1
|
Miyata K, Inoue Y, Yamane M, Honda H. Fish environmental RNA sequencing sensitively captures accumulative stress responses through short-term aquarium sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178182. [PMID: 39719761 DOI: 10.1016/j.scitotenv.2024.178182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
The utility of environmental RNA (eRNA) in capturing biological responses to stresses has been discussed previously; however, the limited number of genes detected remains a significant hindrance to its widespread implementation. Here, we investigated the potential of eRNA to assess the health status of Japanese medaka fish exposed to linear alkylbenzene sulfonate. Analyzing eRNA and organismal RNA (oRNA) in aquarium water within 12 h, we achieved high mapping rates and 10 times more differentially expressed genes than previously reported. This advancement has facilitated the previously unattainable capability of gene ontology (GO) analysis. The GO analysis revealed that eRNA can detect nuclear genes associated with cellular components and reflect cumulative gene expression signatures over time, while oRNA provided short-term gene expression signatures in biological process. Moreover, eRNA exhibited high sensitivity in responding to genes associated with sphingolipid and ceramide biosynthesis, which are involved in inflammatory responses possibly originating from impaired cells. This finding aligns with the observations made in oRNA. In conclusion, eRNA-sequencing (eRNA-seq) using aquarium water emerges as a valuable high sensitivity tool for analyzing physiological stress. The findings of this study lay the foundation for further development of eRNA-seq technologies.
Collapse
Affiliation(s)
- Kaede Miyata
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Yasuaki Inoue
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Masayuki Yamane
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
2
|
Lu TQ, van Loon AP, Sagasti A. How to wrinkle a cell: Emerging mechanisms of microridge morphogenesis. Curr Opin Cell Biol 2022; 76:102088. [DOI: 10.1016/j.ceb.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
|
3
|
Inaba Y, Chauhan V, van Loon AP, Choudhury LS, Sagasti A. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions. eLife 2020; 9:58149. [PMID: 32894222 PMCID: PMC7535935 DOI: 10.7554/elife.58149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments.
Collapse
Affiliation(s)
- Yasuko Inaba
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Aaron Paul van Loon
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lamia Saiyara Choudhury
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
4
|
Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, Gormley AC, Yuspa SH, Morasso MI. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ 2017; 24:717-730. [PMID: 28186503 PMCID: PMC5384032 DOI: 10.1038/cdd.2017.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/16/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
Collapse
Affiliation(s)
| | | | | | - Paul W Bible
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | | | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Anna C Gormley
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, MD 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Bin L, Deng L, Yang H, Zhu L, Wang X, Edwards MG, Richers B, Leung DYM. Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation. PLoS One 2016; 11:e0167392. [PMID: 27907090 PMCID: PMC5132327 DOI: 10.1371/journal.pone.0167392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The epidermis serves as a critical protective barrier between the internal and external environment of the human body. Its remarkable barrier function is established through the keratinocyte (KC) terminal differentiation program. The transcription factors specifically regulating terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq) profiling approach, we found that forkhead box c 1 (FOXC1) was significantly up-regulated in human normal primary KC during the course of differentiation. This observation was validated in human normal primary KC from several different donors and human skin biopsies. Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant down-regulation of late terminal differentiation genes markers including epidermal differentiation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1 works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential position in the genetic regulatory network.
Collapse
Affiliation(s)
- Lianghua Bin
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- * E-mail:
| | - Liehua Deng
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Hengwen Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Leqing Zhu
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, Guangdong Province, China
| | - Michael G. Edwards
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Brittany Richers
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Functional Analysis of Periplakin and Envoplakin, Cytoskeletal Linkers, and Cornified Envelope Precursor Proteins. Methods Enzymol 2015; 569:309-29. [PMID: 26778565 DOI: 10.1016/bs.mie.2015.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Envoplakin and periplakin are the two smallest plakin family cytoskeletal linker proteins that connect intermediate filaments to cellular junctions and other membrane locations. These two plakins have a structural role in the assembly of the cornified envelope (CE), the terminal stage of epidermal differentiation. Analysis of gene-targeted mice lacking both these plakins and the third initial CE scaffold protein, involucrin, demonstrate the importance of the structural integrity of CE for a proper epidermal barrier function. It has emerged that periplakin, which also has a wider tissue distribution than envoplakin, has additional, independent roles. Periplakin participates in the cytoskeletal organization also in other tissues and interacts with a wide range of membrane-associated proteins such as kazrin and butyrophilin BTN3A1. This review covers methods used to understand periplakin and envoplakin functions in cell culture models, including siRNA ablation of periplakin expression and the use of tagged protein domain constructs to study localization and interactions. In addition, assays that can be used to analyze CEs and epidermal barrier function in gene-targeted mice are described and discussed.
Collapse
|
7
|
Molecular architecture and function of the hemidesmosome. Cell Tissue Res 2015; 360:529-44. [PMID: 26017636 PMCID: PMC4452579 DOI: 10.1007/s00441-015-2216-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/03/2014] [Indexed: 01/13/2023]
Abstract
Hemidesmosomes are multiprotein complexes that facilitate the stable adhesion of basal epithelial cells to the underlying basement membrane. The mechanical stability of hemidesmosomes relies on multiple interactions of a few protein components that form a membrane-embedded tightly-ordered complex. The core of this complex is provided by integrin α6β4 and P1a, an isoform of the cytoskeletal linker protein plectin that is specifically associated with hemidesmosomes. Integrin α6β4 binds to the extracellular matrix protein laminin-332, whereas P1a forms a bridge to the cytoplasmic keratin intermediate filament network. Other important components are BPAG1e, the epithelial isoform of bullous pemphigoid antigen 1, BPAG2, a collagen-type transmembrane protein and CD151. Inherited or acquired diseases in which essential components of the hemidesmosome are missing or structurally altered result in tissue fragility and blistering. Modulation of hemidesmosome function is of crucial importance for a variety of biological processes, such as terminal differentiation of basal keratinocytes and keratinocyte migration during wound healing and carcinoma invasion. Here, we review the molecular characteristics of the proteins that make up the hemidesmosome core structure and summarize the current knowledge about how their assembly and turnover are regulated by transcriptional and post-translational mechanisms.
Collapse
|
8
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 551] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
9
|
Molecular architecture and function of the hemidesmosome. Cell Tissue Res 2014; 360:363-78. [PMID: 25487405 PMCID: PMC4544487 DOI: 10.1007/s00441-014-2061-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/03/2014] [Indexed: 01/07/2023]
Abstract
Hemidesmosomes are multiprotein complexes that facilitate the stable adhesion of basal epithelial cells to the underlying basement membrane. The mechanical stability of hemidesmosomes relies on multiple interactions of a few protein components that form a membrane-embedded tightly-ordered complex. The core of this complex is provided by integrin α6β4 and P1a, an isoform of the cytoskeletal linker protein plectin that is specifically associated with hemidesmosomes. Integrin α6β4 binds to the extracellular matrix protein laminin-332, whereas P1a forms a bridge to the cytoplasmic keratin intermediate filament network. Other important components are BPAG1e, the epithelial isoform of bullous pemphigoid antigen 1, BPAG2, a collagen-type transmembrane protein and CD151. Inherited or acquired diseases in which essential components of the hemidesmosome are missing or structurally altered result in tissue fragility and blistering. Modulation of hemidesmosome function is of crucial importance for a variety of biological processes, such as terminal differentiation of basal keratinocytes and keratinocyte migration during wound healing and carcinoma invasion. Here, we review the molecular characteristics of the proteins that make up the hemidesmosome core structure and summarize the current knowledge about how their assembly and turnover are regulated by transcriptional and post-translational mechanisms.
Collapse
|
10
|
Rinnerthaler M, Streubel MK, Bischof J, Richter K. Skin aging, gene expression and calcium. Exp Gerontol 2014; 68:59-65. [PMID: 25262846 DOI: 10.1016/j.exger.2014.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
11
|
Samborski A, Graf A, Krebs S, Kessler B, Reichenbach M, Reichenbach HD, Ulbrich SE, Bauersachs S. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol Reprod 2013; 89:134. [PMID: 24174570 DOI: 10.1095/biolreprod.113.112177] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The porcine conceptus undergoes rapid differentiation and expansion of its trophoblastic membranes between Days 11 and 12 of gestation. Concomitant with trophoblast elongation, production of conceptus estrogen, the porcine embryonic pregnancy recognition signal, increases. Conceptus attachment to the uterine surface epithelium starts after Day 13, initiating epitheliochorial placentation. To analyze the transcriptome changes in the endometrium in the course of maternal recognition of pregnancy, deep sequencing of endometrial RNA samples of Day 12 pregnant animals (n = 4) and corresponding nonpregnant controls (n = 4) was performed using RNA sequencing (RNA-Seq). Between 30 000 000 and 35 000 000 sequence reads per sample were produced and mapped to the porcine genome (Sscrofa10.2). Analysis of read counts revealed 2593 differentially expressed genes (DEGs). Expression of selected genes was validated by the use of quantitative real-time RT-PCR. Bioinformatics analysis identified several functional terms specifically overrepresented for up-regulated or down-regulated genes. Comparison of the RNA-Seq data from Days 12 and 14 of pregnancy was performed at the level of all expressed genes, the level of the DEG, and the level of functional categories. This revealed specific gene expression patterns reflecting the different functions of the endometrium during these stages (i.e., recognition of pregnancy and preparation for conceptus attachment). Genes related to mitosis, immune response, epithelial cell differentiation and development, proteolysis, and prostaglandin signaling and metabolism are discussed in detail. This study identified comprehensive transcriptome changes in porcine endometrium associated with establishment of pregnancy and could be a resource for targeted studies of genes and pathways potentially involved in regulation of this process.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Al-Jassar C, Bernadό P, Chidgey M, Overduin M. Hinged plakin domains provide specialized degrees of articulation in envoplakin, periplakin and desmoplakin. PLoS One 2013; 8:e69767. [PMID: 23922795 PMCID: PMC3726778 DOI: 10.1371/journal.pone.0069767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
Envoplakin, periplakin and desmoplakin are cytoskeletal proteins that provide structural integrity within the skin and heart by resisting shear forces. Here we reveal the nature of unique hinges within their plakin domains that provides divergent degrees of flexibility between rigid long and short arms composed of spectrin repeats. The range of mobility of the two arms about the hinge is revealed by applying the ensemble optimization method to small-angle X-ray scattering data. Envoplakin and periplakin adopt 'L' shaped conformations exhibiting a 'helicopter propeller'-like mobility about the hinge. By contrast desmoplakin exhibits essentially unrestricted mobility by 'jack-knifing' about the hinge. Thus the diversity of molecular jointing that can occur about plakin hinges includes 'L' shaped bends, 'U' turns and fully extended 'I' orientations between rigid blocks of spectrin repeats. This establishes specialised hinges in plakin domains as a key source of flexibility that may allow sweeping of cellular spaces during assembly of cellular structures and could impart adaptability, so preventing irreversible damage to desmosomes and the cell cytoskeleton upon exposure to mechanical stress.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pau Bernadό
- Centre de Biochimie Structurale, CNRS UMR-5048, INSERM U-1054, Université de Montpellier I et II, Montpellier, France
| | - Martyn Chidgey
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael Overduin
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Rinnerthaler M, Duschl J, Steinbacher P, Salzmann M, Bischof J, Schuller M, Wimmer H, Peer T, Bauer JW, Richter K. Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol 2013; 22:329-35. [DOI: 10.1111/exd.12135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Jutta Duschl
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Peter Steinbacher
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Manuel Salzmann
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Johannes Bischof
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Markus Schuller
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Herbert Wimmer
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Thomas Peer
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Johann W. Bauer
- Department of Dermatology; Division of Molecular Dermatology and EB House Austria; Paracelsus Medical University; Salzburg Austria
| | - Klaus Richter
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| |
Collapse
|
14
|
Annexin A9 is a periplakin interacting partner in membrane-targeted cytoskeletal linker protein complexes. FEBS Lett 2012; 586:3090-6. [PMID: 22841549 DOI: 10.1016/j.febslet.2012.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/12/2022]
Abstract
Periplakin regulates keratin organisation and participates in the assembly of epidermal cornified envelopes. A proteomic approach identified annexin A9 as a novel interacting partner for periplakin N-terminus. The presence of annexin A9 in complexes with periplakin was confirmed by immunoblotting of proteins immunoprecipitated by anti-HA or anti-annexin A9 antibodies. Both endogenous and GFP-tagged annexin A9 co-localise with endogenous periplakin and transfected periplakin N-terminus at MCF-7 cell borders and aggregate after Okadaic acid treatment. Annexin A9 and periplakin co-localise in the epidermis and annexin A9 is up-regulated in differentiating keratinocytes, but the epidermal annexin A9 expression does not require periplakin.
Collapse
|
15
|
Pavón MA, Parreño M, Téllez-Gabriel M, Sancho FJ, López M, Céspedes MV, Casanova I, Lopez-Pousa A, Mangues MA, Quer M, Barnadas A, León X, Mangues R. Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma. Carcinogenesis 2012; 33:1707-16. [PMID: 22696598 DOI: 10.1093/carcin/bgs207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to identify molecular markers associated with tumor recurrence and survival in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). We studied the expression profile of 63 pre-treatment tumor biopsies obtained from locally advanced HNSCCs treated with standard treatments. Cluster analysis identified three tumor subtypes associated with significant differences in local recurrence-free survival (LRFS) (P<0.001), progression free-survival (PFS) (P<0.009) and overall survival (OS) (P<0.004). Tumor subtype 1, associated with short LRFS, PFS and OS, showed features of epithelial-mesenchymal transition and undifferentiation. It also overexpressed genes involved in cell adhesion, NF-κB and integrin signalling. Tumor subtype 3, associated with longer LRFS, PFS and OS, showed a high degree of differentiation and overexpressed genes located in chromosomal regions 19q13 and 1q21. Tumor subtype 2, which had an intermediate clinical outcome between subtype 1 and subtype 3, overexpressed genes involved in branching morphogenesis. Finally, we validated the association between gene cluster classification and patient survival using Gene Set Enrichment Analysis and two HNSCC data sets obtained from two independent patient cohorts. In conclusion, we generated a gene prognostic signature associated with survival in locally advanced patients using the expression profile of the pre-treatment tumor biopsy. Independent prospective studies would be necessary to assess if the proposed survival signature could help to guide clinical management of HNSCC.
Collapse
Affiliation(s)
- M A Pavón
- Grup d'Oncogènesi i Antitumorals, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DEBES PAULV, NORMANDEAU ERIC, FRASER DYLANJ, BERNATCHEZ LOUIS, HUTCHINGS JEFFREYA. Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments. Mol Ecol 2012; 21:2574-87. [DOI: 10.1111/j.1365-294x.2012.05567.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet 2011; 7:e1002396. [PMID: 22144912 PMCID: PMC3228830 DOI: 10.1371/journal.pgen.1002396] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/10/2011] [Indexed: 01/09/2023] Open
Abstract
Autosomal recessive mutations in the cytolinker protein plectin account for the multisystem disorders epidermolysis bullosa simplex (EBS) associated with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and congenital myasthenia (EBS-CMS). In contrast, a dominant missense mutation leads to the disease EBS-Ogna, manifesting exclusively as skin fragility. We have exploited this trait to study the molecular basis of hemidesmosome failure in EBS-Ogna and to reveal the contribution of plectin to hemidesmosome homeostasis. We generated EBS-Ogna knock-in mice mimicking the human phenotype and show that blistering reflects insufficient protein levels of the hemidesmosome-associated plectin isoform 1a. We found that plectin 1a, in contrast to plectin 1c, the major isoform expressed in epidermal keratinocytes, is proteolytically degraded, supporting the notion that degradation of hemidesmosome-anchored plectin is spatially controlled. Using recombinant proteins, we show that the mutation renders plectin's 190-nm-long coiled-coil rod domain more vulnerable to cleavage by calpains and other proteases activated in the epidermis but not in skeletal muscle. Accordingly, treatment of cultured EBS-Ogna keratinocytes as well as of EBS-Ogna mouse skin with calpain inhibitors resulted in increased plectin 1a protein expression levels. Moreover, we report that plectin's rod domain forms dimeric structures that can further associate laterally into remarkably stable (paracrystalline) polymers. We propose focal self-association of plectin molecules as a novel mechanism contributing to hemidesmosome homeostasis and stabilization. Hemidesmosomes are specialized protein complexes that promote anchorage of the basal keratinocyte cell layer of the epidermis to the underlying dermis. They provide tissue integrity and resistance to mechanical forces. When hemidesmosomes do not function properly, skin blistering ensues in response to mechanical trauma. Plectin is an essential component of hemidesmosomes. Humans carrying recessive mutations in the plectin gene most frequently develop multisystem disorders, where in addition to skin other tissues are also affected. However, there is a unique dominant plectin mutation, which leads to the disease epidermolysis bullosa simplex Ogna (EBS-Ogna), affecting skin exclusively. Because of that, EBS-Ogna is an exceptional system to study the contribution of plectin to hemidesmosome function. We have generated an EBS-Ogna mouse model that mimics the human disease. Using this model, we have learned that selective degradation of hemidesmosome-associated plectin isoform 1a by proteases activated specifically in keratinocytes results in reduced numbers and dysfunction of hemidesmosomes. In contrast, plectin-1c, another plectin isoform expressed in keratinocytes, is not degraded. Moreover, we find that plectin dimers can oligomerize via their long coiled-coil rod domain, a process likely to be instrumental in maintenance of hemidesmosome integrity. These findings highlight the importance of plectin-1a for hemidesmosome function.
Collapse
|
18
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
19
|
Taillé C, Grootenboer-Mignot S, Boursier C, Michel L, Debray MP, Fagart J, Barrientos L, Mailleux A, Cigna N, Tubach F, Marchal-Sommé J, Soler P, Chollet-Martin S, Crestani B. Identification of periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 183:759-66. [PMID: 20935114 DOI: 10.1164/rccm.201001-0076oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Injury to alveolar epithelial cells is central to the pathophysiology of idiopathic pulmonary fibrosis (IPF). An abnormal autoimmune response directed against antigens of the alveolar epithelium may contribute to the disease. OBJECTIVES To detect circulating autoantibodies (autoAbs) directed against epithelial structures. METHODS We performed immunoblot by separating human placental amnion extract or alveolar epithelial cell (A549 cell line) proteins on polyacrylamide gels, blotting on nitrocellulose membranes, and incubating with serum from patients with IPF (n = 40) or healthy subjects (n = 40). Proteomic analysis and mass spectrometry characterized the target protein. Inhibition experiments performed with the correspondent recombinant protein confirmed our results. MEASUREMENTS AND MAIN RESULTS We identified IgG autoAbs recognizing a 200-kD protein in the serum of patients with IPF. Proteomic analysis identified this protein as human periplakin (PPL), a component of desmosomes. Anti-PPL Abs were found by immunoblot in both serum and bronchoalveolar lavage in patients with IPF: 16/40 (40%) of them were positive versus none of the control subjects. Immunohistochemistry revealed that PPL was strongly expressed in bronchial and alveolar epithelium, but that PPL exhibited changes in intracellular localization among normal and fibrotic alveolar epithelium. In an alveolar epithelial wound repair assay, an anti-PPL IgG decreased cell migration. Recombinant PPL induced bronchoalveolar lavage T lymphocyte proliferation. Patients with IPF with anti-PPL Abs had a more severe respiratory disease, despite no difference in survival. CONCLUSIONS We found a new circulating autoAb directed against PPL in patients with IPF, associated with a more severe disease.
Collapse
Affiliation(s)
- Camille Taillé
- Service de Pneumologie, et Centre de Compétence des Maladies Pulmonaires Rares, Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Houben E, De Paepe K, Rogiers V. A keratinocyte's course of life. Skin Pharmacol Physiol 2006; 20:122-32. [PMID: 17191035 DOI: 10.1159/000098163] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 10/05/2006] [Indexed: 12/30/2022]
Abstract
An adequate permeability barrier function of the mammalian epidermis is guaranteed by the characteristic architecture of the stratum corneum. This uppermost layer consists of a highly organized extracellular lipid compartment which is tightly joined to the corneocytes. The generation of the extracellular lipid compartment and the transformation of the keratinocytes into corneocytes are the main features of epidermal differentiation. However, equally important is the continuous renewal of the stratum corneum, which is insured by a careful balance between the replenishment of new keratinocytes from the proliferating basal layer, and the well-orchestrated loss of the most superficial cells after the so-called 'epidermal programmed cell death'. In this overview, the complete life of keratinocytes is described, from the proliferative organization to the process of desquamation.
Collapse
Affiliation(s)
- E Houben
- Department of Toxicology, Dermato-cosmetology and Pharmacognosy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
21
|
Park GT, Quan G, Lee JB. Sera from patients with toxic epidermal necrolysis contain autoantibodies to periplakin. Br J Dermatol 2006; 155:337-43. [PMID: 16882172 DOI: 10.1111/j.1365-2133.2006.07323.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pathophysiological mechanism of toxic epidermal necrolysis (TEN) with extensive bullae that is induced suddenly by drugs is not well understood. The individual patterns and distribution of the widespread mucocutaneous reactions of TEN often show striking similarities with those of paraneoplastic pemphigus (PNP), which is known to involve autoantibodies (aAbs) to members of the plakin family. OBJECTIVES To investigate the existence of circulating aAbs to periplakin in the sera of patients with TEN. METHODS The presence of circulating aAbs to periplakin was examined using immunoblotting, immunoabsorption and indirect immunofluorescence (IF) analyses. Recombinant protein expression was used to determine the interaction between periplakin and aAbs in the sera of patients with TEN. RESULTS Indirect IF studies revealed circulating aAbs in the intercellular area in the epidermis. Interestingly, on rat bladder the staining pattern of the IgG deposits was similar to that observed in patients with PNP. Immunoblotting analysis of the epidermal extracts was used to identify the aAbs in the sera of patients with TEN. These contained circulating aAbs to a 190-kDa protein corresponding to periplakin. Recombinant periplakin and domains of periplakin were prepared in order to confirm the existence of aAbs to periplakin. Immunoblotting with these proteins demonstrated that the sera from patients with TEN reacted with each domain as well as with the full-length periplakin. CONCLUSIONS We found that circulating aAbs in the sera of patients with TEN target periplakin. These aAbs might play a role in the pathogenesis of TEN as a humoral autoimmune mechanism.
Collapse
Affiliation(s)
- G T Park
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | | | | |
Collapse
|
22
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
23
|
Kalinin AE, Kalinin AE, Aho M, Uitto J, Aho S. Breaking the Connection: Caspase 6 Disconnects Intermediate Filament-Binding Domain of Periplakin from its Actin-Binding N-Terminal Region. J Invest Dermatol 2005; 124:46-55. [PMID: 15654952 DOI: 10.1111/j.0022-202x.2004.23507.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Periplakin is a member of the plakin family of cytolinkers that connect cytoskeletal networks to each other as well as to the cell junctional complexes. Here, we demonstrate a direct molecular interaction between actin and periplakin. Furthermore, the oligomerization state of periplakin was shown to determine specificity of its binding to intermediate filaments (IF) in vitro. Both the filament association and the cell membrane localization of periplakin were confirmed in the cells overexpressing human periplakin. Double labeling of the N- and C-terminally tagged periplakin revealed unexpected lack of co-localization of periplakin ends in a confluent culture, and separation of the periplakin ends was even more pronounced in apoptotic cells. Western analysis revealed that after induction of apoptosis, periplakin becomes cleaved close to its C-terminal tail. Only the distinct cleavage products, but not the full-length periplakin, were present in the cells detached from the solid support during the apoptotic process. We show that caspase 6 cleaves periplakin at an unconventional recognition site, amino acid sequence TVAD. Thus, the separation of periplakin ends disconnects the actin-binding head-rod domain from the IF-binding C-terminal domain. We show that specific cleavage products co-exist with the full-length periplakin in cells, suggesting physiological consequences due to their altered binding specificities.
Collapse
Affiliation(s)
- Andrey E Kalinin
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
24
|
Murdoch H, Feng GJ, Bächner D, Ormiston L, White JH, Richter D, Milligan G. Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail. J Biol Chem 2004; 280:8208-20. [PMID: 15590649 DOI: 10.1074/jbc.m405215200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mice genetic ablation of expression of either melanin-concentrating hormone or the melanin-concentrating hormone-1 receptor results in alterations in energy metabolism and a lean phenotype. There is thus great interest in the function and regulation of this receptor. Using the yeast two-hybrid system we identified an interaction of the actin- and intermediate filament-binding protein periplakin with the intracellular C-terminal tail of the melanin-concentrating hormone-1 receptor. Direct association of these proteins was verified in pull-down and coimmunoprecipitation experiments. Truncations and internal deletions delineated the site of interaction to a group of 11 amino acids proximal to transmembrane helix VII, which was distinct from the binding site for the melanin-concentrating hormone-1 receptor-interacting zinc finger protein. Immunohistochemistry demonstrated coexpression of periplakin with melanin-concentrating hormone-1 receptor in specific cells of the piriform cortex, amygdala, and other structures of the adult mouse brain. Coexpression of the melanin-concentrating hormone-1 receptor with periplakin in human embryonic kidney 293 cells did not prevent agonist-mediated internalization of the receptor but did interfere with binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate ([(35)S]GTPgammaS) to the G protein Galpha(o1) and the elevation of [Ca(2+)](i). Coexpression of the receptor with the interacting zinc finger protein did not modulate receptor internalization or G protein activation. The interaction of periplakin with receptors was selective. Coexpression of periplakin with the IP prostanoid receptor did not result in coimmunoprecipitation nor interfere with agonist-mediated binding of [(35)S]GTPgammaS to the G protein Galpha(s). Periplakin is the first protein described to modify the capacity of the melanin-concentrating hormone-1 receptor to initiate signal transduction.
Collapse
Affiliation(s)
- Hannah Murdoch
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|