1
|
Liu Z, Mao Y, Yang K, Wang S, Zou F. A trend of osteocalcin in diabetes mellitus research: bibliometric and visualization analysis. Front Endocrinol (Lausanne) 2025; 15:1475214. [PMID: 39872315 PMCID: PMC11769813 DOI: 10.3389/fendo.2024.1475214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Osteocalcin has attracted attention for its potential role in diabetes management. However, there has been no bibliometric assessment of scientific progress in this field. Methods We analysed 1680 articles retrieved from the Web of Science Core Collection (WoSCC) between 1 January 1986 and 10 May 2024 using various online tools. Result These papers accumulated 42,714 citations,with an average of 25.43 citations per paper. Publication output increased sharply from 1991 onwards. The United States and China are at the forefront of this research area. Discussion The keywords were grouped into four clusters: 'Differential and functional osteocalcin genes', 'Differential expression of osteocalcin genes in relation to diabetes mellitus', 'Role of osteocalcin in the assessment of osteoporosis and diabetes mellitus', and 'Indirect involvement of osteocalcin in metabolic processes'. Analysis using the VoS viewer suggests a shift in research focus towards the correlation between osteocalcin levels and diabetic complications, the clinical efficacy of therapeutic agents or vitamins in the treatment of osteoporosis in diabetic patients, and the mechanisms by which osteocalcin modulates insulin action. The proposed focus areas are "osteocalcin genes", "insulin regulation and osteoporosis ", "different populations", "diabetes-related complications" and "type 2 diabetes mellitus","effect of osteocalcin expression on insulin sensitivity as well as secretion","osteocalcin expression in different populations of diabetic patients and treatment-related studies".
Collapse
Affiliation(s)
- Zixu Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yuchen Mao
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Shukai Wang
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Kim MH, Bok M, Lim H, Yang WM. An Integrative Study on the Inhibition of Bone Loss via Osteo-F Based on Network Pharmacology, Experimental Verification, and Clinical Trials in Postmenopausal Women. Cells 2023; 12:1992. [PMID: 37566071 PMCID: PMC10417279 DOI: 10.3390/cells12151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
The inhibition of bone loss remains a challenge for postmenopausal women, considering the fact that only three anabolic treatments for osteoporosis have been approved by the FDA. This study aimed to investigate the osteogenic capacities of Osteo-F, a newly developed herbal formula, upon integrating network analysis and pre-clinical studies into clinical trials. The network pharmacology analysis showed that a potential mechanism of Osteo-F is closely related to osteoblast differentiation. Consistent with the predicted mechanism, Osteo-F treatment significantly enhanced bone matrix formation and mineralization with collagen expression in osteoblasts. Simultaneously, secreted bone-forming molecules were upregulated by Osteo-F. After the administration of Osteo-F to osteoporotic mice, the femoral BMD and osteocalcin in the serum and bone tissues were significantly improved. Subsequently, a randomized, double-blinded, placebo-controlled clinical trial showed that 253 mg of Osteo-F supplementation for 24 weeks resulted in significant improvements in the Z-score and serum osteocalcin levels of postmenopausal women compared to the placebo, thus indicating bone anabolic efficacy. In the current study, the bone anabolic effect of Osteo-F was determined by activating the differentiation and mineralization of osteoblasts through integrating experiments based on network analysis into clinical trials, with synchronized, reliable evidence, demonstrating that Osteo-F is a novel bone anabolic treatment in postmenopausal women.
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Minkyung Bok
- Department of Medical Nutrition, Graduate School of East–West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea;
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East–West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea;
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
3
|
Xie D, Zhao L, Wu L, Ji Q. The levels of bone turnover markers and parathyroid hormone and their relationship in chronic kidney disease. Clin Chim Acta 2023; 548:117518. [PMID: 37619948 DOI: 10.1016/j.cca.2023.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Chronic kidney disease-mineral bone disease (CKD-MBD) is a major complication of CKD. Bone turnover markers (BTMs) are important for clinicians to evaluate and manage patients with CKD-MBD. This study aimed to assess BTMs in patients with CKD and their correlation with parathyroid hormone (PTH) and other clinical characteristics of CKD. METHODS A total of 408 subjects were included in this study. The serum BTMs including N-terminal midfragment osteocalcin (N-MID OC), β-isomerized C-terminal telopeptides (β-CTX), and total procollagen type 1 amino-terminal propeptide (tPINP) were measured. Spearman correlation and multiple stepwise regression models were used to investigate the association of N-MID OC, β-CTX, and tPINP with the clinical characteristics of CKD patients. RESULTS BTMs was no significant difference between non-CKD and CKD stages 1, 2, and 3. However, N-MID OC, β-CTX were significantly increased in patients with CKD stage 4 compared to non-CKD patients and patients with CKD stages 1, 2, and 3. Compared with non-dialysis dependent (NDD)-CKD stage 5, BTMs were significantly higher in dialysis patients. The estimated glomerular filtration rate was negatively associated with N-MID OC (r = -0.479, P < 0.001), β-CTX (r = -0.474, P < 0.001), and tPINP (r = -0.375, P < 0.001). Multiple analysis showed that N-MID OC (β = 0.67, P < 0.001), β-CTX (β = 0.64, P < 0.001), and tPINP (β = 0.81, P < 0.001) were independently associated with PTH. CKD patients with secondary hyperparathyroidism (SHPT) have higher β-CTX (P < 0.05), and N-MID OC (P < 0.05) than patients with non-SHPT. CONCLUSIONS BTMs in advanced CKD stages were significantly higher than in the early disease stages. PTH level was independently and positively associated with the BTM levels in patients with CKD. In the advanced stage of CKD, β-CTX and N-MID OC levels were significantly higher in those with SHPT than those with non-SHPT.
Collapse
Affiliation(s)
- Dengpiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Liangbin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ling Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qing Ji
- Chengdu First People's Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Yao H, Zhang L, Yan S, He Y, Zhu H, Li Y, Wang D, Yang K. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J Nanobiotechnology 2022; 20:378. [PMID: 35964037 PMCID: PMC9375242 DOI: 10.1186/s12951-022-01587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) has been reported to accelerate fracture healing, but the mechanism is unclear and its efficacy needs to be further optimized. Ultrasound in combination with functionalized microbubbles has been shown to induce local shear forces and controllable mechanical stress in cells, amplifying the mechanical effects of LIPUS. Nanoscale lipid bubbles (nanobubbles) have high stability and good biosafety. However, the effect of LIPUS combined with functionalized nanobubbles on osteogenesis has rarely been studied. RESULTS In this study, we report cyclic arginine-glycine-aspartic acid-modified nanobubbles (cRGD-NBs), with a particle size of ~ 500 nm, able to actively target bone marrow mesenchymal stem cells (BMSCs) via integrin receptors. cRGD-NBs can act as nanomechanical force generators on the cell membrane, and further enhance the BMSCs osteogenesis and bone formation promoted by LIPUS. The polymerization of actin microfilaments and the mechanosensitive transient receptor potential melastatin 7 (TRPM7) ion channel play important roles in BMSCs osteogenesis promoted by LIPUS/cRGD-NBs. Moreover, the mutual regulation of TRPM7 and actin microfilaments promote the effect of LIPUS/cRGD-NBs. The extracellular Ca2 + influx, controlled partly by TRPM7, could participated in the effect of LIPUS/cRGD-NBs on BMSCs. CONCLUSIONS The nanomechanical force generators cRGD-NBs could promote osteogenesis of BMSCs and bone formation induced by LIPUS, through regulation TRPM7, actin cytoskeleton, and intracellular calcium oscillations. This study provides new directions for optimizing the efficacy of LIPUS for fracture healing, and a theoretical basis for the further application and development of LIPUS in clinical practice.
Collapse
Affiliation(s)
- Huan Yao
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.,Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shujin Yan
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yasha Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.
| |
Collapse
|
5
|
Comninos AN, Hansen MS, Courtney A, Choudhury S, Yang L, Mills EG, Phylactou M, Busbridge M, Khir M, Thaventhiran T, Bech P, Tan T, Abbara A, Frost M, Dhillo WS. Acute Effects of Kisspeptin Administration on Bone Metabolism in Healthy Men. J Clin Endocrinol Metab 2022; 107:1529-1540. [PMID: 35244717 PMCID: PMC9113799 DOI: 10.1210/clinem/dgac117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT Osteoporosis results from disturbances in bone formation and resorption. Recent nonhuman data suggest that the reproductive hormone kisspeptin directly stimulates osteoblast differentiation in vitro and thus could have clinical therapeutic potential. However, the effects of kisspeptin on human bone metabolism are currently unknown. OBJECTIVE To assess the effects of kisspeptin on human bone metabolism in vitro and in vivo. METHODS In vitro study: of Mono- and cocultures of human osteoblasts and osteoclasts treated with kisspeptin. Clinical study: Randomized, placebo-controlled, double-blind, 2-way crossover clinical study in 26 men investigating the effects of acute kisspeptin administration (90 minutes) on human bone metabolism, with blood sampling every 30 minutes to +90 minutes. Cells for the in vitro study were from 12 male blood donors and 8 patients undergoing hip replacement surgery. Twenty-six healthy eugonadal men (age 26.8 ± 5.8 years) were included in the clinical study. The intervention was Kisspeptin (vs placebo) administration. The main outcome measures were changes in bone parameters and turnover markers. RESULTS Incubation with kisspeptin in vitro increased alkaline phosphatase levels in human bone marrow mesenchymal stem cells by 41.1% (P = .0022), and robustly inhibited osteoclastic resorptive activity by up to 53.4% (P < .0001), in a dose-dependent manner. Kisspeptin administration to healthy men increased osteoblast activity, as evidenced by a 20.3% maximal increase in total osteocalcin (P = .021) and 24.3% maximal increase in carboxylated osteocalcin levels (P = .014). CONCLUSION Collectively, these data provide the first human evidence that kisspeptin promotes osteogenic differentiation of osteoblast progenitors and inhibits bone resorption in vitro. Furthermore, kisspeptin acutely increases the bone formation marker osteocalcin but not resorption markers in healthy men, independent of downstream sex steroid levels. Kisspeptin could therefore have clinical therapeutic application in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Alexander N Comninos
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Morten S Hansen
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
| | - Alan Courtney
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Edouard G Mills
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Maria Phylactou
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Mark Busbridge
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Muaza Khir
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Thilipan Thaventhiran
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Paul Bech
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Clinical Biochemistry, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Morten Frost
- KMEB Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
- Steno Diabetes Centre, Odense University Hospital, Denmark
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
6
|
Cianciolo G, Capelli I, Cappuccilli M, Scrivo A, Donadei C, Marchetti A, Rucci P, La Manna G. Is chronic kidney disease-mineral and bone disorder associated with the presence of endothelial progenitor cells with a calcifying phenotype? Clin Kidney J 2017; 10:389-396. [PMID: 28616217 PMCID: PMC5466108 DOI: 10.1093/ckj/sfw145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/02/2016] [Indexed: 01/21/2023] Open
Abstract
Background: Chronic kidney disease-mineral and bone disorder (CKD-MBD) has been implicated in vascular calcification pathogenesis. CKD-MBD results in alterations in the number and function of circulating endothelial progenitor cells (EPCs), physiological regulators of angiogenesis and vessel repair, commonly defined as proangiogenic progenitor cells (PACs) by the antigen pattern CD34+CD133+KDR+CD45– and putative EPCs by the pattern CD34+CD133−KDR+CD45–. These cells might acquire a calcifying phenotype in CKD-MBD, expressing mineralization biomarkers. We investigated the expression of vitamin D receptor (VDR) and osteocalcin (OC) on EPCs of healthy individuals and haemodialysis patients, and their possible associations with circulating biomarkers of inflammation and vascular calcification. Methods: We compared EPC counts, expressing VDR or OC, in 23 healthy subjects versus 53 haemodialysis patients, 17 of them without vitamin D receptor agonist (VDRA) therapy and 35 treated with calcitriol (n = 17) or paricalcitol (n = 18). The correlations with serum levels of inflammatory and calcification indexes were also analysed. Results: All subsets expressing VDR or OC were significantly higher in haemodialysis patients compared with healthy controls, but PACs were increased only in VDRA treatment subgroup, while putative EPCs showed a similar rise also in untreated patients. In VDRA-untreated patients, OC+ PACs correlated positively with calcium levels, while in VDRA-treated patients, VDR+ PACs correlated positively with interleukin 6 levels, and OC+ PACs correlated positively 25-hydroxyvitamin D levels. Conclusions: Our data suggest that in CKD-MBD, EPCs undergo an endothelial-to-procalcific shift, representing a risk factor for vascular calcification. A link between mineral disorders and vitamin D replacement therapy emerged, with potential adverse effects for CKD patients.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Anna Scrivo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Donadei
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Antonio Marchetti
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences, Unit of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Jeong HM, Cho SW, Park SI. Osteoblasts Are the Centerpiece of the Metastatic Bone Microenvironment. Endocrinol Metab (Seoul) 2016; 31:485-492. [PMID: 28029019 PMCID: PMC5195822 DOI: 10.3803/enm.2016.31.4.485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is comprised of diverse stromal cell populations in addition to tumor cells. Increasing evidence now clearly supports the role of microenvironment stromal cells in tumor progression and metastasis, yet the regulatory mechanisms and interactions among tumor and stromal cells remain to be elucidated. Bone metastasis is the major problem in many types of human malignancies including prostate, breast and lung cancers, and the biological basis of bone metastasis let alone curative approaches are largely undetermined. Among the many types of stromal cells in bone, osteoblasts are shown to be an important player. In this regard, osteoblasts are a key target cell type in the development of bone metastasis, but there are currently no drugs or therapeutic approaches are available that specifically target osteoblasts. This review paper summarizes the current knowledge on osteoblasts in the metastatic tumor microenvironment, aiming to provide clues and directions for future research endeavor.
Collapse
Affiliation(s)
- Hyo Min Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
8
|
Shu H, Pei Y, Chen K, Lu J. Significant inverse association between serum osteocalcin and incident type 2 diabetes in a middle-aged cohort. Diabetes Metab Res Rev 2016; 32:867-874. [PMID: 27061949 DOI: 10.1002/dmrr.2808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/07/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Accumulating evidence indicates that osteocalcin links bone formation to glucose homeostasis. However, the correlation between osteocalcin and incident type 2 diabetes has been controversial based on the limited results of cohort studies. We examined the link between serum osteocalcin and glucose homeostasis including incident type 2 diabetes in a 3-year follow-up study. METHODS This retrospective study enrolled 1870 middle-aged subjects (1279 men, 591 women) at Chinese PLA General Hospital who were followed-up for 3 years. Cox proportional hazards regression was used to determine whether incident type 2 diabetes was influenced by the osteocalcin concentrations measured with an electrochemiluminescence immunoassay. RESULTS At baseline, the blood glucose levels and prevalence of metabolic syndrome varied inversely with the osteocalcin quartiles. During follow-up, type 2 diabetes developed in 80 of the 1870 subjects. The prevalence decreased with osteocalcin quartiles (P = 0.016). In models adjusted for metabolism-related parameters, osteocalcin was inversely associated with fasting plasma glucose {β = -0.017 [95% confidence interval (CI), -0.034-0.00], P = 0.040}. Osteocalcin was inversely related to the risk of incident type 2 diabetes assessed using a model adjusted for glucose metabolic parameters, 25-hydroxy vitamin D3 and parathyroid hormone (hazard ratio [HR] = 0.09 [95% CI, 0.01-0.96], P = 0.046). The onset risk of diabetes in the first osteocalcin quartile was higher than in the fourth quartile (HR = 1.67 [95% CI, 0.96-3.48], P = 0.035). The correlation was strongly significant after fully adjusting for glucose related parameters and bone turnover (HR = 3.02 [95% CI, 1.25-7.32], P = 0.014). CONCLUSIONS Low serum osteocalcin concentrations at baseline were independently related to an increased risk of incident type 2 diabetes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hua Shu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Kang Chen
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Juming Lu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Sukumar D, Shapses SA, Schneider SH. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: Effect on glycemic indices and serum osteocalcin levels. Mol Cell Endocrinol 2015; 410:73-7. [PMID: 25576857 PMCID: PMC4444377 DOI: 10.1016/j.mce.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 01/20/2023]
Abstract
The effect of vitamin D supplementation and caloric restriction (CR) on glycemic indices and osteocalcin (OC) is not clear. In this randomized controlled double blind trial, we examined whether vitamin D3 supplementation at 2500 IU/d (D) or placebo has differential effects on markers of insulin sensitivity and bone turnover in overweight/obese postmenopausal women during 6 weeks of caloric restriction (weight loss; WL, n = 39) compared to weight maintenance (WM, n = 37). Seventy-six women (57 ± 6 years) completed this study and the WL groups lost 4 ± 1% of body weight. Baseline serum 25-hydroxyvitamin D (25OHD) was 24.8 ± 5.6 ng/mL at baseline; the rise was greatest in WL-D group (p < 0.05). There was an interaction between vitamin D intake and weight on serum OC, insulin, glucose and markers of insulin sensitivity (p < 0.05). The change in OC was explained by changes in serum 25OHD and insulin (model R(2) = 25.6%). Overall, vitamin D supplementation and CR influence serum osteocalcin levels and modestly favor improvements in insulin sensitivity.
Collapse
Affiliation(s)
- D Sukumar
- Department of Nutrition Sciences, Drexel University, Philadelphia, PA, USA.
| | - S A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - S H Schneider
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Hayes JS, Richards RG. Surfaces to control tissue adhesion for osteosynthesis with metal implants:in vitroandin vivostudies to bring solutions to the patient. Expert Rev Med Devices 2014; 7:131-42. [DOI: 10.1586/erd.09.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Cao H, Zhu K, Qiu L, Li S, Niu H, Hao M, Yang S, Zhao Z, Lai Y, Anderson JL, Fan J, Im HJ, Chen D, Roodman GD, Xiao G. Critical role of AKT protein in myeloma-induced osteoclast formation and osteolysis. J Biol Chem 2013; 288:30399-30410. [PMID: 24005670 DOI: 10.1074/jbc.m113.469973] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors.
Collapse
Affiliation(s)
- Huiling Cao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ke Zhu
- From the College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Lugui Qiu
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Shuai Li
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanjie Niu
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mu Hao
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Shengyong Yang
- the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, and
| | - Zhongfang Zhao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yumei Lai
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Judith L Anderson
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jie Fan
- the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, and
| | - Hee-Jeong Im
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - Di Chen
- the Department of Biochemistry, Rush University, Chicago, Illinois 60612
| | - G David Roodman
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Guozhi Xiao
- From the College of Life Sciences, Nankai University, Tianjin 300071, China,; the Department of Biochemistry, Rush University, Chicago, Illinois 60612,.
| |
Collapse
|
12
|
Zheng L, Zhu K, Jiao H, Zhao Z, Zhang L, Liu M, Deng W, Chen D, Yao Z, Xiao G. PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition. Int J Biol Sci 2013; 9:830-41. [PMID: 23983616 PMCID: PMC3753447 DOI: 10.7150/ijbs.7039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
This study examined the effects of parathyroid hormone-related protein (PTHrP) derived from human MDA-MB-231 breast cancer cells on the tumor growth and osteoblast inhibition. Results revealed that knocking down PTHrP expression in the breast cancer cells strikingly inhibited the formation of subcutaneous tumors in nude mice. PTHrP knockdown dramatically decreased the levels of cyclins D1 and A1 proteins and arrested the cell cycle progression at the G1 stage. PTHrP knockdown led to the cleavage of Caspase 8 and induced apoptosis of the tumor cells. Interestingly, knocking down PTHrP increased the levels of Beclin1 and LC3-II and promoted the formation of autophagosomes. Knocking down PTHrP expression significantly reduced the abilities of the breast cancer cells to inhibit osteoblast differentiation and bone formation in vitro and in vivo. Finally, we found that PTHrP activated its own expression through an autocrine mechanism in MDA-MB-231 cells. Collectively, these studies suggest that targeting PTHrP expression in the tumor cells could be a potential therapeutic strategy for breast cancers, especially those with skeletal metastases.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cianciolo G, La Manna G, Della Bella E, Cappuccilli ML, Angelini ML, Dormi A, Capelli I, Laterza C, Costa R, Alviano F, Donati G, Ronco C, Stefoni S. Effect of vitamin D receptor activator therapy on vitamin D receptor and osteocalcin expression in circulating endothelial progenitor cells of hemodialysis patients. Blood Purif 2013; 35:187-95. [PMID: 23485859 DOI: 10.1159/000347102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/15/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND The effects of vitamin D receptor (VDR) and osteocalcin (OC) expression as well as VDR agonist (VDRA) therapy on circulating endothelial progenitor cells (EPCs) has not been elucidated yet. METHODS We therefore analyzed EPCs in 30 healthy controls and 82 patients undergoing dialysis (no VDRA therapy: 28; oral calcitriol: 30, and intravenous paricalcitol, PCTA: 24). The percentage of EPCs (CD34+/CD133-/KDR+/CD45-) expressing VDR or OC, and VDR and OC expression defined by mean fluorescence intensity (MFI) were analyzed using flow cytometry. The in vitro effect of VDRAs was evaluated in EPCs isolated from each patient group. RESULTS The percentage of VDR+ EPCs correlated positively with VDRA therapy and 25(OH)D, and negatively with diabetes, C-reactive protein, hemoglobin and osteopontin. VDR-MFI correlated positively with VDRA therapy, parathyroid hormone (PTH) and 25(OH)D, and negatively with diabetes and osteopontin. The percentage of OC+ EPCs correlated positively with the calcium score, PTH and phosphate, and negatively with 25(OH)D. OC-MFI correlated positively with calcium score, PTH, phosphate and hemoglobin, and negatively with albumin, 25(OH)D and osteopontin. Cell cultures from patients without VDRA therapy had the highest levels of calcium deposition and OC expression, which both significantly decreased following in vitro VDRA administration: in particular extracellular calcium deposition was only reduced by adding PCTA. CONCLUSIONS Our data suggest that 25(OH)D serum levels and VDRA therapy influence VDR and OC expression on circulating EPCs. Since OC expression may contribute to vascular calcification, we hypothesize a putative protective role of VDRA therapy.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Section of Nephrology, Department of Internal Medicine, Aging and Renal Disease, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu S, Zhu K, Lai Y, Zhao Z, Fan J, Im HJ, Chen D, Xiao G. atf4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 2013; 9:256-66. [PMID: 23494915 PMCID: PMC3596711 DOI: 10.7150/ijbs.5898] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) can differentiate into multiple cell types including osteoblasts. How this differentiation process is controlled, however, is not completely understood. Here we show that activating transcription factor 4 (ATF4) plays a critical role in promoting bone marrow MSC differentiation towards the osteoblast lineage. Ablation of the Atf4 gene blocked the formation of osteoprogenitors and inhibited osteoblast differentiation without affecting the expansion and formation of MSCs in bone marrow cultures. Loss of ATF4 dramatically reduced the level of β-catenin protein in MSCs in vitro and in osteoblasts/osteoprogenitors located on trabecular and calvarial surfaces. Loss of ATF4 did not decrease the expression of major canonical Wnt/β-catenin signaling components such as Wnt3a, Wnt7b, Wnt10b, Lrp5, and Lrp6 in MSCs. Furthermore, shRNA knockdown of ATF4 expression decreased the level of β-catenin protein in MC-4 preosteoblasts. In contrast, overexpression of ATF4 increased β-catenin protein levels in MC-4 cells. Finally, ATF4 and β-catenin formed a protein-protein complex in COS-7 cells coexpressing both factors or in MC-4 preosteoblastic cells. This study establishes a new role of ATF4 in controlling the β-catenin protein levels and MSC differentiation towards the osteoblast lineage.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fei Y, Hurley MM. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol 2012; 227:3539-45. [PMID: 22378151 DOI: 10.1002/jcp.24075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis poses enormous health and economic burden worldwide. One of the very few anabolic agents for osteoporosis is parathyroid hormone (PTH). Although great progress has been made since the FDA approved PTH in 2002, the detailed mechanisms of the bone anabolic effects of intermittent PTH treatment is still not well understood. PTH bone anabolic effect is regulated by extracellular factors. Maximal bone anabolic effect of PTH requires fibroblast growth factor 2 (FGF2) signaling, which might be mediated by transcription factor activating transcription factor 4 (ATF4). Maximal bone anabolic effect of PTH also requires Wnt signaling. Particularly, Wnt antagonists such as sclerostin, dickkopf 1 (DKK1) and secreted frizzled related protein 1 (sFRP1) are promising targets to increase bone formation. Interestingly, FGF2 signaling modulates Wnt/β-Catenin signaling pathway in bone. Therefore, multiple signaling pathways utilized by PTH are cross talking and working together to promote bone formation. Extensive studies on the mechanisms of action of PTH will help to identify new pathways that regulate bone formation, to improve available agents to stimulate bone formation, and to identify potential new anabolic agents for osteoporosis.
Collapse
Affiliation(s)
- Yurong Fei
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
16
|
Liu Q, Wan Q, Yang R, Zhou H, Li Z. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation. Biochem Biophys Res Commun 2012; 424:182-8. [PMID: 22750004 DOI: 10.1016/j.bbrc.2012.06.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022]
Abstract
Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan 430079, China
| | | | | | | | | |
Collapse
|
17
|
Park C, Kim SH, Kim ST. Selective Gene Regulation by Vitamin D Receptor via Protein Kinase A Activation in Mouse Osteoblastic Cells. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.5.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Danciu TE, Li Y, Koh A, Xiao G, McCauley LK, Franceschi RT. The basic helix loop helix transcription factor Twist1 is a novel regulator of ATF4 in osteoblasts. J Cell Biochem 2012; 113:70-9. [PMID: 21866569 PMCID: PMC3414260 DOI: 10.1002/jcb.23329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parathyroid hormone (PTH) is an essential regulator of endochondral bone formation and an important anabolic agent for the reversal of bone loss. PTH mediates its functions in part by regulating binding of the bone-related activating transcription factor 4 (ATF4) to the osteoblast-specific gene, osteocalcin. The basic helix-loop-helix (bHLH) factors Twist1 and Twist2 also regulate osteocalcin transcription in part through the interaction of the C-terminal "box" domain in these factors and Runx2. In this study, we discovered a novel function of PTH: its ability to dramatically decrease Twist1 transcription. Since ATF4 is a major regulator of the PTH response in osteoblasts, we assessed the mutual regulation between these factors and determined that Twist proteins and ATF4 physically interact in a manner that affects ATF4 DNA binding function. We mapped the interaction domain of Twist proteins to the C-terminal "box" domain and of ATF4, to the N-terminus. Furthermore, we demonstrate that Twist1 overexpression in osteoblasts attenuates ATF4 binding to the osteocalcin promoter in response to PTH. This study thus identifies Twist proteins as novel inhibitory binding partners of ATF4 and explores the functional significance of this interaction.
Collapse
Affiliation(s)
- Theodora E Danciu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1245, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 2011; 211:145-56. [PMID: 21852324 PMCID: PMC3783352 DOI: 10.1530/joe-11-0144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang S, Xu H, Yu S, Cao H, Fan J, Ge C, Fransceschi RT, Dong HH, Xiao G. Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 2011; 286:19149-58. [PMID: 21471200 DOI: 10.1074/jbc.m110.197905] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we determined the molecular mechanisms whereby forkhead transcription factor Foxo1, a key downstream signaling molecule of insulin-like growth factor 1 (IGF1)/insulin actions, regulates Runx2 activity and expression of the mouse osteocalcin gene 2 (Bglap2) in osteoblasts in vitro. We showed that Foxo1 inhibited Runx2-dependent transcriptional activity and osteocalcin mRNA expression and Bglap2 promoter activity in MC-4 preosteoblasts. Co-immunoprecipitation assay showed that Foxo1 physically interacted with Runx2 via its C-terminal region in osteoblasts or when co-expressed in COS-7 cells. Electrophoretic mobility shift assay demonstrated that Foxo1 suppressed Runx2 binding to its cognate site within the Bglap2 promoter. IGF1 and insulin prevented Foxo1 from inhibiting Runx2 activity by promoting Foxo1 phosphorylation and nuclear exclusion. In contrast, a neutralizing anti-IGF1 antibody decreased Runx2 activity and osteocalcin expression in osteoblasts. Chromatin immunoprecipitation assay revealed that IGF1 increased Runx2 interaction with a chromatin fragment of the proximal Bglap2 promoter in a PI3K/AKT-dependent manner. Conversely, knockdown of Foxo1 increased Runx2 interaction with the promoter. This study establishes that Foxo1 is a novel negative regulator of osteoblast-specific transcription factor Runx2 and modulates IGF1/insulin-dependent regulation of osteocalcin expression in osteoblasts.
Collapse
Affiliation(s)
- Shengyong Yang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Belluci MM, Giro G, Del Barrio RAL, Pereira RMR, Marcantonio E, Orrico SRP. Effects of magnesium intake deficiency on bone metabolism and bone tissue around osseointegrated implants. Clin Oral Implants Res 2010; 22:716-721. [PMID: 21143536 DOI: 10.1111/j.1600-0501.2010.02046.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. MATERIALS AND METHODS For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received. Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. RESULTS Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P ≤ 0.05). The Mg group also presented a loss of systemic bone mass, decreased cortical bone thickness and lower values of removal torque of the implants (P ≤ 0.01). CONCLUSIONS The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.
Collapse
Affiliation(s)
- Marina Montosa Belluci
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriela Giro
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo Andrés Landazuri Del Barrio
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Rosa Maria Rodrigues Pereira
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Elcio Marcantonio
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Silvana Regina Perez Orrico
- Department of Oral Diagnosis and Surgery, Araraquara Dental School - UNESP, University of Estadual Paulista, Araraquara, São Paulo, São Paulo, BrazilBone Metabolism Laboratory of Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Cao H, Yu S, Yao Z, Galson DL, Jiang Y, Zhang X, Fan J, Lu B, Guan Y, Luo M, Lai Y, Zhu Y, Kurihara N, Patrene K, Roodman GD, Xiao G. Activating transcription factor 4 regulates osteoclast differentiation in mice. J Clin Invest 2010; 120:2755-66. [PMID: 20628199 PMCID: PMC2912190 DOI: 10.1172/jci42106] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/26/2010] [Indexed: 01/03/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4-/- bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4-/- BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Shibing Yu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Zhi Yao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Deborah L. Galson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Jiang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Fan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Binfeng Lu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Youfei Guan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Min Luo
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Yumei Lai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Yibei Zhu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Noriyoshi Kurihara
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Kenneth Patrene
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - G. David Roodman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| | - Guozhi Xiao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
Department of Surgery and
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One 2009; 4:e7583. [PMID: 19851510 PMCID: PMC2762317 DOI: 10.1371/journal.pone.0007583] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 10/05/2009] [Indexed: 12/14/2022] Open
Abstract
Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton.
Collapse
|
24
|
Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Cells Tissues Organs 2008; 189:144-52. [PMID: 18728356 DOI: 10.1159/000151747] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The differentiation of osteoblasts from mesenchymal precursors requires a series of cell fate decisions controlled by a hierarchy of transcription factors. These include RUNX2, Osterix (OSX), ATF4 and a large number of nuclear coregulators. During bone development, initial RUNX2 expression coincides with the formation of mesenchymal condensations and precedes the branching of chondrogenic and osteogenic lineages. Given its central role in bone development, it is not surprising that RUNX2 is subject to a variety of controls. These include posttranslational modification, especially phosphorylation, and interactions with accessory nuclear factors. Specific examples of RUNX2 regulation to be reviewed include phosphorylation by the ERK/MAP kinase pathway and interactions with DLX5. RUNX2 is regulated via phosphorylation of critical serine residues in the proline/serine/threonine domain. In vivo, the transgenic expression of constitutively active MAP kinase in osteoblasts accelerated skeletal development, while a dominant-negative MAPK retarded development in a RUNX2-dependent manner. DLX5-RUNX2 complexes can be detected in osteoblasts and this interaction plays a critical role in maintaining osteoblast-specific expression of the bone sialoprotein gene. These studies allow us to begin understanding the complex mechanisms necessary to fine-tune bone formation as mesenchymal progenitors progress down the osteoblast lineage.
Collapse
Affiliation(s)
- Renny T Franceschi
- School of Dentistry, University of Michigan, Ann Arbor, Mich. 48109-1078, USA.
| | | | | | | | | |
Collapse
|
25
|
Susperregui ARG, Viñals F, Ho PWM, Gillespie MT, Martin TJ, Ventura F. BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol 2008; 216:144-52. [PMID: 18247361 DOI: 10.1002/jcp.21389] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) is strongly involved in the induction of osteoblast differentiation from mesenchymal cell precursors, as well as in enhancing bone matrix production by osteoblastic cells. Likewise, the osteoporotic phenotype of PTHrP deficient mice makes clear the importance of this paracrine regulator in bone physiology. Here, we report that BMP-2 rapidly down-regulated PTHrP gene expression through a transcriptional mechanism in pluripotent mesenchymal C2C12 cells, whereas BMP-2 increased expression of PTHrP receptor. PTHrP did not significantly alter the BMP-dependent Smad transcriptional pathway. Similarly, PTHrP did not significantly modify the BMP-regulated expression of RANKL or OPG, cytokines involved in osteoclastogenesis. More importantly, addition of PTHrP, through the PKA signaling pathway, partially prevented the BMP-dependent induction of some osteogenic markers such as Runx2 and Osterix in C2C12 cells. Our data suggest that BMP-2 down-regulation of PTHrP could facilitate terminal differentiation of osteoblasts.
Collapse
Affiliation(s)
- Antonio R G Susperregui
- IDIBELL, Departament de Ciències Fisiològiques II, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Yu S, Franceschi RT, Luo M, Zhang X, Jiang D, Lai Y, Jiang Y, Zhang J, Xiao G. Parathyroid hormone increases activating transcription factor 4 expression and activity in osteoblasts: requirement for osteocalcin gene expression. Endocrinology 2008; 149:1960-8. [PMID: 18187540 PMCID: PMC2276723 DOI: 10.1210/en.2007-1573] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/31/2007] [Indexed: 11/19/2022]
Abstract
PTH is an important peptide hormone regulator of calcium homeostasis and osteoblast function. However, its mechanism of action in osteoblasts is poorly understood. Our previous study demonstrated that PTH activates mouse osteocalcin (Ocn) gene 2 promoter through the osteoblast-specific element 1 site, a recently identified activating transcription factor-4 (ATF4) -binding element. In the present study, we examined effects of PTH on ATF4 expression and activity as well as the requirement for ATF4 in the regulation of Ocn by PTH. Results show that PTH elevated levels of ATF4 mRNA and protein in a dose- and time-dependent manner. This PTH regulation requires transcriptional activity but not de novo protein synthesis. PTH also increased binding of nuclear extracts to osteoblast-specific element 1 DNA. PTH stimulated ATF4-dependent transcriptional activity mainly through protein kinase A with a lesser requirement for protein kinase C and MAPK/ERK pathways. Lastly, PTH stimulation of Ocn expression was lost by small interfering RNA down-regulation of ATF4 in MC-4 cells and Atf4(-/-) bone marrow stromal cells. Collectively, these studies for the first time demonstrate that PTH increases ATF4 expression and activity and that ATF4 is required for PTH induction of Ocn expression in osteoblasts.
Collapse
Affiliation(s)
- Shibing Yu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu S, Jiang Y, Galson DL, Luo M, Lai Y, Lu Y, Ouyang HJ, Zhang J, Xiao G. General transcription factor IIA-gamma increases osteoblast-specific osteocalcin gene expression via activating transcription factor 4 and runt-related transcription factor 2. J Biol Chem 2008; 283:5542-53. [PMID: 18171674 PMCID: PMC2736298 DOI: 10.1074/jbc.m705653200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATF4 (activating transcription factor 4) is an osteoblast-enriched transcription factor that regulates terminal osteoblast differentiation and bone formation. ATF4 knock-out mice have reduced bone mass (severe osteoporosis) throughout life. Runx2 (runt-related transcription factor 2) is a runt domain-containing transcription factor that is essential for bone formation during embryogenesis and postnatal life. In this study, we identified general transcription factor IIA gamma (TFIIA gamma) as a Runx2-interacting factor in a yeast two-hybrid screen. Immunoprecipitation assays confirmed that TFIIA gamma interacts with Runx2 in osteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblast cells showed that in intact cells TFIIA gamma is recruited to the region of the osteocalcin promoter previously shown to bind Runx2 and ATF4. A small region of Runx2 (amino acids 258-286) was found to be required for TFIIA gamma binding. Although TFIIA gamma interacts with Runx2, it does not activate Runx2. Instead, TFIIA gamma binds to and activates ATF4. Furthermore, TFIIA gamma together with ATF4 and Runx2 stimulates osteocalcin promoter activity and endogenous mRNA expression. Small interfering RNA silencing of TFIIA gamma markedly reduces levels of endogenous ATF4 protein and Ocn mRNA in osteoblastic cells. Overexpression of TFIIA gamma increases levels of ATF4 protein. Finally, TFIIA gamma significantly prevents ATF4 degradation. This study shows that a general transcription factor, TFIIA gamma, facilitates osteoblast-specific gene expression through interactions with two important bone transcription factors ATF4 and Runx2.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Yu Jiang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Deborah L. Galson
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Min Luo
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Yumei Lai
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Yi Lu
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Hong-Jiao Ouyang
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Jian Zhang
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| | - Guozhi Xiao
- Department of Medicine University of Pittsburgh, Pittsburgh, Pennsylvania 15240
| |
Collapse
|
28
|
Kim SH, Kim YH, Song M, An SH, Byun HY, Heo K, Lim S, Oh YS, Ryu SH, Suh PG. O-GlcNAc modification modulates the expression of osteocalcin via OSE2 and Runx2. Biochem Biophys Res Commun 2007; 362:325-9. [PMID: 17707335 DOI: 10.1016/j.bbrc.2007.07.149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/18/2022]
Abstract
O-Linked beta-N-acetylglucosamine (O-GlcNAc) modification, a reversible post-translational modification, has been implicated in the regulation of protein stability, subcellular localization of proteins and protein-protein interaction. Here, we demonstrate that O-GlcNAc modification regulates the expression of osteocalcin, an osteoblast-specific marker, via Runx2 transcriptional activity in osteoblastic differentiation. Protein-associated O-GlcNAc was increased during osteoblastic differentiation in MC3T3-E1 preosteoblasts. In addition, PUGNAc, an inhibitor of O-GlcNAcase, potentiated the expression of osteocalcin caused by ascorbic acid, parathyroid hormone (PTH) and forskolin. By conducting activity assays of the osteocalcin promoter and transcription factor, we found that the OSE2 site in the osteocalcin promoter and Runx2 were important for increased osteocalcin promoter activity by PUGNAc. Furthermore, PUGNAc led to increased O-GlcNAc modification of Runx2, which regulated the transcription of its target gene osteocalcin. Thus, these data provide evidence that O-GlcNAc modification may be a new mode of osteoblastic differentiation regulation.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Life Science, Division of Molecular and Life Science, Biotech Center, Pohang University of Science and Technology, San 31 Hyoja-Dong, Nam-Gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Suttamanatwong S, Franceschi RT, Carlson AE, Gopalakrishnan R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J Cell Biochem 2007; 102:496-505. [PMID: 17407158 DOI: 10.1002/jcb.21314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.
Collapse
Affiliation(s)
- Supaporn Suttamanatwong
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
30
|
Issack PS, Lauerman MH, Helfet DL, Doty SB, Lane JM. Alendronate inhibits PTH (1-34)-induced bone morphogenetic protein expression in MC3T3-E1 preosteoblastic cells. HSS J 2007; 3:169-72. [PMID: 18751789 PMCID: PMC2504255 DOI: 10.1007/s11420-007-9042-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 03/06/2007] [Indexed: 02/07/2023]
Abstract
The bisphosphonate class of antiresorptive drugs and active forms of parathyroid hormone (PTH (1-34)) have been used clinically to enhance bone mass and density in patients with osteoporosis. Abundant evidence suggests that the mechanism by which PTH (1-34) increases bone density is stimulation of osteoblast differentiation. Although bisphosphonates have been classically thought to increase bone density by inhibiting osteoclasts, there is increasing evidence to suggest that bisphosphonates have direct stimulatory effects on osteoblast differentiation. Interestingly, in patients with osteoporosis, combination therapy with bisphosphonates and PTH (1-34) is not synergistic in increasing bone density; bisphosphonates appear to blunt the effect of PTH (1-34). To begin to understand the mechanism governing the effects of these agents on osteoblasts and a possible explanation for their apparent antagonism, we examined the expression of several bone morphogenetic proteins (BMPs) in MC3T3-E1 preosteoblastic cells either untreated, or treated with alendronate, parathyroid hormone, or a combination of the two agents. We find by reverse transcriptase-polymerase chain reaction (RT-PCR) that while alendronate fails to induce the expression of any of the BMPs tested, several BMPs are induced by PTH (1-34). The induction of the PTH (1-34)-inducible BMPs is blocked with simultaneous alendronate treatment. These data suggest that alendronate interferes with PTH (1-34)-induced BMP gene transcription and provides a possible basis for the antagonism observed between the two agents in increasing bone density.
Collapse
Affiliation(s)
- Paul S. Issack
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | | | - David L. Helfet
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Stephen B. Doty
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Joseph M. Lane
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| |
Collapse
|
31
|
Rey A, Manen D, Rizzoli R, Ferrari SL, Caverzasio J. Evidences for a role of p38 MAP kinase in the stimulation of alkaline phosphatase and matrix mineralization induced by parathyroid hormone in osteoblastic cells. Bone 2007; 41:59-67. [PMID: 17434817 DOI: 10.1016/j.bone.2007.02.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/21/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Increased bone formation by PTH mainly results from activation of osteoblasts, an effect largely mediated by the cAMP-PKA pathway. Other pathways, however, are likely to be involved in this process. In this study we investigated whether PTH can activate p38 MAPK and the role of this kinase in osteoblastic cells. Bovine PTH(1-34) and forskolin markedly increased alkaline phosphatase (ALP) activity and doubled osteocalcin (Oc) expression in early differentiating MC3T3-E1 cells. These effects were associated with increase in cellular cAMP and activation of the MAP kinases ERK and p38. Activation of these MAP kinases was detectable after 1 h incubation with 10(-7) M PTH and lasted 1-2 h. Activation of p38 was mimicked by 10 microM forskolin and prevented by H89 suggesting a cAMP-PKA-dependent mechanism of p38 activation. Interestingly, PTH-induced ALP stimulation was dose-dependently inhibited by a specific p38 inhibitor with no change in the generation of cAMP and the production of osteocalcin. Similar inhibitory effect was obtained in cells stably expressing a dominant-negative p38 molecule. Finally, treatment of MC3T3-E1 cells with PTH for 3 weeks significantly enhanced matrix mineralization and this effect was markedly reduced by a selective p38 but not a specific MEK inhibitor. In conclusion, data presented in this study indicate that PTH can activate p38 in early differentiating osteoblastic cells. Activation of p38 is cAMP-PKA-dependent and mediates PTH-induced stimulation of ALP which plays a critical role for the calcification of the bone matrix.
Collapse
Affiliation(s)
- A Rey
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital of Geneva, CH-1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Rey A, Manen D, Rizzoli R, Caverzasio J, Ferrari SL. Proline-rich motifs in the parathyroid hormone (PTH)/PTH-related protein receptor C terminus mediate scaffolding of c-Src with beta-arrestin2 for ERK1/2 activation. J Biol Chem 2006; 281:38181-8. [PMID: 17038311 DOI: 10.1074/jbc.m606762200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parathyroid hormone (PTH) stimulates ERK1/2 through both G-protein signaling and beta-arrestin2-mediated internalization. Beta-arrestin may serve as a scaffold for c-Src. However, the molecular mechanisms for ERK1/2 activation by PTH remain unclear. By using a targeted mutagenesis approach, we investigated the PTH/PTH-related protein receptor (PTH1R) structural determinants for ERK1/2 activation and transcriptional activity in HEK-293 cells. First, ERK1/2 activation was inhibited by PTH1R mutations that specifically abrogate G(q)-protein kinase C signaling without a decrease in cAMP-protein kinase A. Second, PTH1R C-terminal mutations and/or deletions that prevent interaction with beta-arrestin inhibited ERK1/2 activation. Similar results were obtained in HEK-293 cells co-expressing wild-type PTH1R and a dominant-negative beta-arrestin2. Third, the c-Src inhibitor PP2 and a kinase-dead c-SrcK295M mutant co-expressed with wild-type PTH1R both inhibited ERK1/2 activation. Furthermore, c-Src co-precipitated with both PTH1R and beta-arrestin2 in response to PTH. Deleting the PTH1R-proximal C terminus abolished these interactions. However, the need for receptor interaction with beta-arrestin to co-precipitate Src and activate ERK1/2 was obviated by expressing a constitutively active c-SrcY527A mutant, suggesting direct binding of activated Src to PTH1R. Subsequently, we identified and mutated to alanine four proline-rich motifs in the PTH1R distal C terminus, which resulted in loss of both c-Src and arrestin co-precipitation and significantly decreased ERK1/2 activation. These data delineate the multiple PTH1R structural determinants for ERK1/2 activation and newly identify a unique mechanism involving proline-rich motifs in the receptor C terminus for reciprocal scaffolding of c-Src and beta-arrestin2 with a class II G-protein-coupled receptor.
Collapse
Affiliation(s)
- Alexandre Rey
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital, 1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Malluche HH, Koszewski N, Monier-Faugere MC, Williams JP, Mawad H. Influence of the parathyroid glands on bone metabolism. Eur J Clin Invest 2006; 36 Suppl 2:23-33. [PMID: 16884395 DOI: 10.1111/j.1365-2362.2006.01664.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone is a classic target tissue for parathyroid hormone (PTH), whose calciotropic effect is mediated largely via catabolic actions on this tissue. Paradoxically, PTH also exerts anabolic actions, with intermittent injections of PTH or its amino-terminal fragments causing an increase in bone formation and bone mass, actions that form the basis for the use of PTH in the treatment of osteoporosis. Besides vitamin D, PTH is the only other known bone anabolic agent. High-affinity PTH receptors (PTH-1R) have been detected on osteoblasts and osteoclasts (albeit in lower numbers). Bone turnover, which includes activation of osteoclasts and osteoblasts, appears to be best reflected not by absolute concentrations of PTH (which can vary based on the assay and antibody used) but by a balance of circulating full-length PTH-(1-84) and amino-terminally truncated C-PTH fragments. When PTH-(1-84) is predominant, bone turnover is promoted. Among PTH fragments, PTH-(7-84) appears to be the most potent antagonist of PTH-(1-84). The mechanisms involved in these effects are unclear although mediation via unique C-terminal receptors has been suggested. We propose that, within the range of total PTH (100-1000 pg mL(-1)), the ratio of PTH-(1-84)/C-PTH fragment is a valuable tool for diagnosis of bone turnover. Data indicate that at PTH levels < 100-150 pg mL(-1) and > 1000 pg mL(-1), the ratio looses its predictive power. Assay type, patient characteristics (race, underlying renal disease) and treatment attributes (vitamin D, corticosteroids, phosphate binders) have an impact on the PTH ratio, and care should be used in interpreting assay results and making subsequent treatment decisions.
Collapse
Affiliation(s)
- H H Malluche
- University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
35
|
Stoica BA, Movsesyan VA, Knoblach SM, Faden AI. Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 2005; 29:355-71. [PMID: 15905098 DOI: 10.1016/j.mcn.2005.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 01/28/2005] [Accepted: 02/16/2005] [Indexed: 01/08/2023] Open
Abstract
Ceramide accumulates in neurons during various disorders associated with acute or chronic neurodegeneration. In these studies, we investigated the mechanisms of ceramide-induced apoptosis in primary cortical neurons using exogenous C(2) ceramide as well as inducing endogenous ceramide accumulation using inhibitors of glucosylceramide synthetase. Ceramide induced the translocation of certain, but not all, pro-apoptotic mitochondrial proteins: cytochrome c, Omi, SMAC, and AIF were released from the mitochondria, whereas Endonuclease G was not. Ceramide also selectively altered the phosphorylation state of members of the MAPK superfamily, causing dephosphorylation of ERK1/2 and hyperphosphorylation of p38 MAP kinases, but not affecting the phosphorylation of JNK or ERK5. Inhibitors of the p38 MAP kinase pathway (SB-202190 or SB-203580) and an inhibitor of the ERK1/2 pathway (U0126) reduced ceramide-induced neuronal death. These p38 and ERK1/2 inhibitors appear to block ceramide-activated apoptotic signaling upstream of the mitochondria, as they attenuated mitochondrial release of cytochrome c, Omi, AIF, and SMAC, as well as reducing ceramide-induced caspase-3 activation.
Collapse
Affiliation(s)
- Bogdan A Stoica
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, N.W., Research Building, Room EP-12, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
36
|
Potter LK, Greller LD, Cho CR, Nuttall ME, Stroup GB, Suva LJ, Tobin FL. Response to continuous and pulsatile PTH dosing: a mathematical model for parathyroid hormone receptor kinetics. Bone 2005; 37:159-69. [PMID: 15921971 DOI: 10.1016/j.bone.2005.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/23/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
In this paper, we propose a mathematical model for parathyroid hormone receptor (PTH1R) kinetics, focusing on the receptor's response to PTH dosing to discern bone formation responses from bone resorption. The PTH1R is a major target for new osteoporosis treatments, as pulsatile PTH dosing has been shown to induce net bone formation in both animals and humans, and PTH(1-34) was recently FDA approved for the treatment of post-menopausal osteoporosis. PTH has also been shown to cause net bone loss when given continuously, so that the net action of PTH on bone is dependent on the dosing pattern. We have developed a simplified two-state receptor kinetics model for the PTH1R, based on the concepts of Segel et al., to distinguish the activity of active and inactive receptor and receptor-ligand complexes. The goal is to develop a plausible model of the minimal essential biological relationships necessary for understanding the responses to PTH dosing. A two-state model is able to effectively discriminate between continuous and pulsatile PTH dosing using the active species as surrogates for the downstream anabolic response. For continuous PTH dosing, the model predicts a desensitized system dominated by the inactive receptor and complex, consistent with downstream net bone loss that has been demonstrated experimentally. Using pulsatile PTH dosing, the model system predicts a highly sensitized state dominated by the active receptor and complex, corresponding to net bone formation. These results are consistent with the hypothesis that the kinetics of the receptor plays a critical role in the downstream effects of PTH dosing. Moreover, these results indicate that within a range of biologically relevant PTH doses, the two-state model is able to capture the differential behavior of the system for both continuous and pulsatile PTH dosing. The development of such a model provides a rational basis for developing more biologically extensive models that may support the design of optimal dosing strategies for PTH-based anti-osteoporosis treatments. Moreover, this model provides a unique starting point from which to design experiments investigating PTH receptor biology.
Collapse
Affiliation(s)
- Laura K Potter
- Scientific Computing and Mathematical Modeling, GlaxoSmithKline, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, Phimphilai M, Yang X, Karsenty G, Franceschi RT. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005; 280:30689-96. [PMID: 16000305 DOI: 10.1074/jbc.m500750200] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of ATF4 (activating transcription factor 4) in osteoblast differentiation and bone formation was recently described using ATF4-deficient mice (Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T. M., Hanauer, A., and Karsenty, G. (2004) Cell 117, 387-398). However, the mechanisms of ATF4 in bone cells are still not clear. In this study, we determined the molecular mechanisms through which ATF4 activates the mouse osteocalcin (Ocn) gene 2 (mOG2) expression and mOG2 promoter activity. ATF4 increased the levels of Ocn mRNA and mOG2 promoter activity in Runx2-containing osteoblasts but not in non-osteoblastic cells that lack detectable Runx2 protein. However, ATF4 increased Ocn mRNA and mOG2 promoter activity in non-osteoblastic cells when Runx2 was co-expressed. Mutational analysis of the OSE1 (ATF4-binding site) and the two OSE2s (Runx2-binding sites) in the 657-bp mOG2 promoter demonstrated that ATF4 and Runx2 activate Ocn via cooperative interactions with these sites. Pull-down assays using nuclear extracts from osteoblasts or COS-7 cells overexpressing ATF4 and Runx2 showed that both factors are present in either anti-ATF4 and anti-Runx2 immunoprecipitates. In contrast, pull-down assays using purified glutathione S-transferase fusion proteins were unable to demonstrate a direct physical interaction between ATF4 and Runx2. Thus, accessory factors are likely involved in stabilizing interactions between these two molecules. Regions within Runx2 required for ATF4 complex formation and activation were identified. Deletion analysis showed that the leucine zipper domain of ATF4 is critical for Runx2 activation. This study is the first demonstration that cooperative interactions between ATF4 and Runx2/Cbfa1 stimulate osteoblast-specific Ocn expression and suggests that this regulation may represent a novel intramolecular mechanism regulating Runx2 activity and, thereby, osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Guozhi Xiao
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pirih FQ, Tang A, Ozkurt IC, Nervina JM, Tetradis S. Nuclear orphan receptor Nurr1 directly transactivates the osteocalcin gene in osteoblasts. J Biol Chem 2004; 279:53167-74. [PMID: 15485875 DOI: 10.1074/jbc.m405677200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nurr1, an NGFI-B nuclear orphan receptor, which transactivates promoters through an NGFI-B response element (NBRE), is strongly induced by parathyroid hormone through the cAMP-protein kinase A signaling pathway in osteoblasts. Here, we demonstrate that multiple agents activating diverse signaling pathways in osteoblasts induce Nurr1. The strongest Nurr1 inducers were activators of cAMP-protein kinase A-coupled signaling, followed by protein kinase C- and calcium-coupled signaling activators. Receptor tyrosine kinase activators had minimal effect, whereas serine/threonine kinase activators had no effect on basal Nurr1 mRNA levels. Computer analysis of osteoblastic promoters indicated two potential NBREs in the rat osteocalcin (Ocn) promoter. Intriguingly, the proximal site maps to the cAMP-responsive cis-element. We tested whether Nurr1 induces Ocn expression through the NBRE-like site. Recombinant and endogenous Nurr1 protein from primary mouse osteoblasts bound to a consensus NBRE in EMSAs. Nurr1 induced a consensus 3 x NBRE-luciferase reporter construct in mouse osteoblasts. Recombinant and endogenous Nurr1 protein bound to the proximal NBRE-like site in the Ocn promoter in EMSAs. Endogenous Nurr1 protein bound to this site as a monomer, because neither retinoid X receptor alpha nor retinoid X receptor beta antibody supershifted the protein-DNA complex. Ocn promoter-luciferase constructs lacking or containing a mutated proximal NBRE-like site had markedly blunted responses to Nurr1 overexpression. Finally, adenovirally expressed Nurr1 protein bound to the proximal NBRE-like site in chromatin immunoprecipitation assays and induced Ocn mRNA in primary rat osteoblasts. We conclude that Ocn is a Nurr1 target gene, which positions Nurr1 in the core of transcriptional factors regulating osteoblastic gene expression.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Division of Diagnostic and Surgical Sciences and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|