1
|
Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S, Oliveira JF. Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition. J Neurochem 2025; 169:e70019. [PMID: 39992167 DOI: 10.1111/jnc.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca2+)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca2+ signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca2+, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca2+-dependent exocytosis but draw attention to additional intracellular Ca2+-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca2+ is thought to underlie neuron-astrocyte signaling in brain regions involved in cognitive processing.
Collapse
Affiliation(s)
- Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Azenha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Zinsmaier AK, Nestler EJ, Dong Y. Astrocytic G Protein-Coupled Receptors in Drug Addiction. ENGINEERING (BEIJING, CHINA) 2025; 44:256-265. [PMID: 40109668 PMCID: PMC11922559 DOI: 10.1016/j.eng.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the cellular mechanisms of drug addiction remains a key task in current brain research. While neuron-based mechanisms have been extensively explored over the past three decades, recent evidence indicates a critical involvement of astrocytes, the main type of non-neuronal cells in the brain. In response to extracellular stimuli, astrocytes modulate the activity of neurons, synaptic transmission, and neural network properties, collectively influencing brain function. G protein-coupled receptors (GPCRs) expressed on astrocyte surfaces respond to neuron- and environment-derived ligands by activating or inhibiting astrocytic signaling, which in turn regulates adjacent neurons and their circuitry. In this review, we focus on the dopamine D1 receptors (D1R) and metabotropic glutamate receptor 5 (mGLUR5 or GRM5)-two GPCRs that have been critically implicated in the acquisition and maintenance of addiction-related behaviors. Positioned as an introductory-level review, this article briefly discusses astrocyte biology, outlines earlier discoveries about the role of astrocytes in substance-use disorders (SUDs), and provides detailed discussion about astrocytic D1Rs and mGLUR5s in regulating synapse and network functions in the nucleus accumbens (NAc)-a brain region that mediates addiction-related emotional and motivational responses. This review serves as a stepping stone for readers of Engineering to explore links between astrocytic GPCRs and drug addiction and other psychiatric disorders.
Collapse
Affiliation(s)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Abreu DS, Gomes JI, Ribeiro FF, Diógenes MJ, Sebastião AM, Vaz SH. Astrocytes control hippocampal synaptic plasticity through the vesicular-dependent release of D-serine. Front Cell Neurosci 2023; 17:1282841. [PMID: 38145284 PMCID: PMC10740624 DOI: 10.3389/fncel.2023.1282841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), sense synaptic activity and respond through the release of gliotransmitters, a process mediated by intracellular Ca2+ level changes and SNARE-dependent mechanisms. Ionotropic N-methyl-D-aspartate (NMDA) receptors, which are activated by glutamate along with D-serine or glycine, play a crucial role in learning, memory, and synaptic plasticity. However, the precise impact of astrocyte-released D-serine on neuronal modulation remains insufficiently characterized. To address this, we have used the dominant negative SNARE (dnSNARE) mouse model, which selectively inhibits SNARE-dependent exocytosis from astrocytes. We recorded field excitatory postsynaptic potentials (fEPSPs) in CA3-CA1 synapses within hippocampal slices obtained from dnSNARE mice and wild-type (Wt) littermates. Our results demonstrate that hippocampal θ-burst long-term potentiation (LTP), a critical form of synaptic plasticity, is impaired in hippocampal slices from dnSNARE mice. Notably, this LTP impairment was rescued upon incubation with D-serine. To further investigate the involvement of astrocytes in D-serine-mediated mechanisms of LTP maintenance, we perfused hippocampal slices with L-serine - a substrate used by both neurons and astrocytes for D-serine production. The enhancement in LTP observed in dnSNARE mice was exclusively associated with D-serine presence, with no effects evident in the presence of L-serine. Additionally, both D- and L-serine reduced basal synaptic strength in the hippocampal slices of both Wt and dnSNARE mice. These results provide compelling evidence that distinct processes underlie the modulation of basal synaptic transmission and LTP through D-serine. Our findings underscore the pivotal contribution of astrocytes in D-serine-mediated processes that govern LTP establishment and basal transmission. This study not only provides essential insights into the intricate interplay between neurons and astrocytes but also emphasizes their collective role in shaping hippocampal synaptic function.
Collapse
Affiliation(s)
- Daniela Sofia Abreu
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| | - Joana I. Gomes
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa F. Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J. Diógenes
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H. Vaz
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
5
|
Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 2023; 15:1138577. [PMID: 36937570 PMCID: PMC10017551 DOI: 10.3389/fnsyn.2023.1138577] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Glia are as numerous in the brain as neurons and widely known to serve supportive roles such as structural scaffolding, extracellular ionic and neurotransmitter homeostasis, and metabolic support. However, over the past two decades, several lines of evidence indicate that astrocytes, which are a type of glia, play active roles in neural information processing. Astrocytes, although not electrically active, can exhibit a form of excitability by dynamic changes in intracellular calcium levels. They sense synaptic activity and release neuroactive substances, named gliotransmitters, that modulate neuronal activity and synaptic transmission in several brain areas, thus impacting animal behavior. This "dialogue" between astrocytes and neurons is embodied in the concept of the tripartite synapse that includes astrocytes as integral elements of synaptic function. Here, we review the recent work and discuss how astrocytes via calcium-mediated excitability modulate synaptic information processing at various spatial and time scales.
Collapse
Affiliation(s)
| | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
6
|
Lam M, Takeo K, Almeida RG, Cooper MH, Wu K, Iyer M, Kantarci H, Zuchero JB. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat Commun 2022; 13:5583. [PMID: 36151203 PMCID: PMC9508103 DOI: 10.1038/s41467-022-33200-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.
Collapse
Affiliation(s)
- Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Koji Takeo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, Japan
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Zhang LY, Kim AY, Cheer JF. Regulation of glutamate homeostasis in the nucleus accumbens by astrocytic CB1 receptors and its role in cocaine-motivated behaviors. ADDICTION NEUROSCIENCE 2022; 3:100022. [PMID: 36419922 PMCID: PMC9681119 DOI: 10.1016/j.addicn.2022.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades of histological and electrophysiological studies have established CB1R as presynaptic G-protein coupled receptors (GPCRs) that inhibit neurotransmitter release through retrograde signaling mechanisms. Recent seminal work demonstrates CB1R expression on astrocytes and the pivotal function of glial cells in endocannabinoid-mediated modulation of neuron-astrocyte signaling. Here, we review key facets of CB1R-mediated astroglia regulation of synaptic glutamate transmission in the nucleus accumbens with a specific emphasis on cocaine-directed behaviors.
Collapse
Affiliation(s)
- Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Y. Kim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
8
|
Bauminger H, Gaisler-Salomon I. Beyond NMDA Receptors: Homeostasis at the Glutamate Tripartite Synapse and Its Contributions to Cognitive Dysfunction in Schizophrenia. Int J Mol Sci 2022; 23:8617. [PMID: 35955750 PMCID: PMC9368772 DOI: 10.3390/ijms23158617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive deficits are core symptoms of schizophrenia but remain poorly addressed by dopamine-based antipsychotic medications. Glutamate abnormalities are implicated in schizophrenia-related cognitive deficits. While the role of the NMDA receptor has been extensively studied, less attention was given to other components that control glutamate homeostasis. Glutamate dynamics at the tripartite synapse include presynaptic and postsynaptic components and are tightly regulated by neuron-astrocyte crosstalk. Here, we delineate the role of glutamate homeostasis at the tripartite synapse in schizophrenia-related cognitive dysfunction. We focus on cognitive domains that can be readily measured in humans and rodents, i.e., working memory, recognition memory, cognitive flexibility, and response inhibition. We describe tasks used to measure cognitive function in these domains in humans and rodents, and the relevance of glutamate alterations in these domains. Next, we delve into glutamate tripartite synaptic components and summarize findings that implicate the relevance of these components to specific cognitive domains. These collective findings indicate that neuron-astrocyte crosstalk at the tripartite synapse is essential for cognition, and that pre- and postsynaptic components play a critical role in maintaining glutamate homeostasis and cognitive well-being. The contribution of these components to cognitive function should be considered in order to better understand the role played by glutamate signaling in cognition and develop efficient pharmacological treatment avenues for schizophrenia treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
9
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
10
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
11
|
Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D, Nampoothiri M. Astrocytic Glutamatergic Transmission and Its Implications in Neurodegenerative Disorders. Cells 2022; 11:cells11071139. [PMID: 35406702 PMCID: PMC8997779 DOI: 10.3390/cells11071139] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders involve impaired neurotransmission, and glutamatergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and release several neurotransmitters and neuromodulators, including glutamate, and significantly modulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights different vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these, several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1, purinergic receptors and so forth, also contribute to glutamate release under physiological and pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes to trigger repetitive release of glutamate. This could be favorable towards the development and worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission could pave the way for the management of these diseases and add to their therapeutic value.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- Correspondence:
| |
Collapse
|
12
|
Lalo U, Koh W, Lee CJ, Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021; 199:108758. [PMID: 34433089 DOI: 10.1016/j.neuropharm.2021.108758] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
13
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Mielnicka A, Michaluk P. Exocytosis in Astrocytes. Biomolecules 2021; 11:1367. [PMID: 34572580 PMCID: PMC8471187 DOI: 10.3390/biom11091367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Until recently, astrocytes were thought to be a part of a simple "brain glue" providing only a supporting role for neurons. However, the discoveries of the last two decades have proven astrocytes to be dynamic partners participating in brain metabolism and actively influencing communication between neurons. The means of astrocyte-neuron communication are diverse, although regulated exocytosis has received the most attention but also caused the most debate. Similar to most of eukaryotic cells, astrocytes have a complex range of vesicular organelles which can undergo exocytosis as well as intricate molecular mechanisms that regulate this process. In this review, we focus on the components needed for regulated exocytosis to occur and summarise the knowledge about experimental evidence showing its presence in astrocytes.
Collapse
Affiliation(s)
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland;
| |
Collapse
|
15
|
Schoonover KE, Kennedy WM, Roberts RC. Cortical copper transporter expression in schizophrenia: interactions of risk gene dysbindin-1. J Neural Transm (Vienna) 2021; 128:701-709. [PMID: 33890175 PMCID: PMC11000637 DOI: 10.1007/s00702-021-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia susceptibility factor dysbindin-1 is associated with cognitive processes. Downregulated dysbindin-1 expression is associated with lower expression of copper transporters ATP7A and CTR1, required for copper transport to the central nervous system. We measured dysbindin-1 isoforms-1A and -1BC, CTR1, and ATP7A via Western blots of the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects (n = 28) and matched controls (n = 14). In addition, we subdivided the schizophrenia group by treatment status and comorbidity of alcohol use disorder (AUD) and assessed the relationships between proteins. Schizophrenia subjects exhibited similar protein levels to that of controls, with no effect of antipsychotic treatment. We observed a shift towards more dysbindin-1A expression in schizophrenia, as revealed by the ratio of dysbindin-1 isoforms. Dysbindin-1A expression was negatively correlated with ATP7A in schizophrenia, with no correlation present in controls. AUD subjects exhibited less dysbindin-1BC and CTR1 than those without AUD. Our results, taken together with previous data, suggest that alterations in dysbindin-1 and copper transporters are brain-region specific. For example, protein levels of ATP7A, dysbindin 1BC, and CTR1 are lower in the substantia nigra in schizophrenia subjects. AUD in the DLPFC was associated with lower protein levels of dysbindin-1 and CTR1. Changes in dysbindin-1 isoform ratio and relationships appear to be prevalent in the disease, potentially impacting symptomology.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, The University of Alabama at Birmingham, 3811 O'Hara Street BST W1651, Pittsburgh, PA, 15213, USA.
| | - William M Kennedy
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| |
Collapse
|
16
|
Broadhead MJ, Miles GB. A common role for astrocytes in rhythmic behaviours? Prog Neurobiol 2021; 202:102052. [PMID: 33894330 DOI: 10.1016/j.pneurobio.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.
Collapse
Affiliation(s)
- Matthew J Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
17
|
Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nat Neurosci 2020; 23:1376-1387. [DOI: 10.1038/s41593-020-00713-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
|
18
|
Campos J, Guerra-Gomes S, Serra SC, Baltazar G, Oliveira JF, Teixeira FG, Salgado AJ. Astrocyte signaling impacts the effects of human bone marrow mesenchymal stem cells secretome application into the hippocampus: A proliferation and morphometrical analysis on astrocytic cell populations. Brain Res 2020; 1732:146700. [DOI: 10.1016/j.brainres.2020.146700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
19
|
Heroin Cue-Evoked Astrocytic Structural Plasticity at Nucleus Accumbens Synapses Inhibits Heroin Seeking. Biol Psychiatry 2019; 86:811-819. [PMID: 31495448 PMCID: PMC6823145 DOI: 10.1016/j.biopsych.2019.06.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Opioid addiction is a critical medical and societal problem characterized by vulnerability to relapse. Glutamatergic synapses in the nucleus accumbens regulate the motivation to relapse to opioid use, and downregulation of glutamate transporters on astroglial processes adjacent to accumbens synapses contributes to heroin seeking induced by cues. However, it is not known how astroglial processes themselves respond to heroin cues or if changes in astroglial morphology are necessary for heroin seeking. METHODS Male Sprague Dawley rats (n = 62) were trained to self-administer heroin or sucrose and were reinstated by heroin-conditioned or sucrose-conditioned cues. Astroglial proximity to accumbens synapses was estimated using a confocal-based strategy, and the association between digitally isolated astroglia and the presynaptic marker synapsin I was quantified. To determine the functional consequence of astroglial morphological plasticity on cued heroin seeking, a morpholino antisense strategy was used to knock down expression of the actin binding protein ezrin, which is expressed almost exclusively in peripheral astroglial processes in the adult rat brain. RESULTS After heroin extinction, there was an enduring reduction in synaptic proximity by astroglia. Synaptic proximity was restored during 15 minutes of cued heroin seeking but returned to extinction levels by 120 minutes. Extinction from sucrose self-administration and reinstated sucrose seeking induced no changes in astroglial synaptic association. Ezrin knockdown reduced astroglial association with synapses and potentiated cued heroin seeking. CONCLUSIONS Cue-induced heroin seeking transiently increased synaptic proximity of accumbens astrocytes. Surprisingly, the reassociation of astroglia with synapses was compensatory, and preventing cue-induced morphological plasticity in astrocytes potentiated heroin seeking.
Collapse
|
20
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
21
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Gliotransmission: Beyond Black-and-White. J Neurosci 2019; 38:14-25. [PMID: 29298905 DOI: 10.1523/jneurosci.0017-17.2017] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca2+-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca2+ elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca2+ release pathway (IP3R2) removes all the sources for Ca2+-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca2+ signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions.Dual Perspectives Companion Paper: Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions, by Todd A. Fiacco and Ken D. McCarthy.
Collapse
|
23
|
Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions. J Neurosci 2019; 38:3-13. [PMID: 29298904 DOI: 10.1523/jneurosci.0016-17.2017] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
A major controversy persists within the field of glial biology concerning whether or not, under physiological conditions, neuronal activity leads to Ca2+-dependent release of neurotransmitters from astrocytes, a phenomenon known as gliotransmission. Our perspective is that, while we and others can apply techniques to cause gliotransmission, there is considerable evidence gathered using astrocyte-specific and more physiological approaches which suggests that gliotransmission is a pharmacological phenomenon rather than a physiological process. Approaches providing evidence against gliotransmission include stimulation of Gq-GPCRs expressed only in astrocytes, as well as removal of the primary proposed source of astrocyte Ca2+ responsible for gliotransmission. These approaches contrast with those supportive of gliotransmission, which include mechanical stimulation, strong astrocytic depolarization using whole-cell patch-clamp or optogenetics, uncaging Ca2+ or IP3, chelating Ca2+ using BAPTA, and nonspecific bath application of agonists to receptors expressed by a multitude of cell types. These techniques are not subtle and therefore are not supportive of recent suggestions that gliotransmission requires very specific and delicate temporal and spatial requirements. Other evidence, including lack of propagating Ca2+ waves between astrocytes in healthy tissue, lack of expression of vesicular release machinery, and the demise of the d-serine gliotransmission hypothesis, provides additional evidence against gliotransmission. Overall, the data suggest that Ca2+-dependent release of neurotransmitters is the province of neurons, not astrocytes, in the intact brain under physiological conditions.Dual Perspectives Companion Paper: Gliotransmission: Beyond Black-and-White, by Iaroslav Savtchouk and Andrea Volterra.
Collapse
|
24
|
The Astrocyte-Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods Mol Biol 2019; 1938:3-18. [PMID: 30617969 DOI: 10.1007/978-1-4939-9068-9_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are known to provide trophic support to neurons and were originally thought to be passive space-filling cells in the brain. However, recent advances in astrocyte development and functions have highlighted their active roles in controlling brain functions by modulating synaptic transmission. A bidirectional cross talk between astrocytic processes and neuronal synapses define the concept of tripartite synapse. Any change in astrocytic structure/function influences neuronal activity which could lead to neurodevelopmental and neurodegenerative disorders. In this chapter, we briefly overview the methodologies used in deciphering the mechanisms of dynamic interplay between astrocytes and neurons.
Collapse
|
25
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
26
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
27
|
Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, Correia JS, Teixeira-Castro A, Pinto L, Sousa N, Oliveira JF. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 2017; 65:1944-1960. [PMID: 28885722 DOI: 10.1002/glia.23205] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.
Collapse
Affiliation(s)
- Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Tavares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuella Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Santos Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos 4750-810, Portugal
| |
Collapse
|
28
|
Jorgačevski J, Potokar M, Kreft M, Guček A, Mothet JP, Zorec R. Astrocytic Vesicle-based Exocytosis in Cultures and Acutely Isolated Hippocampal Rodent Slices. J Neurosci Res 2017; 95:2152-2158. [PMID: 28370180 DOI: 10.1002/jnr.24051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023]
Abstract
Astrocytes are excitable neural cells that contribute to brain information processing via bidirectional communication with neurons. This involves the release of gliosignaling molecules that affect synapses patterning and activity. Mechanisms mediating the release of these molecules likely consist of non-vesicular and vesicular-based mechanisms. It is the vesicle-based regulated exocytosis that is an evolutionary more complex process. It is well established that the release of gliosignaling molecules has profound effects on information processing in different brain regions (e.g., hippocampal astrocytes contribute to long-term potentiation [LTP]), which has traditionally been considered as one of the cellular mechanisms underlying learning and memory. However, the paradigm of vesicle-based regulated release of gliosignaling molecules from astrocytes is still far from being unanimously accepted. One of the most important questions is to what extent can the conclusions obtained from cultured astrocytes be translated to in vivo conditions. Here, we overview the properties of vesicle mobility and their fusion with the plasma membrane in cultured astrocytes and compare these parameters to those recorded in astrocytes from acute brain hippocampal slices. The results from both experimental models are similar, which validates experiments on isolated astrocytes and further supports arguments in favor of in vivo vesicle-based exocytotic release of gliosignaling molecules. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Jean-Pierre Mothet
- Team Gliotransmission and Synaptopathies, Aix-Marseille Université, CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.,Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| |
Collapse
|
29
|
Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration. Int J Mol Sci 2017; 18:ijms18020358. [PMID: 28208745 PMCID: PMC5343893 DOI: 10.3390/ijms18020358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.
Collapse
|
30
|
Grubišić V, Parpura V. Two modes of enteric gliotransmission differentially affect gut physiology. Glia 2017; 65:699-711. [PMID: 28168732 DOI: 10.1002/glia.23121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 11/08/2022]
Abstract
Enteric glia (EG) in the enteric nervous system can modulate neuronally regulated gut functions. Using molecular genetics, we assessed the effects that molecular entities expressed in EG and otherwise mediating two distinct mechanisms of gliotransmitter release, connexin 43 (Cx43) hemichannel vs. Ca2+ -dependent exocytosis, have on gut function. The expression of mutated Cx43G138R (which favors hemichannel, as opposed to gap-junctional activity) in EG increased gut motility in vivo, while a knock-down of Cx43 in EG resulted in the reduction of gut motility. However, inhibition of Ca2+ -dependent exocytosis in EG did not affect gut motility in vivo; rather, it increased the fecal pellet fluid content. Hampering either Cx43 expression or Ca2+ -dependent exocytosis in EG had an effect on colonic migrating motor complexes, mainly decreasing frequency and velocity of contractions ex vivo. Thus, EG can differentially modulate gut reflexes using the above two distinct mechanisms of gliotransmission.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Bohmbach K, Schwarz MK, Schoch S, Henneberger C. The structural and functional evidence for vesicular release from astrocytes in situ. Brain Res Bull 2017; 136:65-75. [PMID: 28122264 DOI: 10.1016/j.brainresbull.2017.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
The concept of the tripartite synapse states that bi-directional signalling between perisynaptic astrocyte processes, presynaptic axonal boutons and postsynaptic neuronal structures defines the properties of synaptic information processing. Ca2+-dependent vesicular release from astrocytes, as one of the mechanisms of astrocyte-neuron communication, has attracted particular attention but has also been the subject of intense debate. In neurons, regulated vesicular release is a strongly coordinated process. It requires a complex release machinery comprised of many individual components ranging from vesicular neurotransmitter transporters and soluble NSF attachment protein receptors (SNARE) proteins to Ca2+-sensors and the proteins that spatially and temporally control exocytosis of synaptic vesicles. If astrocytes employ similar mechanisms to release neurotransmitters is less well understood. The aim of this review is therefore to discuss recent experimental evidence that sheds light on the central structural components responsible for vesicular release from astrocytes in situ.
Collapse
Affiliation(s)
- Kirsten Bohmbach
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Martin K Schwarz
- Department of Epileptology, University of Bonn Medical School, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
32
|
Guček A, Jorgačevski J, Singh P, Geisler C, Lisjak M, Vardjan N, Kreft M, Egner A, Zorec R. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cell Mol Life Sci 2016; 73:3719-31. [PMID: 27056575 PMCID: PMC11108528 DOI: 10.1007/s00018-016-2213-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 01/18/2023]
Abstract
Key support for vesicle-based release of gliotransmitters comes from studies of transgenic mice with astrocyte-specific expression of a dominant-negative domain of synaptobrevin 2 protein (dnSNARE). To determine how this peptide affects exocytosis, we used super-resolution stimulated emission depletion microscopy and structured illumination microscopy to study the anatomy of single vesicles in astrocytes. Smaller vesicles contained amino acid and peptidergic transmitters and larger vesicles contained ATP. Discrete increases in membrane capacitance, indicating single-vesicle fusion, revealed that astrocyte stimulation increases the frequency of predominantly transient fusion events in smaller vesicles, whereas larger vesicles transitioned to full fusion. To determine whether this reflects a lower density of SNARE proteins in larger vesicles, we treated astrocytes with botulinum neurotoxins D and E, which reduced exocytotic events of both vesicle types. dnSNARE peptide stabilized the fusion-pore diameter to narrow, release-unproductive diameters in both vesicle types, regardless of vesicle diameter.
Collapse
Affiliation(s)
- Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
| | - Priyanka Singh
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Claudia Geisler
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., 37077, Göttingen, Germany
| | - Marjeta Lisjak
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Alexander Egner
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., 37077, Göttingen, Germany
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
- Celica BIOMEDICAL, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Zorec R, Parpura V, Verkhratsky A. Astroglial Vesicular Trafficking in Neurodegenerative Diseases. Neurochem Res 2016; 42:905-917. [DOI: 10.1007/s11064-016-2055-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
|
34
|
Jurič DM, Kržan M, Lipnik-Stangelj M. Histamine and astrocyte function. Pharmacol Res 2016; 111:774-783. [DOI: 10.1016/j.phrs.2016.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/31/2022]
|
35
|
Parpura V, Sekler I, Fern R. Plasmalemmal and mitochondrial Na+-Ca2+exchange in neuroglia. Glia 2016; 64:1646-54. [DOI: 10.1002/glia.22975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology; Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham; Birmingham Alabama
| | - Israel Sekler
- Department of Physiology, Faculty of Health Science; Ben-Gurion University; Ben-Guion Av 84105 POB 653
| | - Robert Fern
- Peninsular School of Medicine and Dentistry; University of Plymouth; Plymouth PL6 8BU United Kingdom
| |
Collapse
|
36
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
37
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
38
|
Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R. Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 2016; 35:239-57. [PMID: 26758544 DOI: 10.15252/embj.201592705] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Astrocytes are housekeepers of the central nervous system (CNS) and are important for CNS development, homeostasis and defence. They communicate with neurones and other glial cells through the release of signalling molecules. Astrocytes secrete a wide array of classic neurotransmitters, neuromodulators and hormones, as well as metabolic, trophic and plastic factors, all of which contribute to the gliocrine system. The release of neuroactive substances from astrocytes occurs through several distinct pathways that include diffusion through plasmalemmal channels, translocation by multiple transporters and regulated exocytosis. As in other eukaryotic cells, exocytotic secretion from astrocytes involves divergent secretory organelles (synaptic-like microvesicles, dense-core vesicles, lysosomes, exosomes and ectosomes), which differ in size, origin, cargo, membrane composition, dynamics and functions. In this review, we summarize the features and functions of secretory organelles in astrocytes. We focus on the biogenesis and trafficking of secretory organelles and on the regulation of the exocytotic secretory system in the context of healthy and diseased astrocytes.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE Basque Foundation for Science, Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod, Russia Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy Humanitas Research Hospital, Rozzano, Italy
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix-Marseille University CNRS, CRN2M UMR7286, Marseille, France
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
39
|
|
40
|
Elsayed M, Magistretti PJ. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 2015; 9:468. [PMID: 26733803 PMCID: PMC4679853 DOI: 10.3389/fncel.2015.00468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.
Collapse
Affiliation(s)
- Maha Elsayed
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre J Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Psychiatry, Center for Psychiatric Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
41
|
Zimmermann H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal 2015; 12:25-57. [PMID: 26545760 DOI: 10.1007/s11302-015-9483-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Losi G, Mariotti L, Carmignoto G. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130609. [PMID: 25225102 DOI: 10.1098/rstb.2013.0609] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Gabriele Losi
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Letizia Mariotti
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Giorgio Carmignoto
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| |
Collapse
|
43
|
Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130592. [PMID: 25225086 PMCID: PMC4173278 DOI: 10.1098/rstb.2013.0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.
Collapse
Affiliation(s)
- Daniela A Sahlender
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Iaroslav Savtchouk
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| |
Collapse
|
44
|
Hines DJ, Haydon PG. Astrocytic adenosine: from synapses to psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130594. [PMID: 25225088 DOI: 10.1098/rstb.2013.0594] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although it is considered to be the most complex organ in the body, the brain can be broadly classified into two major types of cells, neuronal cells and glial cells. Glia is a general term that encompasses multiple types of non-neuronal cells that function to maintain homeostasis, form myelin, and provide support and protection for neurons. Astrocytes, a major class of glial cell, have historically been viewed as passive support cells, but recently it has been discovered that astrocytes participate in signalling activities both with the vasculature and with neurons at the synapse. These cells have been shown to release D-serine, TNF-α, glutamate, atrial natriuretic peptide (ANP) and ATP among other signalling molecules. ATP and its metabolites are well established as important signalling molecules, and astrocytes represent a major source of ATP release in the nervous system. Novel molecular and genetic tools have recently shown that astrocytic release of ATP and other signalling molecules has a major impact on synaptic transmission. Via actions at the synapse, astrocytes have now been shown to regulate complex network signalling in the whole organism with impacts on respiration and the sleep-wake cycle. In addition, new roles for astrocytes are being uncovered in psychiatric disorders, and astrocyte signalling mechanisms represents an attractive target for novel therapeutic agents.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
45
|
Ropert N, Jalil A, Li D. Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience 2015; 323:76-83. [PMID: 26518463 DOI: 10.1016/j.neuroscience.2015.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo.
Collapse
Affiliation(s)
- N Ropert
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - A Jalil
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - D Li
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France.
| |
Collapse
|
46
|
Vardjan N, Parpura V, Zorec R. Loose excitation-secretion coupling in astrocytes. Glia 2015; 64:655-67. [PMID: 26358496 DOI: 10.1002/glia.22920] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
49
|
Mayhew J, Beart PM, Walker FR. Astrocyte and microglial control of glutamatergic signalling: a primer on understanding the disruptive role of chronic stress. J Neuroendocrinol 2015; 27:498-506. [PMID: 25737228 DOI: 10.1111/jne.12273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
It is now well established that chronic stress can induce significant structural remodelling of astrocytes and microglia. Until recently, however, the full significance of these morphological disturbances has remained unclear. Clues to the significance of astroglial re-organisation following stress are beginning to emerge from a compelling literature describing how astrocytes contribute to glutamatergic neurotransmission. The present review briefly summarises these two fields of research, identifies points of overlap and, in doing so, pin-points future research directions for stress neurobiology. Ultimately, understanding how chronic stress can disrupt the interactions of astrocytes and microglia with neurones has the potential in the future to improve the development of therapeutics designed to treat stress-related illnesses such as depression.
Collapse
Affiliation(s)
- J Mayhew
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - P M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Vic., Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
50
|
Li D, Hérault K, Zylbersztejn K, Lauterbach MA, Guillon M, Oheim M, Ropert N. Astrocyte VAMP3 vesicles undergo Ca2+ -independent cycling and modulate glutamate transporter trafficking. J Physiol 2015; 593:2807-32. [PMID: 25864578 DOI: 10.1113/jp270362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca(2+) -independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. ABSTRACT Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca(2+) -regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca(2+) -independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Karine Hérault
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Kathleen Zylbersztejn
- INSERM ERL U950, Paris, F-75013, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,CNRS, UMR 7592, Institut Jacques Monod, Paris, F-75013, France
| | - Marcel A Lauterbach
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Marc Guillon
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Martin Oheim
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Nicole Ropert
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| |
Collapse
|