1
|
Dong X, Xing J, Liu Q, Ye M, Zhou Z, Li Y, Huang R, Li Z, Nie Q. CircPLXNA2 Affects the Proliferation and Apoptosis of Myoblast through circPLXNA2/gga-miR-12207-5P/MDM4 Axis. Int J Mol Sci 2023; 24:ijms24065459. [PMID: 36982536 PMCID: PMC10049439 DOI: 10.3390/ijms24065459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
CircRNAs are newly identified special endogenous RNA molecules that covalently close a loop by back-splicing with pre-mRNA. In the cytoplasm, circRNAs would act as molecular sponges to bind with specific miRNA to promote the expression of target genes. However, knowledge of circRNA functional alternation in skeletal myogenesis is still in its infancy. In this study, we identified a circRNA–miRNA–mRNA interaction network in which the axis may be implicated in the progression of chicken primary myoblasts’ (CPMs) myogenesis by multi-omics (i.e., circRNA-seq and ribo-seq). In total, 314 circRNA–miRNA–mRNA regulatory axes containing 66 circRNAs, 70 miRNAs, and 24 mRNAs that may be relevant to myogenesis were collected. With these, the circPLXNA2-gga-miR-12207-5P-MDM4 axis aroused our research interest. The circPLXNA2 is highly differentially expressed during differentiation versus proliferation. It was demonstrated that circPLXNA2 inhibited the process of apoptosis while at the same time stimulating cell proliferation. Furthermore, we demonstrated that circPLXNA2 could inhibit the repression of gga-miR-12207-5p to MDM4 by directing binding to gga-miR-12207-5p, thereby restoring MDM4 expression. In conclusion, circPLXNA2 could function as a competing endogenous RNA (ceRNA) to recover the function of MDM4 by directing binding to gga-miR-12207-5p, thereby regulating the myogenesis.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Qingchun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Mao Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yantao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Rongqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence:
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Kennedy BE, Giacomantonio M, Murphy JP, Cutler S, Sadek M, Konda P, Paulo JA, Pathak GP, Renkens SH, Grieve S, Pol J, Gygi SP, Richardson C, Gaston D, Reiman A, Kroemer G, Elnenaei MO, Gujar SA. NAD+ depletion enhances reovirus-induced oncolysis in multiple myeloma. Mol Ther Oncolytics 2022; 24:695-706. [PMID: 35284625 PMCID: PMC8904403 DOI: 10.1016/j.omto.2022.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.
Collapse
|
3
|
Cardoso AM, Morais CM, Sousa M, Rebelo O, Tão H, Barbosa M, Pedroso de Lima MC, Jurado AS. MiR-200c-based metabolic modulation in glioblastoma cells as a strategy to overcome tumor chemoresistance. Hum Mol Genet 2021; 30:2315-2331. [PMID: 34245265 DOI: 10.1093/hmg/ddab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and common form of primary brain tumor characterized by fast proliferation, high invasion, and resistance to current standard treatment. The average survival rate post-diagnosis is 14.6 months, despite the aggressive standard post-surgery radiotherapy concomitant with chemotherapy with temozolomide (TMZ). Currently, efforts are being endowed to develop new and more efficient therapeutic approaches capable to overcome chemoresistance, inhibit tumor progression and improve overall patient survival rate. Abnormal microRNA (miRNA) expression has been correlated with chemoresistance, proliferation and resistance to apoptosis, which result from their master regulatory role of gene expression. Altered cell metabolism, favoring glycolysis, was identified as an emerging cancer hallmark and has been described in GB, thus offering a new target for innovative GB therapies. In this work, we hypothesized that a gene therapy-based strategy consisting of the overexpression of a miRNA downregulated in GB and predicted to target crucial metabolic enzymes might promote a shift of GB cell metabolism, decreasing the glycolytic dependence of tumor cells and contributing to their sensitization to chemotherapy with TMZ. The increase of miR-200c levels in DBTRG cells resulted in downregulation of mRNA of enzymes involved in bioenergetics pathways and impaired cell metabolism and mobility. Additionally, miR-200c overexpression prior to DBTRG cell exposure to TMZ resulted in cell cycle arrest. Overall, our results show that miR-200c overexpression could offer a way to overcome chemoresistance developed by GB cells in response to current standard chemotherapy, providing an improvement to current GB standard treatment, with benefit for patient outcome.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Catarina M Morais
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Madalena Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Amália S Jurado
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| |
Collapse
|
4
|
Silva-Carvalho AÉ, Alencar APD, Resende MR, da Costa DF, Nonino A, Neves FAR, Saldanha-Araujo F. Epigenetic priming by EHMT1/EHMT2 in acute lymphoblastic leukemia induces TP53 and TP73 overexpression and promotes cell death. Toxicol In Vitro 2020; 69:104992. [PMID: 32889036 DOI: 10.1016/j.tiv.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 01/25/2023]
Abstract
Euchromatic histone-lysine N-methyltransferase 1 (EHMT1) and EHMT2 are upregulated in various human cancers, and their deregulation is associated with tumor development and progression. In this paper, we investigated the expression level of EHMT1/EHMT2 in acute lymphoblastic leukemia (ALL) and whether the modulation of these enzymes could have any cellular or molecular impact on ALL cells. For this, we used UNC0646 as a priming strategy to target EHMT1/EHMT2 and investigated its effect on proliferation and cell viability of Jurkat cells by MTT assay. Then, considering the IC50 and IC75, cellular death was determined by Annexin V/PI staining using flow cytometry. Finally, we investigated by RT-PCR the molecular bases that could be involved in the observed effects. Interestingly, accessing the International Microarray Innovations in Leukemia (MILE) study group, we detected that both EHMT1 and EHMT2 are overexpressed in ALL. More important, we determined that inhibition of EHMT1/EHMT2 significantly decreased Jurkat cell viability in a dose-dependent manner. Accordingly, we observed that inhibition of EHMT1/EHMT2 promoted Jurkat cell death, which was accompanied by increased expression of P53, TP73, BAX, and MDM4. These results clearly indicate that inhibition of EHMT1/EHMT2 induces pro-apoptotic gene expression in ALL and promotes cell death. More importantly, the modulation of these histone methyltransferases may be a promising epigenetic target for ALL treatment.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Ana Paula Dorneles Alencar
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Marielly Reis Resende
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Daniel Freitas da Costa
- Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Alexandre Nonino
- Hospital de Base do Distrito Federal, Setor Hospitalar Sul, Área Especial, Quadra 101, Brasília, DF 70.330-150, Brazil
| | - Francisco Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil.
| |
Collapse
|
5
|
Mdm2 and MdmX RING Domains Play Distinct Roles in the Regulation of p53 Responses: A Comparative Study of Mdm2 and MdmX RING Domains in U2OS Cells. Int J Mol Sci 2020; 21:ijms21041309. [PMID: 32075226 PMCID: PMC7072982 DOI: 10.3390/ijms21041309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Dysfunction of the tumor suppressor p53 occurs in most human cancers. Mdm2 and MdmX are homologous proteins from the Mdm (Murine Double Minute) protein family, which play a critical role in p53 inactivation and degradation. The two proteins interact with one another via the intrinsic RING (Really Interesting New Gene) domains to achieve the negative regulation of p53. The downregulation of p53 is accomplished by Mdm2-mediated p53 ubiquitination and proteasomal degradation through the ubiquitin proteolytic system and by Mdm2 and MdmX mediated inhibition of p53 transactivation. To investigate the role of the RING domain of Mdm2 and MdmX, an analysis of the distinct functionalities of individual RING domains of the Mdm proteins on p53 regulation was conducted in human osteosarcoma (U2OS) cell line. Mdm2 RING domain was observed mainly localized in the cell nucleus, contrasting the localization of MdmX RING domain in the cytoplasm. Mdm2 RING was found to possess an endogenous E3 ligase activity, whereas MdmX RING did not. Both Mdm2 and MdmX RING domains were able to dimerize with endogenous full-length Mdm2 and MdmX protein and affect their cellular function. The results showed that overexpression of the Mdm2 or MdmX RING domains interfered with the endogenous full-length Mdm2 and MdmX activity and resulted in p53 stabilization and p53 target gene activation. However, both Mdm RING domains showed oncogenic activity in a colony formation assay, suggesting that the Mdm RING domains possess p53-independent oncogenic properties. This study highlights the distinct structural and functional traits of the RING domain of Mdm2 and MdmX and characterized their role in cellular responses through interfering with p53 dependent signaling pathway.
Collapse
|
6
|
Chen Y, Wang YG, Li Y, Sun XX, Dai MS. Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget 2017; 8:11053-11062. [PMID: 28035068 PMCID: PMC5355245 DOI: 10.18632/oncotarget.14278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 11/25/2022] Open
Abstract
Otub1 regulates p53 stability and activity via non-canonical inhibition of UbcH5, the MDM2 cognate ubiquitin-conjugating enzyme (E2). However, whether Otub1 regulates MDMX stability and activity is not clear. Here we report that Otub1 also suppresses MDM2-mediated MDMX ubiquitination in cells and in vitro, independently of its deubiquitinating enzyme activity. Consequently, overexpression of Otub1 markedly stabilized MDMX and increased its levels, whereas knockdown of Otub1 reduced the levels of MDMX. Interestingly, MDMX induced by Otub1 can localize to mitochondria in addition to the cytosol, enhance p53 phosphorylation at S46 (p53S46P) and promote mitochondria-mediated apoptotic pathway. Knockdown of MDMX reduced Otub1-induced p53S46P, which was shown to be critical for p53's mitochondrial function and apoptotic activity. Furthermore, Otub1 promotes UV-irradiation-induced p53S46P and apoptosis, which can be significantly inhibited by MDMX depletion. Together, these results suggest that Otub1 stabilizes MDMX and promotes p53S46P and mitochondria-mediated apoptosis, providing an alternative mechanism of Otub1's role in apoptosis.
Collapse
Affiliation(s)
- Yingxiao Chen
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yue-Gang Wang
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuhuang Li
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, and The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Marine JC, Jochemsen AG. MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harb Perspect Med 2016; 6:6/7/a026237. [PMID: 27371671 DOI: 10.1101/cshperspect.a026237] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The MDMX protein was identified as a p53-interacting protein with a strong similarity to MDM2. Like Mdm2, Mdmx expression is essential for curbing p53 activity during embryonic development, indicating nonredundant functions of Mdmx and Mdm2. There is now a large body of evidence indicating that cancers frequently up-regulate MDMX expression as a means to dampen p53 tumor-suppressor function. Importantly, MDMX also shows p53-independent oncogenic functions. These data make MDMX an attractive therapeutic target for cancer therapy. Here, we summarize the mechanisms used by cancer cells to increase MDMX expression and promising pharmacological strategies to target MDMX in cancer-in particular, the recent findings that antisense oligonucleotides (ASOs) can be used to efficiently modulate MDMX messenger RNA (mRNA) splicing.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium Laboratory for Molecular Cancer Biology, Center of Human Genetics, KULeuven, 3000 Leuven, Belgium
| | - Aart G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 2016; 35:4798-806. [PMID: 26876197 PMCID: PMC5289310 DOI: 10.1038/onc.2016.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023]
Abstract
Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism that is affected by either mutation in the DNA-binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4, which destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53(V172F) mutation, which reduced p53 half-life by two- to threefold compared with homozygous wild-type (wt) p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (five- to eightfold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53(V172F) mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a heteromeric p53(wt)/p53(V172F) complex was confirmed in 2780CP/Cl-24 cells transfected with wt p53 or multimer-inhibiting p53(L344P) mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5 °C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37 °C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by small interfering RNA in either resistant cell line induced p53 and restored p21 transactivation at 37 °C, as did cisplatin-induced DNA damage at 32.5 °C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53(V172F) mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4 by the homomeric or heteromeric mutant p53(V172F) complex that inhibits p53-dependent transactivation. This represents a novel cellular mechanism of p53 inhibition, and, thereby, induction of cisplatin resistance.
Collapse
|
9
|
Song X, Dilly AK, Choudry HA, Bartlett DL, Kwon YT, Lee YJ. Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Mol Cancer Res 2015; 13:1533-43. [PMID: 26354682 DOI: 10.1158/1541-7786.mcr-15-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction. In addition, the combinatorial treatment with mitomycin C and bortezomib significantly inhibited intraperitoneal tumor growth in LS174T cells and increased apoptosis, especially under hypoxic conditions in vivo. This study provides a preclinical rationale for the use of combination therapies for CPC patients. IMPLICATIONS The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashok-Kumar Dilly
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Mancini F, Pieroni L, Monteleone V, Lucà R, Fici L, Luca E, Urbani A, Xiong S, Soddu S, Masetti R, Lozano G, Pontecorvi A, Moretti F. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response. Oncogene 2015; 35:228-40. [PMID: 25961923 PMCID: PMC4717155 DOI: 10.1038/onc.2015.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
The p53 inhibitor, MDM4 (MDMX) is a cytoplasmic protein with p53-activating function under DNA damage conditions. Particularly, MDM4 promotes phosphorylation of p53 at Ser46, a modification that precedes different p53 activities. We investigated the mechanism by which MDM4 promotes this p53 modification and its consequences in untransformed mammary epithelial cells and tissues. In response to severe DNA damage, MDM4 stimulates p53Ser46P by binding and stabilizing serine–threonine kinase HIPK2. Under these conditions, the p53-inhibitory complex, MDM4/MDM2, dissociates and this allows MDM4 to promote p53/HIPK2 functional interaction. Comparative proteomic analysis of DNA damage-treated cells versus -untreated cells evidenced a diffuse downregulation of proteins with anti-apoptotic activity, some of which were targets of p53Ser46P/HIPK2 repressive activity. Importantly, MDM4 depletion abolishes the downregulation of these proteins indicating the requirement of MDM4 to promote p53-mediated transcriptional repression. Consistently, MDM4-mediated HIPK2/p53 activation precedes HIPK2/p53 nuclear translocation and activity. Noteworthy, repression of these proteins was evident also in mammary glands of mice subjected to γ-irradiation and was significantly enhanced in transgenic mice overexpressing MDM4. This study evidences the flexibility of MDM2/MDM4 heterodimer, which allows the development of a positive activity of cytoplasmic MDM4 towards p53-mediated transcriptional function. Noteworthy, this activity uncovers coordinated repression of molecules with shared anti-apoptotic function which precedes active cell apoptosis and that are frequently overexpressed and/or markers of tumour phenotype in human cancer.
Collapse
Affiliation(s)
- F Mancini
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - L Pieroni
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - V Monteleone
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - R Lucà
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| | - L Fici
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - E Luca
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy.,Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - A Urbani
- Proteomic and Metabolomic Laboratory, Fondazione Santa Lucia, Roma, Italy.,Department of Experimental Medicine and Surgery, University of Roma 'Tor Vergata', Roma, Italy
| | - S Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Soddu
- Regina Elena National Cancer Institute, Roma, Italy
| | - R Masetti
- Department of Obstetrics and Gynaecology, Catholic University of Roma, Roma, Italy
| | - G Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - A Pontecorvi
- Department of Endocrinology and Metabolism, Catholic University of Roma, Roma, Italy
| | - F Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Roma, Italy
| |
Collapse
|
11
|
|
12
|
Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 2014; 35:1500-9. [PMID: 24445145 DOI: 10.1093/carcin/bgu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mouse double minute 4 (MDM4) oncoprotein may inhibit tumorigenesis by regulating the apoptotic mediator p53. Ubiquitin-specific protease 2a (USP2a) is a deubiquitinating enzyme that protects MDM4 against degradation, so USP2-MDM4 interaction may be a key determinant of the malignant potential of human cancers. MDM4 and USP2a, as well as the MDM4-USP2a complex, were more highly expressed in glioblastoma multiforme tissue samples from patients with good prognosis compared with patients with poor prognosis. Analysis of the prognostic parameters indicated that MDM4 expression was positively correlated with an increased likelihood for survival. Compared with the poor prognosis patients, mitochondria from good prognosis glioma patients contained higher levels of both MDM4 and the proapoptotic protein p53Ser46(P). In U87MG glioma cell line, the overexpression of MDM4 enhanced ultraviolet (UV)-induced cytochrome c release and apoptosis. In contrast, MDM4 knockdown decreased mitochondrial p53Ser46(P) levels and rescued cells from UV-induced apoptosis. The expression of MDM4 and USP2a were positively correlated with each other. MDM4-USP2a complexes were found only in the cytoplasmic fraction, whereas the mitochondrial fraction contained MDM4-p53Ser46(P) and MDM4-Bcl-2 complexes. Overexpression of USP2a increased p53 and p53Ser46(P) levels in the mitochondria, whereas simultaneous MDM4 knockdown completely reversed this effect. UV-induced apoptosis was reduced by USP2a knockdown but restored by the simultaneous overexpression of MDM4. This apoptotic response was reduced by knockdown of p53 but not p21. Our results suggest that USP2a binds to and stabilizes MDM4; thus in turn, it enhances the mitochondrial localization of p53 and promotes apoptosis in glioma cells.
Collapse
Affiliation(s)
- Chun-Lin Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China, Department of Neurosurgery, the 105th Hospital of PLA, Hefei 230000, Anhui Province, China
| | - Jun-Yu Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhen-Yang Liu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Mei Ma
- Department of Pathology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Wen Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hai Jin
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Ping Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China and Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, 301 Yan Chang Road, Shanghai 200072, China
| | - Da Fu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China and
| | - Li-Jun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China,
| | - Yi-Cheng Lu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China,
| |
Collapse
|
13
|
Zhu Y, Regunath K, Jacq X, Prives C. Cisplatin causes cell death via TAB1 regulation of p53/MDM2/MDMX circuitry. Genes Dev 2013; 27:1739-51. [PMID: 23934659 PMCID: PMC3759692 DOI: 10.1101/gad.212258.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interdependence of p53 and MDM2 is critical for proper cell survival and cell death. Zhu et al. find that TAB1, an activator of TAK1 and p38α, inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Cisplatin-induced cell death is mitigated by TAB1 knockdown. TAB1 stabilizes MDMX and activates p38α to phosphorylate p53, allowing p53 target induction. TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian tumors, implicating TAB1 as a tumor suppressor. The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient's tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53–MDM2 circuitry and a key MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
14
|
Zhang YW, Guan J, Zhang Y, Qiu YR, Chen LH. Role of an MDM4 polymorphism in the early age of onset of nasopharyngeal carcinoma. Oncol Lett 2012; 3:1115-1118. [PMID: 22783402 DOI: 10.3892/ol.2012.630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/24/2012] [Indexed: 12/22/2022] Open
Abstract
Mouse double minute 4 (MDM4) is a critical negative regulator of the tumor suppressor p53. The results of studies have revealed that an MDM4 polymorphism (rs1563828) may contribute to the earlier onset of several malignant diseases. However, the correlation between this polymorphism and nasopharyngeal carcinoma (NPC) susceptibility has not been explored. We performed a case-control study with 210 NPC patients and 200 healthy controls. Significant associations were found when comparing the age of onset of NPC according to the rs1563828 genotype (P=0.01). The average age of onset of NPC in patients with the TT, CC and CT genotypes was 39.3, 48.2 and 45.5 years, respectively. Homozygous variant (TT) carriers developed NPC at an earlier age than homozygous (CC) carriers, such that the age of onset was accelerated by 8.9 years (P=0.002). Our data suggest that rs1563828 is a modifier of the age of onset of NPC in the population studied. The age of onset for NPC with TT homozygotes was earlier than CC carriers.
Collapse
Affiliation(s)
- Yao Wei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Functions of MDMX in the modulation of the p53-response. J Biomed Biotechnol 2011; 2011:876173. [PMID: 21541195 PMCID: PMC3085504 DOI: 10.1155/2011/876173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/21/2011] [Indexed: 12/21/2022] Open
Abstract
The MDM family proteins MDM2 and MDMX are two critical regulators of the p53 tumor suppressor protein. Expression of both proteins is necessary for allowing the embryonal development by keeping the activity of p53 in check. Upon stresses that need to activate p53 to perform its function as guardian of the genome, p53 has to be liberated from these two inhibitors. In this review, we will discuss the various mechanisms by which MDMX protein levels are downregulated upon various types of stress, including posttranslational modifications of the MDMX protein and the regulation of mdmx mRNA expression, including alternative splicing. In addition, the putative function(s) of the described MDMX splice variants, particularly in tumor development, will be discussed. Lastly, in contrast to common belief, we have recently shown the existence of a p53-MDMX feedback loop, which is important for dampening the p53-response at later phases after genotoxic stress.
Collapse
|
16
|
Waning DL, Lehman JA, Batuello CN, Mayo LD. c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation. J Biol Chem 2010; 286:216-22. [PMID: 21081495 DOI: 10.1074/jbc.m110.183012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.
Collapse
Affiliation(s)
- David L Waning
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
17
|
Kim S, Aladjem MI, McFadden GB, Kohn KW. Predicted functions of MdmX in fine-tuning the response of p53 to DNA damage. PLoS Comput Biol 2010; 6:e1000665. [PMID: 20174603 PMCID: PMC2824598 DOI: 10.1371/journal.pcbi.1000665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 12/30/2009] [Indexed: 01/06/2023] Open
Abstract
Tumor suppressor protein p53 is regulated by two structurally homologous proteins, Mdm2 and MdmX. In contrast to Mdm2, MdmX lacks ubiquitin ligase activity. Although the essential interactions of MdmX are known, it is not clear how they function to regulate p53. The regulation of tumor suppressor p53 by Mdm2 and MdmX in response to DNA damage was investigated by mathematical modeling of a simplified network. The simplified network model was derived from a detailed molecular interaction map (MIM) that exhibited four coherent DNA damage response pathways. The results suggest that MdmX may amplify or stabilize DNA damage-induced p53 responses via non-enzymatic interactions. Transient effects of MdmX are mediated by reservoirs of p53∶MdmX and Mdm2∶MdmX heterodimers, with MdmX buffering the concentrations of p53 and/or Mdm2. A survey of kinetic parameter space disclosed regions of switch-like behavior stemming from such reservoir-based transients. During an early response to DNA damage, MdmX positively or negatively regulated p53 activity, depending on the level of Mdm2; this led to amplification of p53 activity and switch-like response. During a late response to DNA damage, MdmX could dampen oscillations of p53 activity. A possible role of MdmX may be to dampen such oscillations that otherwise could produce erratic cell behavior. Our study suggests how MdmX may participate in the response of p53 to DNA damage either by increasing dependency of p53 on Mdm2 or by dampening oscillations of p53 activity and presents a model for experimental investigation. A Molecular Interaction Map (MIM) akin to a circuit diagram of an electric device can give a comprehensive view of cellular processes and help understand complex protein functions in cells. To this end, we generated a MIM focused on the p53-Mdm2-MdmX network proteins and performed computer simulations to help understand how Mdm2 and MdmX may regulate p53. Proper regulation of p53 is important for cell survival: elevated levels of p53 can lead to cell death, and decreased levels of p53 can lead to cancer. Mdm2 and MdmX are structurally homologous proteins that regulate p53. Mdm2 negatively regulates p53 by degradation, but MdmX regulation of p53 is not well understood. Recently, Mdm2 and MdmX have been recognized as potential cancer therapeutic targets. In an effort to better understand how MdmX can alter the p53 activity under various conditions, we used mathematical models based on the MIM network to generate hypotheses that can be tested by experiments. Our simulations suggest that MdmX may increase the dependency of p53 on Mdm2 or dampen p53 oscillations during DNA damage response.
Collapse
Affiliation(s)
- Sohyoung Kim
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
- * E-mail: (MIA); (KWK)
| | - Geoffrey B. McFadden
- Mathematical and Computational Sciences Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Kurt W. Kohn
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
- * E-mail: (MIA); (KWK)
| |
Collapse
|
18
|
On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study. Interdiscip Sci 2010; 2:57-69. [DOI: 10.1007/s12539-010-0086-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/02/2023]
|
19
|
Bunderson-Schelvan M, Erbe AK, Schwanke C, Pershouse MA. Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:753-9. [PMID: 19472317 PMCID: PMC2789868 DOI: 10.1002/em.20498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1alpha, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers.
Collapse
|
20
|
Wang YV, Wade M, Wahl GM. Guarding the guardian: Mdmx plays important roles in setting p53 basal activity and determining biological responses in vivo. Cell Cycle 2009; 8:3443-4. [PMID: 19838055 DOI: 10.4161/cc.8.21.9744] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J 2009; 28:1926-39. [PMID: 19521340 DOI: 10.1038/emboj.2009.154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/18/2009] [Indexed: 02/08/2023] Open
Abstract
MDM4 is a key regulator of p53, whose biological activities depend on both transcriptional activity and transcription-independent mitochondrial functions. MDM4 binds to p53 and blocks its transcriptional activity; however, the main cytoplasmic localization of MDM4 might also imply a regulation of p53-mitochondrial function. Here, we show that MDM4 stably localizes at the mitochondria, in which it (i) binds BCL2, (ii) facilitates mitochondrial localization of p53 phosphorylated at Ser46 (p53Ser46(P)) and (iii) promotes binding between p53Ser46(P) and BCL2, release of cytochrome C and apoptosis. In agreement with these observations, MDM4 reduction by RNA interference increases resistance to DNA-damage-induced apoptosis in a p53-dependent manner and independently of transcription. Consistent with these findings, a significant downregulation of MDM4 expression associates with cisplatin resistance in human ovarian cancers, and MDM4 modulation affects cisplatin sensitivity of ovarian cancer cells. These data define a new localization and function of MDM4 that, by acting as a docking site for p53Ser46(P) to BCL2, facilitates the p53-mediated intrinsic-apoptotic pathway. Overall, our results point to MDM4 as a double-faced regulator of p53.
Collapse
|
22
|
Veerakumarasivam A, Scott HE, Chin SF, Warren A, Wallard MJ, Grimmer D, Ichimura K, Caldas C, Collins VP, Neal DE, Kelly JD. High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin Cancer Res 2008; 14:2527-34. [PMID: 18451213 DOI: 10.1158/1078-0432.ccr-07-4129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of p53 function in urothelial cell carcinoma (UCC) by mutation or inactivation disrupts normal cell cycle checkpoints, generating a favorable milieu for genomic instability, a hallmark of UCC. The aim of this study was to characterize novel DNA copy number changes to identify putative therapeutic targets. EXPERIMENTAL DESIGN We report our findings using array comparative genomic hybridization on a whole-genome BAC/PAC/cosmid array with a median clone interval of 0.97 Mb to study a series of UCC cases. TP53 status was determined by direct sequencing, and an in-house tissue microarray was constructed to identify protein expression of target genes. RESULTS Array comparative genomic hybridization allowed identification of novel regions of copy number changes in addition to those already known from previous studies. A novel amplification previously unreported in UCC was identified at 1q32. A chromosome 1 tile path array was used to analyze tumors that showed gains and amplification; the mouse double minute 4 (MDM4) homologue was identified as the amplified gene. MDM4 mRNA expression correlated with copy number and tumor grade. Copy number changes of MDM4 and MDM2 occurred exclusively in tumors with wild-type p53. Overexpression of MDM4 corresponded to disruption of p53 transcriptional activity. Immunohistochemistry on an independent series by tissue microarray identified an inverse relationship between Mdm4 and Mdm2, with Mdm4 expression highest in invasive UCC. CONCLUSION The data indicate that gain/amplification and overexpression of MDM4 is a novel molecular mechanism by which a subset of UCC escapes p53-dependent growth control, thus providing new avenues for therapeutic intervention.
Collapse
|
23
|
Abstract
Increasing studies suggest that SALL4 may play vital roles in leukemogenesis and stem cell phenotypes. We have mapped the global gene targets of SALL4 using chromatin immunoprecipitation followed by microarray hybridization and identified more than 2000 high-confidence, SALL4-binding genes in the human acute promyelocytic leukemic cell line, NB4. Analysis of SALL4-binding sites reveals that genes involved in cell death, cancer, DNA replication/repair, and cell cycle were highly enriched (P < .05). These genes include 38 important apoptosis-inducing genes (TNF, TP53, PTEN, CARD9, CARD11, CYCS, LTA) and apoptosis-inhibiting genes (Bmi-1, BCL2, XIAP, DAD1, TEGT). Real-time polymerase chain reaction has shown that expression levels of these genes changed significantly after SALL4 knockdown, which ubiquitously led to cell apoptosis. Flow cytometry revealed that reduction of SALL4 expression in NB4 and other leukemia cell lines dramatically increased caspase-3, annexin V, and DNA fragmentation activity. Bromodeoxyuridine-incorporation assays showed decreased numbers of S-phase cells and increased numbers of G1- and G2-phase cells indicating reduced DNA synthesis, consistent with results from cell proliferation assays. In addition, NB4 cells that express low levels of SALL4 have significantly decreased tumorigenecity in immunodeficient mice. Our studies provide a foundation in the development of leukemia stem cell-specific therapy by targeting SALL4.
Collapse
|
24
|
Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med (Berl) 2008; 86:585-96. [PMID: 18335186 PMCID: PMC2359832 DOI: 10.1007/s00109-008-0322-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 12/17/2022]
Abstract
A wild-type (wt) p53 gene characterizes thyroid tumors, except for the rare anaplastic histotype. Because p53 inactivation is a prerequisite for tumor development, alterations of p53 regulators represent an alternative way to impair p53 function. Indeed, murine double minute 2 (MDM2), the main p53 negative regulator, is overexpressed in many tumor histotypes including those of the thyroid. A new p53 regulator, MDM4 (a.k.a. MDMX or HDMX) an analog of MDM2, represents a new oncogene although its impact on tumor properties remains largely unexplored. We estimated levels of MDM2, MDM4, and its variants, MDM4-S (originally HDMX-S) and MDM4-211 (originally HDMX211), in a group of 57 papillary thyroid carcinomas (PTC), characterized by wt tumor protein 53, in comparison to matched contra-lateral lobe normal tissue. Further, we evaluated the association between expression levels of these genes and the histopathological features of tumors. Quantitative real-time polymerase chain reaction revealed a highly significant downregulation of MDM4 mRNA in tumor tissue compared to control tissue (P < 0.0001), a finding confirmed by western blot on a subset of 20 tissue pairs. Moreover, the tumor-to-normal ratio of MDM4 levels for each individual was significantly lower in late tumor stages, suggesting a specific downregulation of MDM4 expression with tumor progression. In comparison, MDM2 messenger RNA (mRNA) and protein levels were frequently upregulated with no correlation with MDM4 levels. Lastly, we frequently detected overexpression of MDM4-S mRNA and presence of the aberrant form, MDM4-211 in this tumor group. These findings indicate that MDM4 alterations are a frequent event in PTC. It is worthy to note that the significant downregulation of full-length MDM4 in PTC reveals a novel status of this factor in human cancer that counsels careful evaluation of its role in human tumorigenesis and of its potential as therapeutic target.
Collapse
|
25
|
Benosman S, Gross I, Clarke N, Jochemsen AG, Okamoto K, Loeffler JP, Gaiddon C. Multiple neurotoxic stresses converge on MDMX proteolysis to cause neuronal apoptosis. Cell Death Differ 2007; 14:2047-57. [PMID: 17823617 DOI: 10.1038/sj.cdd.4402216] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
MDMX has been shown to modulate p53 in dividing cells after DNA damage. In this study, we investigated the role of MDMX in primary cultures of neurons undergoing cell death. We found that DNA damage, but also membrane-initiated apoptotic stresses (glutamate receptor; Amyloid beta precursor) or survival factor deprivation downregulated MDMX protein levels. Forced downregulation of murine double minute X (MDMX) by shRNA induced apoptosis suggesting that MDMX is required for survival in neurons. Protease inhibitors prevented the loss of MDMX after neurotoxic treatments, indicating a regulation of protein stability. Some, but not all, neurotoxic stresses induced phosphorylation of MDMX at serine 367, further supporting regulation at the protein level. Interestingly, we found that depending on the stimulus either p53 or E2F1 was induced, but overexpression of MDMX inhibited the transcriptional activity of both proapoptotic factors, and maintained neuronal viability upon neurotoxic stresses. Taken together, our data show that MDMX is an antiapoptotic factor in neurons, whose degradation is induced by various stresses and allows activation of p53 and E2F-1 during neuronal apoptosis.
Collapse
Affiliation(s)
- S Benosman
- INSERM U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Université Louis Pasteur, Faculté de Médecine, UMRS692, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim MS, Lee SM, Kim WD, Ki SH, Moon A, Lee CH, Kim SG. G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol Cancer Res 2007; 5:473-84. [PMID: 17510313 DOI: 10.1158/1541-7786.mcr-06-0395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
G alpha(12/13), which belongs to the G alpha(12) family, participates in the regulation of diverse physiologic processes. In view of the control of G alpha(12/13) in cell proliferation, this study investigated the role of G alpha(12/13) in the regulation of p53 and mdm4. Immunoblotting and immunocytochemistry revealed that p53 was expressed in control embryonic fibroblasts and was largely localized in the nuclei. G alpha(12) deficiency decreased p53 levels and its DNA binding activity, accompanying p21 repression with Bcl(2) induction, whereas G alpha(13) deficiency exerted weak effects. G alpha(12) or G alpha(13) deficiency did not change p53 mRNA expression. ERK1/2 or Akt was not responsible for p53 repression due to G alpha(12) deficiency. Mdm4, a p53-stabilizing protein, was repressed by G alpha(12) deficiency and to a lesser extent by G alpha(13) deficiency, whereas mdm2, PTEN, beta-catenin, ATM, and Chk2 were unaffected. p53 accumulation by proteasomal inhibition during G alpha(12) deficiency suggested the role of G alpha(12) in p53 stabilization. Constitutively active G alpha(12) (G alpha(12)QL) or G alpha(13) (G alpha(13)QL) promoted p53 accumulation with mdm4 induction in MCF10A cells. p53 accumulation by mdm4 overexpression, but no mdm4 induction by p53 overexpression, and small interfering RNA knockdown verified the regulatory role of mdm4 for p53 downstream of G alpha(12/13). In control or G alpha(12)/G alpha(13)-deficient cells, genotoxic stress led to p53 accumulation. At concentrations increasing the flow cytometric pre-G(1) phase, doxorubicin or etoposide treatment caused serine phosphorylations in G alpha(12)-/- or G alpha(12/13)-/- cells, but did not induce mdm4. G alpha(12/13)QL transfection failed to phosphorylate p53 at serines. Our results indicate that G alpha(12/13) regulate basal p53 levels via mdm4, which constitutes a cell signaling pathway distinct from p53 phosphorylations elicited by genotoxic stress.
Collapse
Affiliation(s)
- Mi-Sung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Tao Y, Wei Q, Xu Z, Bai R, Li Y, Luo C, Dong Y, Gao G, Lu Y. Holistic and network analysis of meningioma pathogenesis and malignancy. Biofactors 2006; 28:203-19. [PMID: 17473381 DOI: 10.1002/biof.5520280307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meningiomas, which originate from arachnoid cells and constitute the largest subgroup of all intracranial tumors, are generally benign, yet have the capacity to progress into a higher histological grade of malignancy associated with an increase in biological aggressivity and/or capacity to recur. To elucidate meningioma pathogenesis and malignancy, we applied a holistic and network approach analyzing cDNA and tissue microarray results. A potential pathway leading to meningioma angiogenesis, apoptosis and proliferation was evidenced as well as a regulatory network of the biomarkers including Ki-67, AR, CD34, P53, c-MYC, etc. which might support clinical research. In this potential pathway, ITGB1 could be the most important "superoncogene" playing a vital role in apoptosis and proliferation, while FOXO3A, MDM4 and MT3 are important to the malignancy process. Some genes are first reported that could explain why radiation induces meningioma and why more female than male patients are affected. Further, we present the hypothesis that HIV-Tat protein might have a close relationship with meningioma pathogenesis and malignancy.
Collapse
Affiliation(s)
- Yingqun Tao
- Department of Neurosurgery, The General Hospital of Shenyang Military Region, Shenyang, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Steinman HA, Hoover KM, Keeler ML, Sands AT, Jones SN. Rescue of Mdm4-deficient mice by Mdm2 reveals functional overlap of Mdm2 and Mdm4 in development. Oncogene 2005; 24:7935-40. [PMID: 16027727 DOI: 10.1038/sj.onc.1208930] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Mdm2 and Mdm4 genes are amplified and overexpressed in a variety of human cancers and encode structurally related oncoproteins that bind to the p53 tumor suppressor protein and inhibit p53 activity. Mice deleted for either Mdm2 or Mdm4 die during embryogenesis, and the developmental lethality of either mouse model can be rescued by concomitant deletion of p53. However, the phenotypes of Mdm2 and Mdm4-deficient mice suggest that Mdm2 and Mdm4 play nonoverlapping roles in regulating p53 activity during development, with Mdm2 regulating p53-mediated cell death and Mdm4 regulating p53-mediated inhibition of cell growth. Here, we describe complete rescue of Mdm4-deficient mice by expression of an Mdm2 transgene, and demonstrate that Mdm2 can regulate both p53-mediated apoptosis and inhibition of cell growth in the absence of Mdm4 in primary cells. Furthermore, deletion of Mdm4 enhances the ability of Mdm2 to promote cell growth and tumor formation, indicating that Mdm4 has antioncogenic properties when Mdm2 is overexpressed.
Collapse
Affiliation(s)
- Heather A Steinman
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
29
|
Giglio S, Mancini F, Gentiletti F, Sparaco G, Felicioni L, Barassi F, Martella C, Prodosmo A, Iacovelli S, Buttitta F, Farsetti A, Soddu S, Marchetti A, Sacchi A, Pontecorvi A, Moretti F. Identification of an Aberrantly Spliced Form of HDMX in Human Tumors: A New Mechanism for HDM2 Stabilization. Cancer Res 2005; 65:9687-94. [PMID: 16266988 DOI: 10.1158/0008-5472.can-05-0450] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HDMX protein is closely related to HDM2 with which it shares different structural domains, particularly the p53 binding domain and the ring finger domain, where the two HDM proteins interact. Several oncogenic forms derived from splicing of HDM2 have been described in cancer. This work aimed at investigating whether analogous forms of HDMX exist in human tumors. Here, we report the characterization of an aberrantly spliced form of HDMX, HDMX211, isolated from the thyroid tumor cell line, ARO. HDMX211 binds and stabilizes the HDM2 protein. Although it lacks the p53 binding domain, HDMX211 also stabilizes p53 by counteracting its degradation by HDM2. However, the resulting p53 is transcriptionally inactive and increasingly associated to its inhibitor HDM2. Expression of HDMX211 strongly enhances the colony-forming ability of human cells in the presence or absence of wild-type p53. Conversely, depletion of HDMX211 by small interfering RNA significantly reduces the growth of ARO cells and increases their sensitivity to chemotherapy. Screening of lung cancer biopsies shows the presence of HDMX211 in samples that overexpress HDM2 protein, supporting a pathologic role for this new protein. This is the first evidence of a variant form of HDMX that has oncogenic potential independently of p53. HDMX211 reveals a new mechanism for overexpression of the oncoprotein HDM2. Most interestingly, it outlines a possible molecular explanation for a yet unclarified tumor phenotype, characterized by simultaneous overexpression of HDM2 and wild-type p53.
Collapse
Affiliation(s)
- Simona Giglio
- Laboratory of Molecular Oncogenesis, Regina Elena Cancer Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marine JC, Jochemsen AG. Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 2005; 331:750-60. [PMID: 15865931 DOI: 10.1016/j.bbrc.2005.03.151] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
The murine double minute 2 (Mdm2) is a critical negative regulator of the p53 tumor suppressor. Almost 10 years ago, a search for new p53-interactors revealed the existence of an Mdm2-structurally related protein, Mdmx (or Mdm4). Since then a large body of biochemical data has accumulated on the functions of Mdmx, often leading to conflicting molecular models. Nevertheless, virtually all these data pointed toward a critical role for Mdmx in the regulation of the p53-Mdm2 network. A view that was recently confirmed by genetic studies. This review is a summary of our current understanding of this molecule, its structure and biological functions, as well as its relationship to its known binding partners.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), B-9052 Ghent, Belgium
| | | |
Collapse
|
31
|
Levav-Cohen Y, Goldberg Z, Zuckerman V, Grossman T, Haupt S, Haupt Y. C-Abl as a modulator of p53. Biochem Biophys Res Commun 2005; 331:737-49. [PMID: 15865930 DOI: 10.1016/j.bbrc.2005.03.152] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 01/10/2023]
Abstract
P53 is renowned as a cellular tumor suppressor poised to instigate remedial responses to various stress insults that threaten DNA integrity. P53 levels and activities are kept under tight regulation involving a complex network of activators and inhibitors, which determine the type and extent of p53 growth inhibitory signaling. Within this complexity, the p53-Mdm2 negative auto-regulatory loop serves as a major route through which intra- and extra-cellular stress signals are channeled to appropriate p53 responses. Mdm2 inhibits p53 transcriptional activities and through its E3 ligase activity promotes p53 proteasomal degradation either within the nucleus or following nuclear export. Upon exposure to stress signals these actions of Mdm2 have to be moderated, or even interrupted, in order to allow sufficient p53 to accumulate in an active form. Multiple mechanisms involving a variety of factors have been demonstrated to mediate this interruption. C-Abl is a critical factor that under physiological conditions is required for the maximal and efficient accumulation of active p53 in response to DNA damage. C-Abl protects p53 by antagonizing the inhibitory effect of Mdm2, an action that requires a direct interplay between c-Abl and Mdm2. In addition, c-Abl protects p53 from other inhibitors of p53, such as the HPV-E6/E6AP complex, that inhibits and degrades p53 in HPV-infected cells. Surprisingly, the oncogenic form of c-Abl, the Bcr-Abl fusion protein in CML cells, also promotes the accumulation of wt p53. However, in contrast to the activation of p53 by c-Abl, its oncogenic form, Bcr-Abl, counteracts the growth inhibitory activities of p53 by modulating the p53-Mdm2 loop. Thus, it appears that by modulating the p53-Mdm2 loop, c-Abl and its oncogenic forms critically determine the type and extent of the cellular response to DNA damage.
Collapse
Affiliation(s)
- Yaara Levav-Cohen
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Vega FM, Sevilla A, Lazo PA. p53 Stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol 2005; 24:10366-80. [PMID: 15542844 PMCID: PMC529057 DOI: 10.1128/mcb.24.23.10366-10380.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Variations in intracellular levels of p53 regulate many cellular functions and determine tumor susceptibility. Major mechanisms modulating p53 levels include phosphorylation and interaction of p53 with specific ubiquitin ligases that promote its degradation. N-terminal phosphorylation regulates the interaction of p53 with several regulatory molecules. Vaccinia-related kinase 1 (VRK1) is the prototype of a new Ser-Thr kinase family in the human kinome. VRK1 is located in the nucleus outside the nucleolus. Overexpression of VRK1 increases the stability of p53 by a posttranslational mechanism leading to its accumulation by a mechanism independent of the Chk2 kinase. Catalytically inactive VRK1 protein (a K179E mutant) does not induce p53 accumulation. VRK1 phosphorylates human p53 in Thr18 and disrupts p53-Mdm2 interaction in vitro, although a significant decrease in p53 ubiquitination by Mdm2 in vivo was not detected. VRK1 kinase does not phosphorylate Mdm2. VRK1-mediated p53 stabilization was also detected in Mdm2(-/-) cells. VRK1 also has an additive effect with MdmX or p300 to stabilize p53, and p300 coactivation and acetylation of p53 is enhanced by VRK1. The p53 stabilized by VRK1 is transcriptionally active. Suppression of VRK1 expression by specific small interfering RNA provokes several defects in proliferation, situating the protein in the regulation of this process. VRK1 might function as a switch controlling the proteins that interact with p53 and thus modifying its stability and activity. We propose VRK1 as the first step in a new pathway regulating p53 activity during cell proliferation.
Collapse
Affiliation(s)
- Francisco M Vega
- Centro de Investigación del Cáncer, C.S.I.C.-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | |
Collapse
|
33
|
Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM, Hung MC. Adenoviral E1A Targets Mdm4 to Stabilize Tumor Suppressor p53. Cancer Res 2004; 64:9080-5. [PMID: 15604276 DOI: 10.1158/0008-5472.can-04-2419] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The adenoviral protein E1A associates with multiple anticancer activities, including stabilization of p53 tumor suppressor, and has been tested through gene therapy approaches in clinical trials. To identify potential E1A-binding proteins involved in E1A's anticancer activities, we screened a yeast two-hybrid library and identified Mdm4, an Mdm2-related p53-binding protein, as a novel E1A-binding protein. The NH(2)-terminal region of Mdm4 and the CR1 domain of E1A were required for the interaction between E1A and Mdm4. E1A preferentially bound to Mdm4 rather than Mdm2 and formed a complex with p53 in the presence of Mdm4, resulting in the stabilization of p53 in a p14(ARF)-independent manner. E1A failed to stabilize p53 in the absence of Mdm4, showing that Mdm4 was required for p53 stabilization by E1A. Moreover, E1A-mediated stabilization of p53 occurred in nucleus. Although it had no effect on the p53-Mdm2 interaction, E1A facilitated Mdm4 binding to p53 and inhibited Mdm2 binding to Mdm4, resulting in decreased nuclear exportation of p53. Thus, our findings highlighted a novel mechanism, whereby E1A stabilized the p53 tumor suppressor through Mdm4.
Collapse
Affiliation(s)
- Zheng Li
- Department of Molecular, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|