1
|
Shirley JD, Gillingham JR, Nauta KM, Diwakar S, Carlson EE. kinact/ KI Value Determination for Penicillin-Binding Proteins in Live Cells. ACS Infect Dis 2024; 10:4137-4145. [PMID: 39628314 PMCID: PMC11984511 DOI: 10.1021/acsinfecdis.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are covalently inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts peptidoglycan biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity, but can be misleading in the study of time-dependent, covalent inhibitors. Due to this disconnect, the second-order rate constant, kinact/KI, is a more appropriate metric of covalent-inhibitor potency. Despite being the gold standard measurement of potency, kinact/KI values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologues (such as the PBPs). Therefore, we developed a whole-cell kinact/KI assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent, activity-based probe, Bocillin-FL. Our results align with in vitro kinact/KI data and show a comparable relationship to previously established IC50 values. These results support the validity of our in vivo kinact/KI method as a means of obtaining β-lactam potency for a suite of PBPs to enable structure-activity relationship studies.
Collapse
Affiliation(s)
- Joshua D. Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Jacob R. Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M. Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Shivani Diwakar
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
2
|
Rajput P, Nahar KS, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:1197. [PMID: 39766587 PMCID: PMC11672434 DOI: 10.3390/antibiotics13121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.
Collapse
Affiliation(s)
- Pratiksing Rajput
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Kazi S. Nahar
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK;
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
3
|
Shirley JD, Nauta KM, Gillingham JR, Diwakar S, Carlson EE. kinact / KI Value Determination for Penicillin-Binding Proteins in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592586. [PMID: 38746240 PMCID: PMC11092749 DOI: 10.1101/2024.05.05.592586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts cell wall biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC 50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity but can be misleading in the study of time-dependent, irreversible inhibitors. Due to this disconnect, the second order rate constant k inact / K I is a more appropriate metric of covalent inhibitor potency. Despite being the gold standard measurement of potency, k inact / K I values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologs (such as the PBPs). Therefore, we developed a whole-cell k inact / K I assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent activity-based probe Bocillin-FL. Our results align with in vitro k inact / K I data and show a comparable relationship to previously established IC 50 values. These results support the validity of our in vivo k inact / K I method as a means of obtaining a full picture of β-lactam potency for a suite of PBPs. Abstract Figure
Collapse
|
4
|
Chochua S, Metcalf B, Li Z, Mathis S, Tran T, Rivers J, Fleming-Dutra KE, Li Y, McGee L, Beall B. Invasive Group A Streptococcal Penicillin Binding Protein 2× Variants Associated with Reduced Susceptibility to β-Lactam Antibiotics in the United States, 2015-2021. Antimicrob Agents Chemother 2022; 66:e0080222. [PMID: 35969070 PMCID: PMC9487518 DOI: 10.1128/aac.00802-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
All known group A streptococci [GAS] are susceptible to β-lactam antibiotics. We recently identified an invasive GAS (iGAS) variant (emm43.4/PBP2x-T553K) with unusually high minimum inhibitory concentrations (MICs) for ampicillin and amoxicillin, although clinically susceptible to β-lactams. We aimed to quantitate PBP2x variants, small changes in β-lactam MICs, and lineages within contemporary population-based iGAS. PBP2x substitutions were comprehensively identified among 13,727 iGAS recovered during 2015-2021, in the USA. Isolates were subjected to antimicrobial susceptibility testing employing low range agar diffusion and PBP2x variants were subjected to phylogenetic analyses. Fifty-five variants were defined based upon substitutions within an assigned PBP2x transpeptidase domain. Twenty-nine of these variants, representing 338/13,727 (2.5%) isolates and 16 emm types, exhibited slightly elevated β-lactam MICs, none of which were above clinical breakpoints. The emm43.4/PBP2x-T553K variant, comprised of two isolates, displayed the most significant phenotype (ampicillin MIC 0.25 μg/ml) and harbored missense mutations within 3 non-PBP genes with known involvement in antibiotic efflux, membrane insertion of PBP2x, and peptidoglycan remodeling. The proportion of all PBP2x variants with elevated MICs remained stable throughout 2015-2021 (<3.0%). The predominant lineage (emm4/PBP2x-M593T/ermT) was resistant to macrolides/lincosamides and comprised 129/340 (37.9%) of isolates with elevated β-lactam MICs. Continuing β-lactam selective pressure is likely to have selected PBP2x variants that had escaped scrutiny due to MICs that remain below clinical cutoffs. Higher MICs exhibited by emm43.4/PBP2x-T553K are probably rare due to the requirement of additional mutations. Although elevated β-lactam MICs remain uncommon, emm43.4/PBP2x-T553K and emm4/PBP2x-M593T/ermT lineages indicate that antibiotic stewardship and strain monitoring is necessary.
Collapse
Affiliation(s)
- Sopio Chochua
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin Metcalf
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theresa Tran
- ASRT Inc., Contractor to Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E. Fleming-Dutra
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Zhou M, Wang L, Wang Z, Kudinha T, Wang Y, Xu Y, Liu Z. Molecular Characterization of Penicillin-Binding Protein2x, 2b and 1a of Streptococcus pneumoniae Causing Invasive Pneumococcal Diseases in China: A Multicenter Study. Front Microbiol 2022; 13:838790. [PMID: 35300486 PMCID: PMC8921733 DOI: 10.3389/fmicb.2022.838790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pneumoniae is a common human pathogen that can cause severe invasive pneumococcal diseases (IPDs). Penicillin-binding proteins (PBPs) are the targets for β-lactam antibiotics (BLAs), which are the common empirical drugs for treatment of pneumococcal infection. This study investigated the serotype distribution and antibiotic resistance patterns of S. pneumoniae strains causing IPD in China, including exploring the association between penicillin (PEN) susceptibility and PBPs variations. A total of 300 invasive S. pneumoniae isolates were collected from 27 teaching hospitals in China (2010-2015). Serotypes were determined by Quellung reaction. Serotypes 23F and 19F were the commonest serotypes in isolates from cerebrospinal fluid (CSF), whilst serotypes 19A and 23F were most commonly seen in non-CSF specimens. Among the 300 invasive S. pneumoniae strains, only one strain (serotype 6A, MIC = 0.25 μg/ml) with PEN MIC value ≤ 0.25 μg/ml did not have any substitutions in the PBPs active sites. All the strains with PEN MIC value ≥ 0.5 μg/ml had different substitutions within PBPs active sites. Substitutions in PBP2b and PBP2x active sites were common in low-level penicillin-resistant S. pneumoniae (PRSP) strains (MIC = 0.5 μg/ml), with or without PBP1a substitution, while all strains with PEN MIC ≥ 1 μg/ml had substitutions in PBP1a active sites, accompanied by PBP2b and PBP2x active site substitutions. Based on the three PBPs substitution combinations, a high degree of diversity was observed amongst the isolates. This study provides some new insights for understanding the serology and antibiotic resistance dynamics of S. pneumoniae causing IPD in China. However, further genomic studies are needed to facilitate a comprehensive understanding of antibiotic resistance mechanisms of S. pneumoniae.
Collapse
Affiliation(s)
- Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Lulu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziran Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia.,NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
| | - Yao Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
7
|
The penicillin binding protein 1A of Helicobacter pylori, its amoxicillin binding site and access routes. Gut Pathog 2021; 13:43. [PMID: 34183046 PMCID: PMC8240269 DOI: 10.1186/s13099-021-00438-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amoxicillin-resistant H. pylori strains are increasing worldwide. To explore the potential resistance mechanisms involved, the 3D structure modeling and access tunnel prediction for penicillin-binding proteins (PBP1A) was performed, based on the Streptococcus pneumoniae, PBP 3D structure. Molecular covalent docking was used to determine the interactions between amoxicillin (AMX) and PBP1A. RESULTS The AMX-Ser368 covalent complex interacts with the binding site residues (Gly367, Ala369, ILE370, Lys371, Tyr416, Ser433, Thr541, Thr556, Gly557, Thr558, and Asn560) of PBP1A, non-covalently. Six tunnel-like structures, accessing the PBP1A binding site, were characterized, using the CAVER algorithm. Tunnel-1 was the ultimate access route, leading to the drug catalytic binding residue (Ser368). This tunnel comprises of eighteen amino acid residues, 8 of which are shared with the drug binding site. Subsequently, to screen the presence of PBP1A mutations, in the binding site and tunnel residues, in our clinical strains, in vitro assays were performed. H. pylori strains, isolated under gastroscopy, underwent AMX susceptibility testing by E-test. Of the 100 clinical strains tested, 4 were AMX-resistant. The transpeptidase domain of the pbp1a gene of these resistant, plus 10 randomly selected AMX-susceptible strains, were amplified and sequenced. Of the amino acids lining the tunnel-1 and binding site residues, three (Ser414Arg, Val469Met and Thr556Ser) substitutions, were detected in 2 of the 4 resistant and none of the sequenced susceptible strains, respectively. CONCLUSIONS We hypothesize that mutations in amino acid residues lining the binding site and/or tunnel-1, resulting in conformational/spatial changes, may block drug binding to PBP1A and cause AMX resistance.
Collapse
|
8
|
Olsen RJ, Zhu L, Musser JM. A Single Amino Acid Replacement in Penicillin-Binding Protein 2X in Streptococcus pyogenes Significantly Increases Fitness on Subtherapeutic Benzylpenicillin Treatment in a Mouse Model of Necrotizing Myositis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1625-1631. [PMID: 32407732 DOI: 10.1016/j.ajpath.2020.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Invasive strains of Streptococcus pyogenes with significantly reduced susceptibility to β-lactam antibiotics have been recently described. These reports have caused considerable concern in the international infectious disease, medical microbiology, and public health communities because S. pyogenes has remained universally susceptible to β-lactam antibiotics for 70 years. Virtually all analyzed strains had single amino acid replacements in penicillin-binding protein 2X (PBP2X), a major target of β-lactam antibiotics in pathogenic bacteria. We used isogenic strains to test the hypothesis that a single amino acid replacement in PBP2X conferred a fitness advantage in a mouse model of necrotizing myositis. We determined that when mice were administered intermittent subtherapeutic dosing of benzylpenicillin, the strain with a Pro601Leu amino acid replacement in PBP2X that confers reduced β-lactam susceptibility in vitro was more fit, as assessed by the magnitude of colony-forming units recovered from disease tissue. These data provide important pathogenesis information that bears on this emerging global infectious disease problem.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
9
|
Reduced In Vitro Susceptibility of Streptococcus pyogenes to β-Lactam Antibiotics Associated with Mutations in the pbp2x Gene Is Geographically Widespread. J Clin Microbiol 2020; 58:JCM.01993-19. [PMID: 31996443 DOI: 10.1128/jcm.01993-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, two related Streptococcus pyogenes strains with reduced susceptibility to ampicillin, amoxicillin, and cefotaxime, antibiotics commonly used to treat S. pyogenes infections, were reported. The two strains had the same nonsynonymous (amino acid-substituting) mutation in the pbp2x gene, encoding penicillin-binding protein 2X (PBP2X). This concerning report led us to investigate our library of 7,025 genome sequences of type emm1, emm28, and emm89 S. pyogenes clinical strains recovered from intercontinental sources for mutations in pbp2x We identified 137 strains that, combined, had 37 nonsynonymous mutations in 36 codons in pbp2x Although to a lesser magnitude than the two previously published isolates, many of our strains had decreased susceptibility in vitro to multiple beta-lactam antibiotics. Many pbp2x mutations were found only in single strains, but 16 groups of two or more isolates of the same emm type had an identical amino acid replacement. Phylogenetic analysis showed that, with one exception, strains of the same emm type with the same amino acid replacement were clonally related by descent. This finding indicates that strains with some amino acid changes in PBP2X can successfully spread to new human hosts and cause invasive infections. Mapping of the amino acid changes onto a three-dimensional structure of the related Streptococcus pneumoniae PBP2X suggests that some substitutions are located in regions functionally important in related pathogenic bacterial species. Decreased beta-lactam susceptibility is geographically widespread in strains of numerically common emm gene subtypes. Enhanced surveillance and further epidemiological and molecular genetic study of this potential emergent antimicrobial problem are warranted.
Collapse
|
10
|
Singh A, Tomberg J, Nicholas RA, Davies C. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem 2019; 294:14020-14032. [PMID: 31362987 PMCID: PMC6755799 DOI: 10.1074/jbc.ra119.009942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Resistance of Neisseria gonorrhoeae to extended-spectrum cephalosporins (ESCs) has become a major threat to human health. The primary mechanism by which N. gonorrhoeae becomes resistant to ESCs is by acquiring a mosaic penA allele, encoding penicillin-binding protein 2 (PBP2) variants containing up to 62 mutations compared with WT, of which a subset contribute to resistance. To interpret molecular mechanisms underpinning cephalosporin resistance, it is necessary to know how PBP2 is acylated by ESCs. Here, we report the crystal structures of the transpeptidase domain of WT PBP2 in complex with cefixime and ceftriaxone, along with structures of PBP2 in the apo form and with a phosphate ion bound in the active site at resolutions of 1-7-1.9 Å. These structures reveal that acylation of PBP2 by ESCs is accompanied by rotation of the Thr-498 side chain in the KTG motif to contact the cephalosporin carboxylate, twisting of the β3 strand to form the oxyanion hole, and rolling of the β3-β4 loop toward the active site. Recognition of the cephalosporin carboxylate appears to be the key trigger for formation of an acylation-competent state of PBP2. The structures also begin to explain the impact of mutations implicated in ESC resistance. In particular, a G545S mutation may hinder twisting of β3 because its side chain hydroxyl forms a hydrogen bond with Thr-498. Overall, our data suggest that acylation is initiated by conformational changes elicited or trapped by binding of ESCs and that these movements are restricted by mutations associated with resistance against ESCs.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425. Tel.:
843-876-2302; Fax:
843-792-8568; E-mail:
| |
Collapse
|
11
|
Novel and Improved Crystal Structures of H. influenzae, E. coli and P. aeruginosa Penicillin-Binding Protein 3 (PBP3) and N. gonorrhoeae PBP2: Toward a Better Understanding of β-Lactam Target-Mediated Resistance. J Mol Biol 2019; 431:3501-3519. [PMID: 31301409 DOI: 10.1016/j.jmb.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/26/2023]
Abstract
Even with the emergence of antibiotic resistance, penicillin and the wider family of β-lactams have remained the single most important family of antibiotics. The periplasmic/extra-cytoplasmic targets of penicillin are a family of enzymes with a highly conserved catalytic activity involved in the final stage of bacterial cell wall (peptidoglycan) biosynthesis. Named after their ability to bind penicillin, rather than their catalytic activity, these key targets are called penicillin-binding proteins (PBPs). Resistance is predominantly mediated by reducing the target drug concentration via β-lactamases; however, naturally transformable bacteria have also acquired target-mediated resistance by inter-species recombination. Here we focus on structural based interpretations of amino acid alterations associated with the emergence of resistance within clinical isolates and include new PBP3 structures along with new, and improved, PBP-β-lactam co-structures.
Collapse
|
12
|
Miyachiro MM, Contreras-Martel C, Dessen A. Penicillin-Binding Proteins (PBPs) and Bacterial Cell Wall Elongation Complexes. Subcell Biochem 2019; 93:273-289. [PMID: 31939154 DOI: 10.1007/978-3-030-28151-9_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other β-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.
Collapse
Affiliation(s)
- Mayara M Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil
| | - Carlos Contreras-Martel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, Brazil. .,Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France.
| |
Collapse
|
13
|
Behmard E, Najafi A, Ahmadi A. Understanding the resistance mechanism of penicillin binding protein 1a mutant against cefotaxime using molecular dynamic simulation. J Biomol Struct Dyn 2018; 37:741-749. [PMID: 29429394 DOI: 10.1080/07391102.2018.1439404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is a threatening challenge for global health, as the expansion of resistance to current antibiotics has made serious therapeutic problems. Genome mutations are key evolutionary mechanisms conferring antibiotic resistance in bacterial pathogens. For example, penicillin and cephalosporins resistance is mostly mediated by mutations in penicillin binding proteins to change the affinity of the drug. Accordingly, threonine point mutations were reported to develop antibiotic resistance in various bacterial infections including pneumococcal infections. In this study, conventional molecular dynamics simulations, umbrella sampling simulations and MM/GBSA free energy calculations were applied to figure out how the Threonine to Alanine mutation (T to A) at STMK motif affects the binding of cefotaxime to Penicillin Binding Protein 1a and to reveal the resistance mechanism induced by the T to A mutation. The results obtained from the computational methods demonstrate that the T to A mutation increases the flexibility of the binding pocket and changes its conformation, which leads to increased conformational entropy change (-TΔS) and attenuates the bonds between the ligand and the receptor. In brief, our findings indicate that both of the alterations of the conformational enthalpy and entropy contribute to the T to A-induced resistance in the binding of cefotaxime into penicillin binding protein 1a.
Collapse
Affiliation(s)
- Esmaeil Behmard
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Najafi
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Ahmadi
- a Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
14
|
Diversity of Mosaic pbp2x Families in Penicillin-Resistant Streptococcus pneumoniae from Iran and Romania. Antimicrob Agents Chemother 2017; 61:AAC.01535-17. [PMID: 28971878 PMCID: PMC5700355 DOI: 10.1128/aac.01535-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
Penicillin-resistant Streptococcus pneumoniae strains are found at high rates in Romania and Iran. The mosaic structure of PBP2x was investigated in 9 strains from Iran and in 15 strains from Romania to understand their evolutionary history. Mutations potentially important for β-lactam resistance were identified by comparison of the PBP2x sequences with the sequence of the related PBP2x of reference penicillin-sensitive S. mitis strains. Two main PBP2x mosaic gene families were recognized. Eight Iranian strains expressed PBP2x variants in group 1, which had a mosaic block highly related to PBP2x of the Spain23F-1 clone, which is widespread among international penicillin-resistant S. pneumoniae clones. A second unique PBP2x group was observed in Romanian strains; furthermore, three PBP2x single mosaic variants were found. Sequence blocks of penicillin-sensitive strain S. mitis 658 were common among PBP2x variants from strains from both countries. Each PBP2x group contained specific signature mutations within the transpeptidase domain, documenting the existence of distinct mutational pathways for the development of penicillin resistance.
Collapse
|
15
|
Park M, Rafii F. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens. Anaerobe 2017; 45:78-85. [PMID: 28185856 DOI: 10.1016/j.anaerobe.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
16
|
Insight into the Diversity of Penicillin-Binding Protein 2x Alleles and Mutations in Viridans Streptococci. Antimicrob Agents Chemother 2017; 61:AAC.02646-16. [PMID: 28193649 PMCID: PMC5404556 DOI: 10.1128/aac.02646-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
The identification of commensal streptococci species is an everlasting problem due to their ability to genetically transform. A new challenge in this respect is the recent description of Streptococcus pseudopneumoniae as a new species, which was distinguished from closely related pathogenic S. pneumoniae and commensal S. mitis by a variety of physiological and molecular biological tests. Forty-one atypical S. pneumoniae isolates have been collected at the German National Reference Center for Streptococci (GNRCS). Multilocus sequence typing (MLST) confirmed 35 isolates as the species S. pseudopneumoniae. A comparison with the pbp2x sequences from 120 commensal streptococci isolated from different continents revealed that pbp2x is distinct among penicillin-susceptible S. pseudopneumoniae isolates. Four penicillin-binding protein x (PBPx) alleles of penicillin-sensitive S. mitis account for most of the diverse sequence blocks in resistant S. pseudopneumoniae, S. pneumoniae, and S. mitis, and S. infantis and S. oralis sequences were found in S. pneumoniae from Japan. PBP2x genes of the family of mosaic genes related to pbp2x in the S. pneumoniae clone Spain23F-1 were observed in S. oralis and S. infantis as well, confirming its global distribution. Thirty-eight sites were altered within the PBP2x transpeptidase domains of penicillin-resistant strains, excluding another 37 sites present in the reference genes of sensitive strains. Specific mutational patterns were detected depending on the parental sequence blocks, in agreement with distinct mutational pathways during the development of beta-lactam resistance. The majority of the mutations clustered around the active site, whereas others are likely to affect stability or interactions with the C-terminal domain or partner proteins.
Collapse
|
17
|
Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clin Microbiol Rev 2016; 29:525-52. [PMID: 27076637 PMCID: PMC4861989 DOI: 10.1128/cmr.00058-15] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae inflicts a huge disease burden as the leading cause of community-acquired pneumonia and meningitis. Soon after mainstream antibiotic usage, multiresistant pneumococcal clones emerged and disseminated worldwide. Resistant clones are generated through adaptation to antibiotic pressures imposed while naturally residing within the human upper respiratory tract. Here, a huge array of related commensal streptococcal strains transfers core genomic and accessory resistance determinants to the highly transformable pneumococcus. β-Lactam resistance is the hallmark of pneumococcal adaptability, requiring multiple independent recombination events that are traceable to nonpneumococcal origins and stably perpetuated in multiresistant clonal complexes. Pneumococcal strains with elevated MICs of β-lactams are most often resistant to additional antibiotics. Basic underlying mechanisms of most pneumococcal resistances have been identified, although new insights that increase our understanding are continually provided. Although all pneumococcal infections can be successfully treated with antibiotics, the available choices are limited for some strains. Invasive pneumococcal disease data compiled during 1998 to 2013 through the population-based Active Bacterial Core surveillance program (U.S. population base of 30,600,000) demonstrate that targeting prevalent capsular serotypes with conjugate vaccines (7-valent and 13-valent vaccines implemented in 2000 and 2010, respectively) is extremely effective in reducing resistant infections. Nonetheless, resistant non-vaccine-serotype clones continue to emerge and expand.
Collapse
Affiliation(s)
- Lindsay Kim
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sara Tomczyk
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Ardanuy C, de la Campa AG, García E, Fenoll A, Calatayud L, Cercenado E, Pérez-Trallero E, Bouza E, Liñares J. Spread of Streptococcus pneumoniae serotype 8-ST63 multidrug-resistant recombinant Clone, Spain. Emerg Infect Dis 2015; 20:1848-56. [PMID: 25340616 PMCID: PMC4214286 DOI: 10.3201/eid2011.131215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This clone has spread throughout this country and caused invasive pneumococcal disease. Since 2004, a total of 131 isolates of Streptococcus pneumoniae multidrug-resistant invasive serotype 8 have been detected in Spain. These isolates showed resistance to erythromycin, clindamycin, tetracycline, and ciprofloxacin. All isolates were obtained from adult patients and shared a common genotype (sequence type [ST]63; penicillin-binding protein 1a [pbp1a], pbp2b, and pbp2x gene profiles; ermB and tetM genes; and a ParC-S79F change). Sixty-eight isolates that required a ciprofloxacin MIC ≥16 μg/mL had additional gyrA gene changes. Serotype 8-ST63 pbp2x sequences were identical with those of antimicrobial drug–susceptible serotype 8-ST53 isolates. Serotype 8-ST63 pbp2b sequences were identical with those of the multidrug-resistant Sweden 15A-ST63 clone. Recombination between the capsular locus and flanking regions of an ST53 isolate (donor) and an ST63 pneumococcus (recipient) generated the novel 15A-ST63 clone. One recombination point was upstream of pbp2x and another was within pbp1a. A serotype 8-ST63 clone was identified as a cause of invasive disease in Spain.
Collapse
|
19
|
Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M, Lastochkin E, Fishovitz J, Dawley M, Hesek D, Lee M, Johnson JW, Fisher JF, Chang M, Mobashery S, Hermoso JA. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 2013; 110:16808-13. [PMID: 24085846 PMCID: PMC3800995 DOI: 10.1073/pnas.1300118110] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.
Collapse
Affiliation(s)
- Lisandro H. Otero
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Alzoray Rojas-Altuve
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Leticia I. Llarrull
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Cesar Carrasco-López
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jennifer Fishovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Matthew Dawley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jarrod W. Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano,” Consejo Superior de Investigaciones Cientificas, 28006 Madrid, Spain; and
| |
Collapse
|
20
|
Ramalingam J, Vennila J, Subbiah P. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Chem Biol Drug Des 2013; 82:275-89. [PMID: 22448818 DOI: 10.1111/j.1747-0285.2012.01387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations within transpeptidase domain of penicillin-binding protein 2B of the strains of Streptococcus pneumoniae leads to resistance against β-lactam antibiotics. To uncover the important residues responsible for sensitivity and resistance, the recently determined three dimensional structures of penicillin-binding protein 2B of both wild-type R6 (sensitive) and mutant 5204 (resistant) strains along with the predicted structures of other mutant strains G54, Hungary19A-6 and SP195 were considered for the interaction study with β-lactam antibiotics using induced-fit docking of Schrödinger. Associated binding energies of the complexes and their intermolecular interactions in the binding site clearly show that the wild-type R6 as sensitive, mutant strains 5204 and G54 as highly resistant, and the mutant strains Hungary19A-6 and SP195 as intermediate resistant. The study also reveals that the mutant strains Hungary19A-6 and SP195 exhibit intermediate resistant because of the existence of mutations till the intermediate 538th and 516th positions, respectively, and not till the end of the C-terminus. Furthermore, our investigations show that if the mutations are extended till the end of the C terminus, then the antibiotic resistance of induced-mutated strains increases from intermediate to high as in the strains 5204 and G54. The binding patterns obtained in the study are useful in designing potential inhibitors against multidrug resistant S. pneumoniae.
Collapse
Affiliation(s)
- Jothi Ramalingam
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, IndiaDepartment of Zoology, Dharmapuram Gnanambigai Government Arts College (Women), Mayiladuthurai 609 001, Tamil Nadu, IndiaDepartment of Bioinformatics, School of Biotechnology and Health Sciences, Karunya University, Coimbatore 641 114, Tamil Nadu, India
| | | | | |
Collapse
|
21
|
Fani F, Brotherton MC, Leprohon P, Ouellette M. Genomic analysis and reconstruction of cefotaxime resistance in Streptococcus pneumoniae. J Antimicrob Chemother 2013; 68:1718-27. [PMID: 23608923 DOI: 10.1093/jac/dkt113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To identify non-penicillin-binding protein (PBP) mutations contributing to resistance to the third-generation cephalosporin cefotaxime in Streptococcus pneumoniae at the genome-wide scale. METHODS The genomes of two in vitro S. pneumoniae cefotaxime-resistant isolates and of two transformants serially transformed with the genomic DNA of cefotaxime-resistant mutants were determined by next-generation sequencing. A role in cefotaxime resistance for the mutations identified was confirmed by reconstructing resistance in a cefotaxime-susceptible background. RESULTS Analysis of the genome assemblies revealed mutations in genes coding for the PBPs 2x, 2a and 3, of which pbp2x was the only mutated gene common to all mutants. The transformation of altered PBP alleles into S. pneumoniae R6 confirmed the role of PBP mutations in cefotaxime resistance, but these were not sufficient to fully explain the levels of resistance. Thirty-one additional genes were found to be mutated in at least one of the four sequenced genomes. Non-PBP resistance determinants appeared to be mostly lineage specific. Mutations in spr1333, spr0981, spr1704 and spr1098, encoding a peptidoglycan N-acetylglucosamine deacetylase, a glycosyltransferase, an ABC transporter and a sortase, respectively, were implicated in resistance by transformation experiments and allowed the reconstruction of the full level of resistance observed in the parent resistant strains. CONCLUSIONS This whole-genome analysis coupled to functional studies has allowed the discovery of both known and novel cefotaxime resistance genes in S. pneumoniae.
Collapse
Affiliation(s)
- Fereshteh Fani
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Development of new drugs for an old target: the penicillin binding proteins. Molecules 2012; 17:12478-505. [PMID: 23095893 PMCID: PMC6268044 DOI: 10.3390/molecules171112478] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
The widespread use of β-lactam antibiotics has led to the worldwide appearance of drug-resistant strains. Bacteria have developed resistance to β-lactams by two main mechanisms: the production of β-lactamases, sometimes accompanied by a decrease of outer membrane permeability, and the production of low-affinity, drug resistant Penicillin Binding Proteins (PBPs). PBPs remain attractive targets for developing new antibiotic agents because they catalyse the last steps of the biosynthesis of peptidoglycan, which is unique to bacteria, and lies outside the cytoplasmic membrane. Here we summarize the “current state of the art” of non-β-lactam inhibitors of PBPs, which have being developed in an attempt to counter the emergence of β-lactam resistance. These molecules are not susceptible to hydrolysis by β-lactamases and thus present a real alternative to β-lactams. We present transition state analogs such as boronic acids, which can covalently bind to the active serine residue in the catalytic site. Molecules containing ring structures different from the β-lactam-ring like lactivicin are able to acylate the active serine residue. High throughput screening methods, in combination with virtual screening methods and structure based design, have allowed the development of new molecules. Some of these novel inhibitors are active against major pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and thus open avenues new for the discovery of novel antibiotics.
Collapse
|
23
|
KOZHUSHNAYA OS, VASILIYEVA YEL, FRIGO NV, SOLOMKA VS. Mechanisms of the formation of Neisseria gonorrhoeae resistance to cephalosporins. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The authors provide a review of the present-day literature data on the issues of studying the mechanisms of the formation of Neisseria gonorrhoeae resistance to third-generation cephalosporins. Studies in this field are needed in connection with the occurrence of strains resistant to third-generation cephalosporins as well as low-sensitivity strains. The authors emphasize the importance of mutations in porB, penA, mtrR, penB and ponA genes in the development of Neisseria gonorrhoeae resistance to β-lactam antibiotics and describe the prospects of studying the mosaic structure of the penA gene encoding the РВР2 protein as well as spatial structure of this protein.
Collapse
|
24
|
Lovering AL, Safadi SS, Strynadka NCJ. Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 2012; 81:451-78. [PMID: 22663080 DOI: 10.1146/annurev-biochem-061809-112742] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.
Collapse
Affiliation(s)
- Andrew L Lovering
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
25
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
26
|
Ge Y, Wu J, Xia Y, Yang M, Xiao J, Yu J. Molecular dynamics simulation of the complex PBP-2x with drug cefuroxime to explore the drug resistance mechanism of Streptococcus suis R61. PLoS One 2012; 7:e35941. [PMID: 22563422 PMCID: PMC3338546 DOI: 10.1371/journal.pone.0035941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022] Open
Abstract
Drug resistance of Streptococcus suis strains is a worldwide problem for both humans and pigs. Previous studies have noted that penicillin-binding protein (PBPs) mutation is one important cause of β-lactam antibiotic resistance. In this study, we used the molecular dynamics (MD) method to study the interaction differences between cefuroxime (CES) and PBP2x within two newly sequenced Streptococcus suis: drug-sensitive strain A7, and drug-resistant strain R61. The MM-PBSA results proved that the drug bound much more tightly to PBP2x in A7 (PBP2x-A7) than to PBP2x in R61 (PBP2x-R61). This is consistent with the evidently different resistances of the two strains to cefuroxime. Hydrogen bond analysis indicated that PBP2x-A7 preferred to bind to cefuroxime rather than to PBP2x-R61. Three stable hydrogen bonds were formed by the drug and PBP2x-A7, while only one unstable bond existed between the drug and PBP2x-R61. Further, we found that the Gln569, Tyr594, and Gly596 residues were the key mutant residues contributing directly to the different binding by pair wise energy decomposition comparison. By investigating the binding mode of the drug, we found that mutant residues Ala320, Gln553, and Thr595 indirectly affected the final phenomenon by topological conformation alteration. Above all, our results revealed some details about the specific interaction between the two PBP2x proteins and the drug cefuroxime. To some degree, this explained the drug resistance mechanism of Streptococcus suis and as a result could be helpful for further drug design or improvement.
Collapse
Affiliation(s)
- Yan Ge
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- State Key Laboratory of Genetic Resources and Revolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Wang Y, Yi L, Wu Z, Shao J, Liu G, Fan H, Zhang W, Lu C. Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS One 2012; 7:e33371. [PMID: 22514606 PMCID: PMC3326019 DOI: 10.1371/journal.pone.0033371] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 02/13/2012] [Indexed: 12/08/2022] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.
Collapse
Affiliation(s)
- Yang Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Li Yi
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jing Shao
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WZ); (CL)
| |
Collapse
|
28
|
Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Biochemistry 2012; 51:2775-84. [PMID: 22397678 PMCID: PMC3338128 DOI: 10.1021/bi2017987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.
Collapse
Affiliation(s)
- Joshua Tomberg
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Brenda Temple
- Departments of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
- Departments of R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Alena Fedarovich
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher Davies
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert A. Nicholas
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| |
Collapse
|
29
|
Fani F, Leprohon P, Légaré D, Ouellette M. Whole genome sequencing of penicillin-resistant Streptococcus pneumoniae reveals mutations in penicillin-binding proteins and in a putative iron permease. Genome Biol 2011; 12:R115. [PMID: 22108223 PMCID: PMC3334601 DOI: 10.1186/gb-2011-12-11-r115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 09/29/2011] [Accepted: 11/22/2011] [Indexed: 01/10/2023] Open
Affiliation(s)
- Fereshteh Fani
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Laurier, Québec, Canada
| | | | | | | |
Collapse
|
30
|
Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, Yu J, Chen H, Xiao J, Jin M. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain. PLoS One 2011; 6:e24988. [PMID: 21966396 PMCID: PMC3180280 DOI: 10.1371/journal.pone.0024988] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. RESULTS In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. CONCLUSIONS Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.
Collapse
Affiliation(s)
- Pan Hu
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Anding Zhang
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Chen
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yafeng Hua
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huanchun Chen
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (JX); (MJ)
| | - Meilin Jin
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail: (JX); (MJ)
| |
Collapse
|
31
|
El Ghachi M, Matteï PJ, Ecobichon C, Martins A, Hoos S, Schmitt C, Colland F, Ebel C, Prévost MC, Gabel F, England P, Dessen A, Boneca IG. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. Mol Microbiol 2011; 82:68-86. [PMID: 21801243 DOI: 10.1111/j.1365-2958.2011.07791.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Institut Pasteur, Group Biology and Genetics of the Bacterial Cell Wall, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Resistance to antimicrobial drugs is increasing at an alarming rate among both gram-positive and gram-negative bacteria. Traditionally, bacteria resistant to multiple antimicrobial agents have been restricted to the nosocomial environment. A disturbing trend has been the recent emergence and spread of resistant pathogens in nursing homes, in the community, and in the hospital. This article reviews the epidemiology, molecular mechanisms of resistance, and treatment options for pathogens resistant to antimicrobial drugs.
Collapse
Affiliation(s)
- Luke F Chen
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Box 102359, Hanes House, Durham, NC 27710, USA.
| | | | | |
Collapse
|
33
|
Bobba S, Gutheil WG. Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. Int J Biochem Cell Biol 2011; 43:1490-9. [PMID: 21740978 DOI: 10.1016/j.biocel.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are targets of the β-lactam antibiotics. They can be subdivided into essential high-molecular-mass (HMM) and non-essential low-molecular-mass (LMM) PBPs, and further divided into subclasses based on sequence homologies. PBPs can catalyze transpeptidase or hydrolase (carboxypeptidase and endopeptidase) reactions. The PBPs are of interest for their role in bacterial cell wall biosynthesis, and as mechanistically interesting enzymes which can catalyze alternative reaction pathways using the same catalytic machinery. A global catalytic residue comparison seemed likely to provide insight into structure-function correlations within the PBPs. More than 90 PBP structures were aligned, and a number (40) of active site geometrical parameters extracted. This dataset was analyzed using both univariate and multivariate statistical methods. Several interesting relationships were observed. (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain (DA_1) was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase classification/activity (P<0.001). This structural feature may therefore be associated with the main functional difference between the HMM and LMM PBPs. (2) The distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved, suggesting importance for PBP function, and a possibly conserved role in the catalytic mechanism of the PBPs. (3) Principal components-based cluster analysis revealed several distinct clusters, with the HMM Class A and B, LMM Class C, and LMM Class A K15 PBPs forming one "Main" cluster, and demonstrating a globally similar arrangement of catalytic residues within this group.
Collapse
Affiliation(s)
- Sudheer Bobba
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | | |
Collapse
|
34
|
Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae. Antimicrob Agents Chemother 2011; 55:2714-28. [PMID: 21422206 DOI: 10.1128/aac.01383-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis₆ or PBP2xHis₆. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae.
Collapse
|
35
|
Shi Q, Meroueh SO, Fisher JF, Mobashery S. A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall. J Am Chem Soc 2011; 133:5274-83. [PMID: 21417389 DOI: 10.1021/ja1074739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding protein 1b (PBP 1b) of the gram-positive bacterium Streptococcus pneumoniae catalyzes the cross-linking of adjacent peptidoglycan strands, as a critical event in the biosynthesis of its cell wall. This enzyme is representative of the biosynthetic PBP structures of the β-lactam-recognizing enzyme superfamily and is the target of the β-lactam antibiotics. In the cross-linking reaction, the amide between the -D-Ala-D-Ala dipeptide at the terminus of a peptide stem acts as an acyl donor toward the ε-amino group of a lysine found on an adjacent stem. The mechanism of this transpeptidation was evaluated using explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics calculations. Sequential acyl transfer occurs to, and then from, the active site serine. The resulting cross-link is predicted to have a cis-amide configuration. The ensuing and energetically favorable cis- to trans-amide isomerization, within the active site, may represent the key event driving product release to complete enzymatic turnover.
Collapse
Affiliation(s)
- Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
36
|
Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J. Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 2011; 7:e1002000. [PMID: 21379570 PMCID: PMC3040684 DOI: 10.1371/journal.ppat.1002000] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
Abstract
The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Andrea G. Albarracín Orio
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Germán E. Piñas
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Echenique
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
37
|
Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, Owens RJ, Ren J. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. J Mol Biol 2010; 405:173-84. [PMID: 20974151 PMCID: PMC3025346 DOI: 10.1016/j.jmb.2010.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/08/2010] [Accepted: 10/15/2010] [Indexed: 11/24/2022]
Abstract
We report the first crystal structures of a penicillin-binding protein (PBP), PBP3, from Pseudomonas aeruginosa in native form and covalently linked to two important β-lactam antibiotics, carbenicillin and ceftazidime. Overall, the structures of apo and acyl complexes are very similar; however, variations in the orientation of the amino-terminal membrane-proximal domain relative to that of the carboxy-terminal transpeptidase domain indicate interdomain flexibility. Binding of either carbenicillin or ceftazidime to purified PBP3 increases the thermostability of the enzyme significantly and is associated with local conformational changes, which lead to a narrowing of the substrate-binding cleft. The orientations of the two β-lactams in the active site and the key interactions formed between the ligands and PBP3 are similar despite differences in the two drugs, indicating a degree of flexibility in the binding site. The conserved binding mode of β-lactam-based inhibitors appears to extend to other PBPs, as suggested by a comparison of the PBP3/ceftazidime complex and the Escherichia coli PBP1b/ceftoxamine complex. Since P. aeruginosa is an important human pathogen, the structural data reveal the mode of action of the frontline antibiotic ceftazidime at the molecular level. Improved drugs to combat infections by P. aeruginosa and related Gram-negative bacteria are sought and our study provides templates to assist that process and allows us to discuss new ways of inhibiting PBPs.
Collapse
Affiliation(s)
- Sarah Sainsbury
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Louise Bird
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Protein Production Facility UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Oxfordshire OX11 0FA, UK
| | - Vincenzo Rao
- Biological Chemistry and Drug Discovery, College of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sharon M. Shepherd
- Biological Chemistry and Drug Discovery, College of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David I. Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - William N. Hunter
- Biological Chemistry and Drug Discovery, College of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Raymond J. Owens
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Protein Production Facility UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Oxfordshire OX11 0FA, UK
- Corresponding authors. R. J. Owens is to be contacted at: Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Jingshan Ren
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Corresponding authors. R. J. Owens is to be contacted at: Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
38
|
Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic β domain of DivIB mediate its interaction with the divisomal transpeptidase PBP 2B. J Bacteriol 2010; 192:6116-25. [PMID: 20870765 DOI: 10.1128/jb.00783-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cytokinesis is achieved through the coordinated action of a multiprotein complex known as the divisome. The Escherichia coli divisome is comprised of at least 10 essential proteins whose individual functions are mostly unknown. Most divisomal proteins have multiple binding partners, making it difficult to pinpoint epitopes that mediate pairwise interactions between these proteins. We recently introduced an artificial septal targeting approach that allows the interaction between pairs of proteins to be studied in vivo without the complications introduced by other interacting proteins (C. Robichon, G. F. King, N. W. Goehring, and J. Beckwith, J. Bacteriol. 190:6048-6059, 2008). We have used this approach to perform a molecular dissection of the interaction between Bacillus subtilis DivIB and the divisomal transpeptidase PBP 2B, and we demonstrate that this interaction is mediated exclusively through the extracytoplasmic domains of these proteins. Artificial septal targeting in combination with mutagenesis experiments revealed that the C-terminal region of the β domain of DivIB is critical for its interaction with PBP 2B. These findings are consistent with previously defined loss-of-function point mutations in DivIB as well as the recent demonstration that the β domain of DivIB mediates its interaction with the FtsL-DivIC heterodimer. These new results have allowed us to construct a model of the DivIB/PBP 2B/FtsL/DivIC quaternary complex that strongly implicates DivIB, FtsL, and DivIC in modulating the transpeptidase activity of PBP 2B.
Collapse
|
39
|
Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. Crystal Structures of Penicillin-Binding Proteins 4 and 5 from Haemophilus influenzae. J Mol Biol 2010; 396:634-45. [DOI: 10.1016/j.jmb.2009.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/20/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
|
40
|
Penicillin-binding protein gene alterations in Streptococcus uberis isolates presenting decreased susceptibility to penicillin. Antimicrob Agents Chemother 2010; 54:1140-5. [PMID: 20065061 DOI: 10.1128/aac.00915-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus uberis is an environmental pathogen commonly causing bovine mastitis, an infection that is generally treated with penicillin G. No field case of true penicillin-resistant S. uberis (MIC > 16 mg/liter) has been described yet, but isolates presenting decreased susceptibility (MIC of 0.25 to 0.5 mg/liter) to this drug are regularly reported to our laboratory. In this study, we demonstrated that S. uberis can readily develop penicillin resistance in laboratory-evolved mutants. The molecular mechanism of resistance (acquisition of mutations in penicillin-binding protein 1A [PBP1A], PBP2B, and PBP2X) was generally similar to that of all other penicillin-resistant streptococci described so far. In addition, it was also specific to S. uberis in that independent resistant mutants carried a unique set of seven consensus mutations, of which only one (Q(554)E in PBP2X) was commonly found in other streptococci. In parallel, independent isolates from bovine mastitis with different geographical origins (France, Holland, and Switzerland) and presenting a decreased susceptibility to penicillin were characterized. No mosaic PBPs were detected, but they all presented mutations identical to the one found in the laboratory-evolved mutants. This indicates that penicillin resistance development in S. uberis might follow a stringent pathway that would explain, in addition to the ecological niche of this pathogen, why naturally occurring resistances are still rare. In addition, this study shows that there is a reservoir of mutated PBPs in animals, which might be exchanged with other streptococci, such as Streptococcus agalactiae, that could potentially be transmitted to humans.
Collapse
|
41
|
Chen LF, Chopra T, Kaye KS. Pathogens Resistant to Antibacterial Agents. Infect Dis Clin North Am 2009; 23:817-45, vii. [DOI: 10.1016/j.idc.2009.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Miguet L, Zervosen A, Gerards T, Pasha FA, Luxen A, Distèche-Nguyen M, Thomas A. Discovery of new inhibitors of resistant Streptococcus pneumoniae penicillin binding protein (PBP) 2x by structure-based virtual screening. J Med Chem 2009; 52:5926-36. [PMID: 19746934 DOI: 10.1021/jm900625q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin binding proteins (PBPs) are involved in the biosynthesis of the peptidoglycan layer constitutive of the bacterial envelope. They have been targeted for more than half a century by extensively derived molecular scaffolds of penicillins and cephalosporins. Streptococcus pneumoniae resists the antibiotic pressure by inducing highly mutated PBPs that can no longer bind the beta-lactam containing agents. To find inhibitors of PBP2x from Streptococcus pneumoniae (spPBP2x) with novel chemical scaffold so as to circumvent the resistance problems, a hierarchical virtual screening procedure was performed on the NCI database containing approximately 260000 compounds. The calculations involved ligand-based pharmacophore mapping studies and molecular docking simulations in a homology model of spPBP2x from the highly resistant strain 5204. A total of 160 hits were found, and 55 were available for experimental tests. Three compounds harboring two novel chemical scaffolds were identified as inhibitors of the resistant strain 5204-spPBP2x at the micromolar range.
Collapse
Affiliation(s)
- Laurence Miguet
- Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale Jean-Pierre Ebel (CEA/CNRS/UJF), Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Manzano C, Izoré T, Job V, Di Guilmi AM, Dessen A. Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens. Biochemistry 2009; 48:10549-57. [PMID: 19810750 DOI: 10.1021/bi901261y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pili are surface-linked virulence factors that play key roles in infection establishment in a variety of pathogenic species. In Gram-positive pathogens, pilus formation requires the action of sortases, dedicated transpeptidases that covalently associate pilus building blocks. In Streptococcus pneumoniae, a major human pathogen, all genes required for pilus formation are harbored in a single pathogenicity islet which encodes three structural proteins (RrgA, RrgB, RrgC) and three sortases (SrtC-1, SrtC-2, SrtC-3). RrgB forms the backbone of the streptococcal pilus, to which minor pilins RrgA and RrgC are covalently associated. SrtC-1 is the main sortase involved in polymerization of the RrgB fiber and displays a lid which encapsulates the active site, a feature present in all pilus-related sortases. In this work, we show that catalysis by SrtC-1 proceeds through a catalytic triad constituted of His, Arg, and Cys and that lid instability affects protein fold and catalysis. In addition, we show by thermal shift analysis that lid flexibility can be stabilized by the addition of substrate-like peptides, a feature shared by other periplasmic transpeptidases. We also report the characterization of a trapped acyl-enzyme intermediate formed between SrtC-1 and RrgB. The presence of lid-encapsulated sortases in the pilus biogenesis systems in many Gram-positive pathogens points to a common mechanism of substrate recognition and catalysis that should be taken into consideration in the development of sortase inhibitors.
Collapse
Affiliation(s)
- Clothilde Manzano
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 (CEA, CNRS, UJF), 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | |
Collapse
|
44
|
Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 2009; 284:1202-12. [PMID: 18986991 PMCID: PMC2613624 DOI: 10.1074/jbc.m805761200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/23/2008] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.
Collapse
Affiliation(s)
- Ailsa J Powell
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
45
|
An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. Antimicrob Agents Chemother 2008; 53:1107-15. [PMID: 19075056 DOI: 10.1128/aac.01107-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae represents a primary resistance determinant for beta-lactams, and low-affinity PBP2x variants can easily be selected with cefotaxime. Penicillin-resistant clinical isolates of S. pneumoniae frequently contain in their mosaic PBP2x the mutation T338A adjacent to the active site S337, and T338P as well as T338G substitutions are also known. Site-directed mutagenesis has now documented that a single point mutation at position T338 confers selectable levels of beta-lactam resistance preferentially to oxacillin. Despite the moderate impact on beta-lactam susceptibility, the function of the PBP2x mutants appears to be impaired, as can be documented in the absence of a functional CiaRH regulatory system, resulting in growth defects and morphological changes. The combination of low-affinity PBP2x and PBP1a encoded by mosaic genes is known to result in high cefotaxime resistance. In contrast, introduction of a mosaic pbp1a into the PBP2x(T338G) mutant did not lead to increased resistance. However, the mosaic PBP1a gene apparently complemented the PBP2x(T338G) defect, since Cia mutant derivatives grew normally. The data support the view that PBP2x and PBP1a interact with each other on some level and that alterations of both PBPs in resistant clinical isolates have evolved to ensure cooperation between both proteins.
Collapse
|
46
|
Nagano N, Nagano Y, Kimura K, Tamai K, Yanagisawa H, Arakawa Y. Genetic heterogeneity in pbp genes among clinically isolated group B Streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 2008; 52:4258-67. [PMID: 18809936 PMCID: PMC2592870 DOI: 10.1128/aac.00596-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/11/2008] [Accepted: 09/12/2008] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of group B streptococcal isolates exhibiting increased penicillin MICs at the Funabashi Municipal Medical Center and other hospitals in Japan prompted a comparative analysis of the penicillin-binding proteins (PBPs) from those strains with the PBPs from penicillin-susceptible strains comprising four neonatal invasive strains isolated from 1976 to 1988 and two recent isolates. The PBP sequences of the penicillin-susceptible strains were highly conserved, irrespective of their isolation date. Of six strains with reduced susceptibility to penicillin (penicillin MICs, 0.25 to 0.5 mug/ml), strains R1, R2, R5, and R6 shared a unique set of five amino acid substitutions, including V405A adjacent to the (402)SSN(404) motif in PBP 2X and one in PBP 2B. The remaining two strains, R3 and R4, shared several substitutions, including Q557E adjacent to the (552)KSG(554) motif in PBP 2X, in addition to the substitutions in PBP 2B, which are commonly found among penicillin-insusceptible strains. Strains R7 and R8, which had a penicillin MIC of 1 mug/ml, shared a unique set of eight amino acid substitutions (two in PBP 2X; two in PBP 2B, including G613R adjacent to the (614)KTG(616) motif; three in PBP 1A; and one in PBP 2A), and the Q557E substitution in PBP 2X was common to R3 and R4. The binding of Bocillin FL was reduced or not detected in some PBPs, including PBP 2X of penicillin-insusceptible strains, but no significant reduction in the level of pbp2x transcription was found in such strains. The results of phylogenetic comparative analyses imply the absence of epidemic penicillin-insusceptible strains, and several genetic lineages of penicillin-insusceptible strains have been independently emerging through the accumulation of mutations in their pbp genes, especially in pbp2x.
Collapse
Affiliation(s)
- Noriyuki Nagano
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother 2008; 52:2915-8. [PMID: 18541727 DOI: 10.1128/aac.00461-08] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Beta-lactam antibiotics (BLAs) are the first-line agents used against group B streptococci (GBS) infection. A clonal set of four independent, invasive GBS isolates with elevated MICs to BLAs were identified that shared a pbp2x mutation (Q557E) corresponding to a resistance-conferring pneumococcal mutation. BLA sensitivity was restored through allelic replacement or complementation with the wild-type pbp2x.
Collapse
|
48
|
Diversity of penicillin binding proteins among clinical Streptococcus pneumoniae strains from Portugal. Antimicrob Agents Chemother 2008; 52:2693-5. [PMID: 18505861 DOI: 10.1128/aac.01655-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Yamada M, Watanabe T, Baba N, Miyara T, Saito J, Takeuchi Y. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:284-8. [PMID: 18391428 DOI: 10.1107/s1744309108006374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/07/2008] [Indexed: 11/10/2022]
Abstract
Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 86.39, c = 143.27 A. Diffraction data were collected to 2.4 A resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.
Collapse
Affiliation(s)
- Mototsugu Yamada
- Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 2008; 32:361-85. [PMID: 18248419 DOI: 10.1111/j.1574-6976.2007.00095.x] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of ways and means have evolved to provide resistance to eubacteria challenged by beta-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above.
Collapse
Affiliation(s)
- André Zapun
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075-CNRS, CEA, Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|