1
|
Mikami M, Shimizu H, Iwama N, Yajima M, Kuwasako K, Ogura Y, Himeno H, Kurita D, Nameki N. Stalled ribosome rescue factors exert different roles depending on types of antibiotics in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:22. [PMID: 39843510 PMCID: PMC11721466 DOI: 10.1038/s44259-024-00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/08/2024] [Indexed: 01/24/2025]
Abstract
Escherichia coli possesses three stalled-ribosome rescue factors, tmRNA·SmpB (primary factor), ArfA (alternative factor to tmRNA·SmpB), and ArfB. Here, we examined the susceptibility of rescue factor-deficient strains from E. coli SE15 to various ribosome-targeting antibiotics. Aminoglycosides specifically decreased the growth of the ΔssrA (tmRNA gene) strain, in which the levels of reactive oxygen species were elevated. The decrease in growth of ΔssrA could not be complemented by plasmid-borne expression of arfA, arfB, or ssrAAA to DD mutant gene possessing a proteolysis-resistant tag sequence. These results highlight the significance of tmRNA·SmpB-mediated proteolysis during growth under aminoglycoside stress. In contrast, tetracyclines or amphenicols decreased the growth of the ΔarfA strain despite the presence of tmRNA·SmpB. Quantitative RT-PCR revealed that tetracyclines and amphenicols, but not aminoglycosides, considerably induced mRNA expression of arfA. These findings indicate that tmRNA·SmpB, and ArfA exert differing functions during stalled-ribosome rescue depending on the type of ribosome-targeting antibiotic.
Collapse
Affiliation(s)
- Mayu Mikami
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Hidehiko Shimizu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Norika Iwama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Mihono Yajima
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan.
| |
Collapse
|
2
|
Ezung E, S S, Banerjee S, Ghosh SK, Banerjee R. Analysing the genetic code degeneracy: a consequence towards bacterial staining. J Biomol Struct Dyn 2024; 42:4567-4577. [PMID: 37278375 DOI: 10.1080/07391102.2023.2220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
As 20 naturally occurring amino acids are coded by 61 mRNA codons out of 64, it is obvious that 61→20 cannot have one-to-one mapping which generates the problem of codon degeneracy. Despite several efforts there is no specific outcome which can describe this well-known enigmatic degeneracy of the codon table. Since, every biological behaviour is regulated by protein which in turn consists of amino acids bearing the inherent characteristics of degeneracy among mRNA codons (Crick F.H.C. The Origin of the Genetic Code. J. Mol. Biol.1968; 38: 367-379), it is worthy to analyse the impact of such degeneracy on biological behaviours. Here, based on mathematical models using the concept of b-type of the nucleotide bases and hamming distances, an effort has been initiated to understand the impact of biasness of genetic code degeneracy on biological behaviours. The proposed models have been utilized to understand the characteristic features of bacterial genes of gram-positive and gram-negative bacteria. To the best of our knowledge, this is the first mathematical model to capture the effect of genetic code degeneracy, showing a paradigm towards understanding the behavioural difference between gram-positive and gram-negative bacteria, and thereby opening a new avenue for revealing differential biological properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekonthung Ezung
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (Formerly known as West Bengal University of Technology), West Bengal, India
| | - Sridevi S
- Department of Computer Science and Engineering, School of Computer Science and Information Science Engineering, Presidency University, Yelahanka, Bangalore
| | - Sourin Banerjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (Formerly known as West Bengal University of Technology), West Bengal, India
| | - Shankar Kumar Ghosh
- Department of Computer Science and Engineering, Shiv Nadar Institution of Eminence, Delhi NCR, India
| | - Raja Banerjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (Formerly known as West Bengal University of Technology), West Bengal, India
| |
Collapse
|
3
|
Sun Y, Shao X, Zhang Y, Han L, Huang J, Xie Y, Liu J, Deng X. Maintenance of tRNA and elongation factors supports T3SS proteins translational elongations in pathogenic bacteria during nutrient starvation. Cell Biosci 2022; 12:147. [PMID: 36064743 PMCID: PMC9446538 DOI: 10.1186/s13578-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations.
Results
The translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs).
Conclusions
Rapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.
Collapse
|
4
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
5
|
Abstract
Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator.
Collapse
|
6
|
Ribosome collisions: New ways to initiate ribosome rescue. Curr Biol 2022; 32:R469-R472. [DOI: 10.1016/j.cub.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 2022; 603:503-508. [PMID: 35264790 DOI: 10.1038/s41586-022-04416-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/07/2022] [Indexed: 01/17/2023]
Abstract
Ribosome rescue pathways recycle stalled ribosomes and target problematic mRNAs and aborted proteins for degradation1,2. In bacteria, it remains unclear how rescue pathways distinguish ribosomes stalled in the middle of a transcript from actively translating ribosomes3-6. Here, using a genetic screen in Escherichia coli, we discovered a new rescue factor that has endonuclease activity. SmrB cleaves mRNAs upstream of stalled ribosomes, allowing the ribosome rescue factor tmRNA (which acts on truncated mRNAs3) to rescue upstream ribosomes. SmrB is recruited to ribosomes and is activated by collisions. Cryo-electron microscopy structures of collided disomes from E. coli and Bacillus subtilis show distinct and conserved arrangements of individual ribosomes and the composite SmrB-binding site. These findings reveal the underlying mechanisms by which ribosome collisions trigger ribosome rescue in bacteria.
Collapse
|
8
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
9
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
van Kooten MJFM, Scheidegger CA, Christen M, Christen B. The transcriptional landscape of a rewritten bacterial genome reveals control elements and genome design principles. Nat Commun 2021; 12:3053. [PMID: 34031412 PMCID: PMC8144410 DOI: 10.1038/s41467-021-23362-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Sequence rewriting enables low-cost genome synthesis and the design of biological systems with orthogonal genetic codes. The error-free, robust rewriting of nucleotide sequences can be achieved with a complete annotation of gene regulatory elements. Here, we compare transcription in Caulobacter crescentus to transcription from plasmid-borne segments of the synthesized genome of C. ethensis 2.0. This rewritten derivative contains an extensive amount of supposedly neutral mutations, including 123'562 synonymous codon changes. The transcriptional landscape refines 60 promoter annotations, exposes 18 termination elements and links extensive transcription throughout the synthesized genome to the unintentional introduction of sigma factor binding motifs. We reveal translational regulation for 20 CDS and uncover an essential translational regulatory element for the expression of ribosomal protein RplS. The annotation of gene regulatory elements allowed us to formulate design principles that improve design schemes for synthesized DNA, en route to a bright future of iteration-free programming of biological systems.
Collapse
Affiliation(s)
- Mariëlle J F M van Kooten
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| | - Clio A Scheidegger
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Matthias Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Beat Christen
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Müller C, Crowe-McAuliffe C, Wilson DN. Ribosome Rescue Pathways in Bacteria. Front Microbiol 2021; 12:652980. [PMID: 33815344 PMCID: PMC8012679 DOI: 10.3389/fmicb.2021.652980] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
A Mutant of Vibrio parahaemolyticus pirAB VP (+) That Carries Binary Toxin Genes but Does Not Cause Acute Hepatopancreatic Necrosis Disease. Microorganisms 2020; 8:microorganisms8101549. [PMID: 33049933 PMCID: PMC7599607 DOI: 10.3390/microorganisms8101549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus carrying binary toxin genes, pirAB, is one of the etiological agents causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. This disease has emerged recently as a major threat to shrimp aquaculture worldwide. During a routine PCR screening of AHPND-causing V. parahaemolyticus strains, an isolate tested PCR positive for pirB (R13) and another isolate tested positive for both the pirA and pirB (R14) genes. To evaluate the pathogenicity of these isolates, specific pathogen-free (SPF) Penaeus vannamei were experimentally challenged. For both R13 and R14 isolates, the final survival rate was 100% at termination of the challenge, whereas the final survival with the AHPND-causing V. parahaemolyticus was 0%. The nucleotide sequence of the plasmid DNA carrying the binary toxin genes revealed that R13 contains a deletion of the entire pirA gene whereas R14 contains the entire coding regions of both pirA and pirB genes. However, R14 possesses an insertion upstream of the pirA gene. In R14, mRNA for both pirA and pirB genes could be detected but no cognate proteins. This shows that the genome of AHPND-causing V. parahaemolyticus is highly plastic and, therefore, detection of the pirA and pirB genes alone by DNA-PCR is insufficient as a diagnostic test for AHPND.
Collapse
|
14
|
Sawicka K, Hale CR, Park CY, Fak JJ, Gresack JE, Van Driesche SJ, Kang JJ, Darnell JC, Darnell RB. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. eLife 2019; 8:e46919. [PMID: 31860442 PMCID: PMC6924960 DOI: 10.7554/elife.46919] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.
Collapse
Affiliation(s)
- Kirsty Sawicka
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Caryn R Hale
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jodi E Gresack
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUnited States
| | - Sarah J Van Driesche
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
15
|
Klee SM, Sinn JP, Holmes AC, Lehman BL, Krawczyk T, Peter KA, McNellis TW. Extragenic Suppression of Elongation Factor P Gene Mutant Phenotypes in Erwinia amylovora. J Bacteriol 2019; 201:e00722-18. [PMID: 30885930 PMCID: PMC6509650 DOI: 10.1128/jb.00722-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor P (EF-P) facilitates the translation of certain peptide motifs, including those with multiple proline residues. EF-P must be posttranslationally modified for full functionality; in enterobacteria, this is accomplished by two enzymes, namely, EpmA and EpmB, which catalyze the β-lysylation of EF-P at a conserved lysine position. Mutations to efp or its modifying enzymes produce pleiotropic phenotypes, including decreases in virulence, swimming motility, and extracellular polysaccharide production, as well as proteomic perturbations. Here, we generated targeted deletion mutants of the efp, epmA, and epmB genes in the Gram-negative bacterium Erwinia amylovora, which causes fire blight, an economically important disease of apples and pears. As expected, the Δefp, ΔepmA, and ΔepmB mutants were all defective in virulence on apples, and all three mutants were complemented in trans with plasmids bearing wild-type copies of the corresponding genes. By analyzing spontaneous suppressor mutants, we found that mutations in the hrpA3 gene partially or completely suppressed the colony size, extracellular polysaccharide production, and virulence phenotypes in apple fruits and apple tree shoots but not the swimming motility phenotypes of the Δefp, ΔepmA, and ΔepmB mutants. The deletion of hrpA3 alone did not produce any alterations in any characteristics measured, indicating that the HrpA3 protein is not essential for any of the processes examined. The hrpA3 gene encodes a putative DEAH-box ATP-dependent RNA helicase. These results suggest that the loss of the HrpA3 protein at least partially compensates for the lack of the EF-P protein or β-lysylated EF-P.IMPORTANCE Fire blight disease has relatively few management options, with antibiotic application at bloom time being chief among them. As modification to elongation factor P (EF-P) is vital to virulence in several species, both EF-P and its modifying enzymes make attractive targets for novel antibiotics. However, it will be useful to understand how bacteria might overcome the hindrance of EF-P function so that we may be better prepared to anticipate bacterial adaptation to such antibiotics. The present study indicates that the mutation of hrpA3 could provide a partial offset for the loss of EF-P activity. In addition, little is known about EF-P functional interactions or the HrpA3 predicted RNA helicase, and our genetic approach allowed us to discern a novel gene associated with EF-P function.
Collapse
Affiliation(s)
- Sara M Klee
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Judith P Sinn
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aleah C Holmes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian L Lehman
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Teresa Krawczyk
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Kari A Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Timothy W McNellis
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
16
|
Schlesinger O, Chemla Y, Heltberg M, Ozer E, Marshall R, Noireaux V, Jensen MH, Alfonta L. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids. ACS Synth Biol 2017; 6:1076-1085. [PMID: 28230975 DOI: 10.1021/acssynbio.7b00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.
Collapse
Affiliation(s)
- Orr Schlesinger
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Yonatan Chemla
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Mathias Heltberg
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Eden Ozer
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| | - Ryan Marshall
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mogens Høgh Jensen
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Lital Alfonta
- Department
of Life Sciences and Ilse Katz Institute for Nanoscale Science and
Technology, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
17
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
18
|
Abstract
Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. Bacterial mRNA and protein syntheses are often tightly coupled, with ribosomes binding newly synthesized Shine-Dalgarno sequences and then translating nascent mRNAs as they emerge from RNA polymerase. While previous studies have mainly focused on the roles of transcription factors, here we investigated whether translation factors can also play a role in maintaining coupling and preventing premature transcription termination. Using the polyproline synthesis enhancer elongation factor P, we found that rapid translation through potential stalling motifs is required to provide efficient coupling between ribosomes and RNA polymerase. These findings show that translation enhancers can play an important role in gene expression by preventing premature termination of transcription.
Collapse
|
19
|
Barahimipour R, Neupert J, Bock R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. PLANT MOLECULAR BIOLOGY 2016; 90:403-18. [PMID: 26747175 PMCID: PMC4766212 DOI: 10.1007/s11103-015-0425-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has become an invaluable model system in plant biology. There is also considerable interest in developing this microalga into an efficient production platform for biofuels, pharmaceuticals, green chemicals and industrial enzymes. However, the production of foreign proteins in the nucleocytosolic compartment of Chlamydomonas is greatly hampered by the inefficiency of transgene expression from the nuclear genome. We have recently addressed this limitation by isolating mutant algal strains that permit high-level transgene expression and by determining the contributions of GC content and codon usage to gene expression efficiency. Here we have applied these new tools and explored the potential of Chlamydomonas to produce a recombinant biopharmaceutical, the HIV antigen P24. We show that a codon-optimized P24 gene variant introduced into our algal expression strains give rise to recombinant protein accumulation levels of up to 0.25% of the total cellular protein. Moreover, in combination with an expression strain, a resynthesized nptII gene becomes a highly efficient selectable marker gene that facilitates the selection of transgenic algal clones at high frequency. By establishing simple principles of successful transgene expression, our data open up new possibilities for biotechnological research in Chlamydomonas.
Collapse
Affiliation(s)
- Rouhollah Barahimipour
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
20
|
Neuhaus K, Landstorfer R, Fellner L, Simon S, Schafferhans A, Goldberg T, Marx H, Ozoline ON, Rost B, Kuster B, Keim DA, Scherer S. Translatomics combined with transcriptomics and proteomics reveals novel functional, recently evolved orphan genes in Escherichia coli O157:H7 (EHEC). BMC Genomics 2016; 17:133. [PMID: 26911138 PMCID: PMC4765031 DOI: 10.1186/s12864-016-2456-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Genomes of E. coli, including that of the human pathogen Escherichia coli O157:H7 (EHEC) EDL933, still harbor undetected protein-coding genes which, apparently, have escaped annotation due to their small size and non-essential function. To find such genes, global gene expression of EHEC EDL933 was examined, using strand-specific RNAseq (transcriptome), ribosomal footprinting (translatome) and mass spectrometry (proteome). Results Using the above methods, 72 short, non-annotated protein-coding genes were detected. All of these showed signals in the ribosomal footprinting assay indicating mRNA translation. Seven were verified by mass spectrometry. Fifty-seven genes are annotated in other enterobacteriaceae, mainly as hypothetical genes; the remaining 15 genes constitute novel discoveries. In addition, protein structure and function were predicted computationally and compared between EHEC-encoded proteins and 100-times randomly shuffled proteins. Based on this comparison, 61 of the 72 novel proteins exhibit predicted structural and functional features similar to those of annotated proteins. Many of the novel genes show differential transcription when grown under eleven diverse growth conditions suggesting environmental regulation. Three genes were found to confer a phenotype in previous studies, e.g., decreased cattle colonization. Conclusions These findings demonstrate that ribosomal footprinting can be used to detect novel protein coding genes, contributing to the growing body of evidence that hypothetical genes are not annotation artifacts and opening an additional way to study their functionality. All 72 genes are taxonomically restricted and, therefore, appear to have evolved relatively recently de novo. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2456-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| | - Lea Fellner
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| | - Svenja Simon
- Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, 78457, Konstanz, Germany.
| | - Andrea Schafferhans
- Department of Informatics - Bioinformatics & TUM-IAS, Technische Universität München, Boltzmannstraße 3, 85748, Garching, Germany.
| | - Tatyana Goldberg
- Department of Informatics - Bioinformatics & TUM-IAS, Technische Universität München, Boltzmannstraße 3, 85748, Garching, Germany.
| | - Harald Marx
- Chair of Proteomics and Bioanalytics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany.
| | - Olga N Ozoline
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, 142290, Pushchino, Russia.
| | - Burkhard Rost
- Department of Informatics - Bioinformatics & TUM-IAS, Technische Universität München, Boltzmannstraße 3, 85748, Garching, Germany.
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany. .,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, Gregor-Mendel-Str. 4, 85354, Freising, Germany.
| | - Daniel A Keim
- Lehrstuhl für Datenanalyse und Visualisierung, Fachbereich Informatik und Informationswissenschaft, Universität Konstanz, Box 78, 78457, Konstanz, Germany.
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
21
|
Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 2015; 112:1663-72. [DOI: 10.1002/bit.25587] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yonatan Chemla
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Vincent Noireaux
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota 55401
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
22
|
|
23
|
Domingues S, Moreira RN, Andrade JM, Dos Santos RF, Bárria C, Viegas SC, Arraiano CM. The role of RNase R in trans-translation and ribosomal quality control. Biochimie 2014; 114:113-8. [PMID: 25542646 DOI: 10.1016/j.biochi.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
Gene expression not only depends on the rate of transcription but is also largely controlled at the post-transcriptional level. Translation rate and mRNA decay greatly influence the final protein levels. Surveillance mechanisms are essential to ensure the quality of the RNA and proteins produced. Trans-translation is one of the most important systems in the quality control of bacterial translation. This process guarantees the destruction of abnormal proteins and also leads to degradation of the respective defective RNAs through the action of Ribonuclease R (RNase R). This exoribonuclease hydrolyzes RNAs starting from their 3' end. Besides its involvement in trans-translation, RNase R also participates in the quality control of rRNA molecules involved in ribosomal biogenesis. RNase R is thus emerging as a key factor in ensuring translation accuracy. This review focuses on issues related to the quality control of translation, with special emphasis on the role of RNase R.
Collapse
Affiliation(s)
- Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo N Moreira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
24
|
Kurita D, Miller MR, Muto A, Buskirk AR, Himeno H. Rejection of tmRNA·SmpB after GTP hydrolysis by EF-Tu on ribosomes stalled on intact mRNA. RNA (NEW YORK, N.Y.) 2014; 20:1706-1714. [PMID: 25246654 PMCID: PMC4201823 DOI: 10.1261/rna.045773.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Messenger RNAs lacking a stop codon trap ribosomes at their 3' ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3' extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3' extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3' extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Mickey R Miller
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
25
|
The C-Terminal Portion of an Archaeal Toxin, aRelE, Plays a Crucial Role in Protein Synthesis Inhibition. Biosci Biotechnol Biochem 2014; 73:2766-8. [DOI: 10.1271/bbb.90485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Shimizu Y. Biochemical aspects of bacterial strategies for handling the incomplete translation processes. Front Microbiol 2014; 5:170. [PMID: 24782856 PMCID: PMC3989591 DOI: 10.3389/fmicb.2014.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
During protein synthesis in cells, translating ribosomes may encounter abnormal situations that lead to retention of immature peptidyl-tRNA on the ribosome due to failure of suitable termination processes. Bacterial cells handle such situations by employing three systems that rescue the stalled translation machinery. The transfer messenger RNA/small protein B (tmRNA/SmpB) system, also called the trans-translation system, rescues stalled ribosomes by initiating template switching from the incomplete mRNA to the short open reading frame of tmRNA, leading to the production of a protein containing a C-terminal tag that renders it susceptible to proteolysis. The ArfA/RF2 and ArfB systems rescue stalled ribosomes directly by hydrolyzing the immature peptidyl-tRNA remaining on the ribosome. Here, the biochemical aspects of these systems, as clarified by recent studies, are reviewed.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center - RIKEN Kobe, Hyogo, Japan
| |
Collapse
|
27
|
Himeno H, Kurita D, Muto A. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 2014; 5:66. [PMID: 24778639 PMCID: PMC3985003 DOI: 10.3389/fgene.2014.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Transfer messenger RNA (tmRNA; also known as 10Sa RNA or SsrA RNA) is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon–anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of non-functional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
28
|
Abstract
Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.
Collapse
|
29
|
Kogure H, Handa Y, Nagata M, Kanai N, Güntert P, Kubota K, Nameki N. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res 2013; 42:3152-63. [PMID: 24322300 PMCID: PMC3950681 DOI: 10.1093/nar/gkt1280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.
Collapse
Affiliation(s)
- Hiroyuki Kogure
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Janssen BD, Garza-Sánchez F, Hayes CS. A-site mRNA cleavage is not required for tmRNA-mediated ssrA-peptide tagging. PLoS One 2013; 8:e81319. [PMID: 24260569 PMCID: PMC3834316 DOI: 10.1371/journal.pone.0081319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled ribosomes are recycled from A-site truncated transcripts by the tmRNA-SmpB "ribosome rescue" system. During rescue, the tmRNA-encoded ssrA peptide is added to the nascent chain, thereby targeting the tagged protein for degradation after release from the ribosome. Here, we examine the influence of A-site mRNA cleavage upon tmRNA-SmpB activity. Using a model transcript that undergoes stop-codon cleavage in response to inefficient translation termination, we quantify ssrA-peptide tagging of the encoded protein in cells that contain (rnb(+)) or lack (Δrnb) RNase II. A-site mRNA cleavage is reduced approximately three-fold in Δrnb backgrounds, but the efficiency of ssrA-tagging is identical to that of rnb(+) cells. Additionally, pulse-chase analysis demonstrates that paused ribosomes recycle from the test transcripts at similar rates in rnb(+) and Δrnb cells. Together, these results indicate that A-site truncated transcripts are not required for tmRNA-SmpB-mediated ribosome rescue and suggest that A-site mRNA cleavage process may play a role in other recycling pathways.
Collapse
Affiliation(s)
- Brian D. Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:634-42. [PMID: 23416749 DOI: 10.1016/j.bbagrm.2013.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.
Collapse
|
32
|
Tsai YC, Du D, Domínguez-Malfavón L, Dimastrogiovanni D, Cross J, Callaghan AJ, García-Mena J, Luisi BF. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 2012; 40:10417-10431. [PMID: 22923520 PMCID: PMC3488216 DOI: 10.1093/nar/gks739] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/28/2023] Open
Abstract
The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Lilianha Domínguez-Malfavón
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Daniela Dimastrogiovanni
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Jonathan Cross
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Anastasia J. Callaghan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Jaime García-Mena
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, Departamento de Genética y Biología Molecular. Cinvestav-IPN, México DF 07360, Mexico and Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| |
Collapse
|
33
|
Graille M, Séraphin B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 2012; 13:727-35. [DOI: 10.1038/nrm3457] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:151-91. [PMID: 22243584 DOI: 10.1016/b978-0-12-386497-0.00005-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis, and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
35
|
Identification of a hyperactive variant of the SecM motif involved in ribosomal arrest. Curr Microbiol 2011; 64:17-23. [PMID: 21971705 DOI: 10.1007/s00284-011-0027-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
Recent studies in several organisms have shown that certain nascent sticky peptides stall in the ribosome during their own translation. Amino acid sequences present at the C-terminal part of Escherichia coli SecM ((150)FSTPVWISQAQGIRAGP(166)) have a well-characterized role in ribosome stalling. To investigate the determinants of the SecM motif responsible for ribosome stalling, we performed a genetic screen for mutants with an altered SecM motif that resulted in altered ribosome stalling. To do this, we used a cat fusion construct containing the SecM motif and a myc-tag (cat'-'myc-secM). This construct expresses cat'-'myc-secM mRNA transcripts predominantly translated by a subset of ribosomes called specialized ribosomes that recognize an altered ribosome binding sequence in the mRNA. While all of the isolated mutants containing mutations at the functionally conserved amino acid residues at positions between 161 and 166 showed decreased ribosome stalling, one mutant sequence containing an amino acid substitution from serine to lysine at position 157 (S157K) showed enhanced ribosome stalling that consequently increased mRNA cleavage. Our results reveal that a functionally not conserved amino acid residue at position 157 of SecM can also affect ribosome stalling and provide additional insight into the molecular mechanisms underlying sticky-peptide-induced ribosome arrest.
Collapse
|
36
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Dahan O, Gingold H, Pilpel Y. Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet 2011; 27:316-22. [PMID: 21763027 DOI: 10.1016/j.tig.2011.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Gene expression comprises multiple stages, from transcription to protein degradation. Although much is known about the regulation of each stage separately, an understanding of the regulatory coupling between the different stages is only beginning to emerge. For example, there is a clear crosstalk between translation and transcription, and the localization and stability of an mRNA in the cytoplasm could already be determined during transcription in the nucleus. We review a diversity of mechanisms discovered in recent years that couple the different stages of gene expression. We then speculate on the functional and evolutionary significance of this coupling and suggest certain systems-level functionalities that might be optimized via the various coupling modes. In particular, we hypothesize that coupling is often an economic strategy that allows biological systems to respond robustly and precisely to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
38
|
Keiler KC, Ramadoss NS. Bifunctional transfer-messenger RNA. Biochimie 2011; 93:1993-7. [PMID: 21664408 DOI: 10.1016/j.biochi.2011.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/25/2011] [Indexed: 01/14/2023]
Abstract
Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses.
Collapse
Affiliation(s)
- Kenneth C Keiler
- Pennsylvania State University, Department of Biochemistry & Molecular Biology, 401 Althouse Lab, University Park, PA 16802, USA.
| | | |
Collapse
|
39
|
Morey KJ, Antunes MS, Albrecht KD, Bowen TA, Troupe JF, Havens KL, Medford JI. Developing a synthetic signal transduction system in plants. Methods Enzymol 2011; 497:581-602. [PMID: 21601104 DOI: 10.1016/b978-0-12-385075-1.00025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of these systems, a histidine kinase (HK) based signaling system, lends itself to manipulation using the tools of synthetic biology. Both plants and bacteria use HKs to relay signals, which in bacteria can involve as few as two proteins (two-component systems or TCS). HK proteins are evolutionarily conserved between plants and bacteria and plant HK components have been shown to be functional in bacteria. We found that this conservation also applies to bacterial HK components which can function in plants. This conservation of function led us to hypothesize that synthetic HK signaling components can be designed and rapidly tested in bacteria. These novel HK signaling components form the foundation for a synthetic signaling system in plants, but typically require modifications such as codon optimization and proper targeting to allow optimal function. We describe the process and methodology of producing a synthetic signal transduction system in plants. We discovered that the bacterial response regulator (RR) PhoB shows HK-dependent nuclear translocation in planta. Using this discovery, we engineered a partial synthetic pathway in which a synthetic promoter (PlantPho) is activated using a plant-adapted PhoB (PhoB-VP64) and the endogenous HK-based cytokinin signaling pathway. Building on this work, we adapted an input or sensing system based on bacterial chemotactic binding proteins and HKs, resulting in a complete eukaryotic signal transduction system. Input to our eukaryotic signal transduction system is provided by a periplasmic binding protein (PBP), ribose-binding protein (RBP). RBP interacts with the membrane-localized chemotactic receptor Trg. PBPs like RBP have been computationally redesigned to bind small ligands, such as the explosive 2,4,6-trinitrotoluene (TNT). A fusion between the chemotactic receptor Trg and the HK, PhoR, enables signal transduction via PhoB, which undergoes nuclear translocation in response to phosphorylation, resulting in transcriptional activation of an output gene under control of a synthetic plant promoter. Collectively, these components produce a novel ligand-responsive signal transduction system in plants and provide a means to engineer a eukaryotic synthetic signaling system.
Collapse
Affiliation(s)
- Kevin J Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Ruhe ZC, Hayes CS. The N-terminus of GalE induces tmRNA activity in Escherichia coli. PLoS One 2010; 5:e15207. [PMID: 21151867 PMCID: PMC2998420 DOI: 10.1371/journal.pone.0015207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tmRNA quality control system recognizes stalled translation complexes and facilitates ribosome recycling in a process termed 'ribosome rescue'. During ribosome rescue, nascent chains are tagged with the tmRNA-encoded SsrA peptide, which targets tagged proteins for degradation. In Escherichia coli, tmRNA rescues ribosomes arrested on truncated messages, as well as ribosomes that are paused during elongation and termination. METHODOLOGY/PRINCIPAL FINDINGS Here, we describe a new translational pausing determinant that leads to SsrA peptide tagging of the E. coli GalE protein (UDP-galactose 4-epimerase). GalE chains are tagged at more than 150 sites, primarily within distinct clusters throughout the C-terminal domain. These tagging sites do not correspond to rare codon clusters and synonymous recoding of the galE gene had little effect on tagging. Moreover, tagging was largely unaffected by perturbations that either stabilize or destabilize the galE transcript. Examination of GalE-thioredoxin (TrxA) fusion proteins showed that the GalE C-terminal domain is no longer tagged when fused to an N-terminal TrxA domain. Conversely, the N-terminus of GalE induced tagging within the fused C-terminal TrxA domain. CONCLUSIONS/SIGNIFICANCE These findings suggest that translation of the GalE N-terminus induces subsequent tagging of the C-terminal domain. We propose that co-translational maturation of the GalE N-terminal domain influences ribosome pausing and subsequent tmRNA activity.
Collapse
Affiliation(s)
- Zachary C. Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
41
|
Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res 2010; 39:1739-48. [PMID: 21051357 PMCID: PMC3061065 DOI: 10.1093/nar/gkq1097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl-tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | | | | |
Collapse
|
42
|
Barends S, Kraal B, van Wezel GP. The tmRNA-tagging mechanism and the control of gene expression: a review. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:233-46. [PMID: 21957008 DOI: 10.1002/wrna.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tmRNA-mediated trans-translation system is a unique quality control system in eubacteria that combines translational surveillance with the rescue of stalled ribosomes. During trans-translation, the chimeric tmRNA molecule--which acts as both tRNA and mRNA--is delivered to the ribosomal A site by a ribonucleoprotein complex of SmpB and EF-Tu-GTP, allowing the stalled ribosome to switch template and resume translation on a small coding sequence inside the tmRNA molecule. As a result, the aberrant protein becomes tagged by a sequence that is a target for proteolytic degradation. Thus, the system elegantly combines ribosome recycling with a clean-up function when triggered by truncated transcripts or rare codons. In addition, recent observations point to a specific regulation of the translation of a small number of genes by tmRNA-mediated inhibition or stimulation. In this review, we discuss the most prominent biochemical and structural aspects of trans-translation and then focus on the specific role of tmRNA in stress management and cell-cycle control of morphologically complex bacteria.
Collapse
Affiliation(s)
- Sharief Barends
- ProteoNic, Niels Bohrweg 11-13, 2333 CA Leiden, The Netherlands
| | | | | |
Collapse
|
43
|
Kuo HK, Krasich R, Bhagwat AS, Kreuzer KN. Importance of the tmRNA system for cell survival when transcription is blocked by DNA-protein cross-links. Mol Microbiol 2010; 78:686-700. [PMID: 20807197 DOI: 10.1111/j.1365-2958.2010.07355.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anticancer drug 5-azacytidine (aza-C) induces DNA-protein cross-links (DPCs) between cytosine methyltransferase and DNA as the drug inhibits methylation. We found that mutants defective in the tmRNA translational quality control system are hypersensitive to aza-C. Hypersensitivity requires expression of active methyltransferase, indicating the importance of DPC formation. Furthermore, the tmRNA pathway is activated upon aza-C treatment in cells expressing methyltransferase, resulting in increased levels of SsrA tagged proteins. These results argue that the tmRNA pathway clears stalled ribosome-mRNA complexes generated after transcriptional blockage by aza-C-induced DPCs. In support, an ssrA mutant is also hypersensitive to streptolydigin, which blocks RNA polymerase elongation by a different mechanism. The tmRNA pathway is thought to act only on ribosomes containing a 3' RNA end near the A site, and the known pathway for releasing RNA 3' ends from a blocked polymerase involves Mfd helicase. However, an mfd knockout mutant is not hypersensitive to either aza-C-induced DPC formation or streptolydigin, indicating that Mfd is not involved. Transcription termination factor Rho is also likely not involved, because the Rho-specific inhibitor bicyclomycin failed to show synergism with either aza-C or streptolydigin. Based on these findings, we discuss models for how E. coli processes transcription/translation complexes blocked at DPCs.
Collapse
Affiliation(s)
- H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
44
|
Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467-78. [PMID: 20520623 PMCID: PMC3145457 DOI: 10.1038/nrm2917] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its universal importance for controlling gene expression, mRNA degradation was initially thought to occur by disparate mechanisms in eukaryotes and bacteria. This conclusion was based on differences in the structures used by these organisms to protect mRNA termini and in the RNases and modifying enzymes originally implicated in mRNA decay. Subsequent discoveries have identified several striking parallels between the cellular factors and molecular events that govern mRNA degradation in these two kingdoms of life. Nevertheless, some key distinctions remain, the most fundamental of which may be related to the different mechanisms by which eukaryotes and bacteria control translation initiation.
Collapse
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
45
|
Harigaya Y, Parker R. No-go decay: a quality control mechanism for RNA in translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:132-41. [PMID: 21956910 DOI: 10.1002/wrna.17] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells have evolved multiple quality control mechanisms that recognize and eliminate defective mRNA during the process of translation. One mechanism, referred to as No-go decay (NGD), targets mRNAs with elongation stalls for degradation initiated by endonucleolytic cleavage in the vicinity of the stalled ribosome. NGD is promoted by the evolutionarily conserved Dom34 and Hbs1 proteins, which are related to the translation termination factors eRF1 and eRF3, respectively. NGD is likely to occur by Dom34/Hbs1 interacting with the A site in the ribosome leading to release of the peptide or peptidyl-tRNA. The process of NGD and/or the function of Dom34/Hbs1 appear to be important in several different biological contexts.
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
46
|
Zorzet A, Pavlov MY, Nilsson AI, Ehrenberg M, Andersson DI. Error-prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Mol Microbiol 2010; 75:1299-313. [PMID: 20132454 PMCID: PMC2859245 DOI: 10.1111/j.1365-2958.2010.07057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 11/27/2022]
Abstract
Mutations in the fmt gene (encoding formyl methionine transferase) that eliminate formylation of initiator tRNA (Met-tRNA(i)) confer resistance to the novel antibiotic class of peptide deformylase inhibitors (PDFIs) while concomitantly reducing bacterial fitness. Here we show in Salmonella typhimurium that novel mutations in initiation factor 2 (IF2) located outside the initiator tRNA binding domain can partly restore fitness of fmt mutants without loss of antibiotic resistance. Analysis of initiation of protein synthesis in vitro showed that with non-formylated Met-tRNA(i) IF2 mutants initiated much faster than wild-type IF2, whereas with formylated fMet-tRNA(i) the initiation rates were similar. Moreover, the increase in initiation rates with Met-tRNA(i) conferred by IF2 mutations in vitro correlated well with the increase in growth rate conferred by the same mutations in vivo, suggesting that the mutations in IF2 compensate formylation deficiency by increasing the rate of in vivo initiation with Met-tRNA(i). IF2 mutants had also a high propensity for erroneous initiation with elongator tRNAs in vitro, which could account for their reduced fitness in vivo in a formylation-proficient strain. More generally, our results suggest that bacterial protein synthesis is mRNA-limited and that compensatory mutations in IF2 could increase the persistence of PDFI-resistant bacteria in clinical settings.
Collapse
Affiliation(s)
- Anna Zorzet
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Uppsala UniversityBox 596, SE-751 24 Uppsala, Sweden
| | - Annika I Nilsson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala UniversityBox 596, SE-751 24 Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala UniversityBox 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
47
|
Ito K, Chiba S, Pogliano K. Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 2010; 393:1-5. [PMID: 20117091 DOI: 10.1016/j.bbrc.2010.01.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have identified several amino acid sequences that interact with the ribosomal interior components and arrest their own elongation. Whereas stalling of the inducible class depends on specific low-molecular weight compounds, that of the intrinsic class is released when the nascent chain is transported across or inserted into the membrane. The stalled ribosome alters messenger RNA secondary structure and thereby contributes to regulation of the cis-located target gene expression at different levels. The stalling sequences are divergent but likely to utilize non-uniform nature of the peptide bond formation reactions and are recruited relatively recently to different biological systems, possibly including those to be identified in forthcoming studies.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
48
|
Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, Gerdes K, Ramakrishnan V, Brodersen DE. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 2010; 139:1084-95. [PMID: 20005802 PMCID: PMC2807027 DOI: 10.1016/j.cell.2009.11.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/30/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 Å) and bound to programmed Thermus thermophilus 70S ribosomes before (3.3 Å) and after (3.6 Å) cleavage. RelE occupies the A site and causes cleavage of mRNA after the second nucleotide of the codon by reorienting and activating the mRNA for 2′-OH-induced hydrolysis. Stacking of A site codon bases with conserved residues in RelE and 16S rRNA explains the requirement for the ribosome in catalysis and the subtle sequence specificity of the reaction. These structures provide detailed insight into the translational regulation on the bacterial ribosome by mRNA cleavage.
Collapse
|
49
|
Brown JD, Ryan MD. Ribosome “Skipping”: “Stop-Carry On” or “StopGo” Translation. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Barends S, Zehl M, Bialek S, de Waal E, Traag BA, Willemse J, Jensen ON, Vijgenboom E, van Wezel GP. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep 2009; 11:119-25. [PMID: 20019758 DOI: 10.1038/embor.2009.255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 11/09/2022] Open
Abstract
The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A, elongation factor Tu3, and the cell-cycle control proteins DasR, SsgA, SsgF and SsgR. Although tmRNA-tagged proteins are degraded swiftly, the translation of dnaK and dasR messenger RNAs (mRNAs) depends fully on tmRNA, whereas transcription is unaffected. The data unveil a surprisingly dedicated functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress.
Collapse
Affiliation(s)
- Sharief Barends
- Microbial Development, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|