uncover instances of transposition in vivo and understand how this transposase has been harnessed to do useful work while being inhibited from causing deleterious chromosome rearrangements. How to preserve the capacity of the recombinase to promote a certain class of rearrangements while curtailing its ability to catalyze others is an interesting problem. In this review, we examine the progress that has been made toward understanding the regulatory mechanisms that prohibit transposition in order to formulate a model that takes into account the diverse observations that have been made over the last 15 years. First, we touch on the striking mechanistic similarities between transposition and V(D)J recombination and review evidence suggesting that the RAG proteins may be members of the retroviral integrase superfamily. We then dispense with an old theory that certain standard products of V(D)J recombination called signal joints protect against deleterious transposition events. Finally, we discuss the evidence that target capture could serve a regulatory role and close with an analysis of hairpins as preferred targets for RAG-mediated transposition. These novel strategies for harnessing the RAG transposase not only shed light on V(D)J recombination but also may provide insight into the regulation of other transposases.
Collapse
Affiliation(s)
- Vicky L Brandt
- Program in Molecular Pathogenesis, The Skirball Institute, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
41
|
Abstract
V(D)J recombination assembles antigen receptor genes from component gene segments. We review findings that have shaped our current understanding of this remarkable mechanism, with a focus on two major reports--the first detailed comparison of germline and rearranged antigen receptor loci and the discovery of the recombination activating gene-1.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, The Children's Hospital, The CBR Institute for Biomedical Research, Inc., Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|