1
|
Sivakumar S, Wang Y, Goetsch SC, Pandit V, Wang L, Zhao H, Sundarrajan A, Armendariz D, Takeuchi C, Nzima M, Chen WC, Dederich AE, El Hayek L, Gao T, Ghazawi R, Gogate A, Kaur K, Kim HB, McCoy MK, Niederstrasser H, Oura S, Pinzon-Arteaga CA, Sanghvi M, Schmitz DA, Yu L, Zhang Y, Zhou Q, Kraus WL, Xu L, Wu J, Posner BA, Chahrour MH, Hon GC, Munshi NV. Benchmarking and optimizing Perturb-seq in differentiating human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633969. [PMID: 39896670 PMCID: PMC11785042 DOI: 10.1101/2025.01.21.633969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perturb-seq is a powerful approach to systematically assess how genes and enhancers impact the molecular and cellular pathways of development and disease. However, technical challenges have limited its application in stem cell-based systems. Here, we benchmarked Perturb-seq across multiple CRISPRi modalities, on diverse genomic targets, in multiple human pluripotent stem cells, during directed differentiation to multiple lineages, and across multiple sgRNA delivery systems. To ensure cost-effective production of large-scale Perturb-seq datasets as part of the Impact of Genomic Variants on Function (IGVF) consortium, our optimized protocol dynamically assesses experiment quality across the weeks-long procedure. Our analysis of 1,996,260 sequenced cells across benchmarking datasets reveals shared regulatory networks linking disease-associated enhancers and genes with downstream targets during cardiomyocyte differentiation. This study establishes open tools and resources for interrogating genome function during stem cell differentiation.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Goetsch
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vrushali Pandit
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikara Takeuchi
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mpathi Nzima
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chen Chen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley E Dederich
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauretta El Hayek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taosha Gao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renad Ghazawi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashlesha Gogate
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kiran Kaur
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyung Bum Kim
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melissa K McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Menaka Sanghvi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W. Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
3
|
Gao X, Yan B. The mechanism and diagnostic value of Tbx20 in cardiovascular diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Satthenapalli R, Lee S, Bellae Papannarao J, Hore TA, Chakraborty A, Jones PP, Lamberts RR, Katare R. Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Res Ther 2022; 13:185. [PMID: 35524336 PMCID: PMC9077927 DOI: 10.1186/s13287-022-02845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pluripotent stem cells (PSCs) can be an ideal source of differentiation of cardiomyocytes in vitro and during transplantation to induce cardiac regeneration. However, differentiation of PSCs into a heterogeneous population is associated with an increased incidence of arrhythmia following transplantation. We aimed to design a protocol to drive PSCs to a ventricular lineage by regulating Wnt and retinoic acid (RA) signalling pathways. METHODS Mouse embryonic stem cells were cultured either in monolayers or three-dimensional hanging drop method to form embryonic bodies (EBs) and exposed to different treatments acting on Wnt and retinoic acid signalling. Samples were collected at different time points to analyse cardiomyocyte-specific markers by RT-PCR, flow cytometry and immunofluorescence. RESULTS Treatment of monolayer and EBs with Wnt and RA signalling pathways and ascorbic acid, as a cardiac programming enhancer, resulted in the formation of an immature non-contractile cardiac population that expressed many of the putative markers of cardiac differentiation. The population exhibited upregulation of ventricular specific markers while suppressing the expression of pro-atrial and pro-sinoatrial markers. Differentiation of EBs resulted in early foetal like non-contractile ventricular cardiomyocytes with an inherent propensity to contract when stimulated. CONCLUSION Our results provide the first evidence of in vitro differentiation that mimics the embryonic morphogenesis towards ventricular specific cardiomyocytes through regulation of Wnt and RA signalling pathways.
Collapse
Affiliation(s)
- Ramakanth Satthenapalli
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Scott Lee
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Timothy A Hore
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9010, New Zealand
| | - Akash Chakraborty
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Peter P Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
5
|
Luo J, Chen J, Zhou J, Han K, Li S, Duan J, Cao C, Lin J, Xie D, Wang F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci 2022; 113:2008-2021. [PMID: 35348274 PMCID: PMC9207377 DOI: 10.1111/cas.15348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T‐box TF family protein, was downregulated with hypermethylation of promoter in early‐stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non‐homologous DNA end joining (NHEJ)‐mediated double‐stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor‐suppressive role of TBX20 by inhibiting NHEJ‐mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early‐stage CRC and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jie‐Wei Chen
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Kai Han
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Colorectal Surgery Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Si Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Ling Duan
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Chen‐Hui Cao
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Long Lin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Dan Xie
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Feng‐Wei Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| |
Collapse
|
6
|
González-Peña SM, Calvo-Anguiano G, Martínez-de-Villarreal LE, Ancer-Rodríguez PR, Lugo-Trampe JJ, Saldivar-Rodríguez D, Hernández-Almaguer MD, Calzada-Dávila M, Guerrero-Orjuela LS, Campos-Acevedo LD. Maternal Folic Acid Intake and Methylation Status of Genes Associated with Ventricular Septal Defects in Children: Case-Control Study. Nutrients 2021; 13:nu13062071. [PMID: 34204335 PMCID: PMC8234530 DOI: 10.3390/nu13062071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Background: DNA methylation is the best epigenetic mechanism for explaining the interactions between nutrients and genes involved in intrauterine growth and development programming. A possible contributor of methylation abnormalities to congenital heart disease is the folate methylation regulatory pathway; however, the mechanisms and methylation patterns of VSD-associated genes are not fully understood. Objective: To determine if maternal dietary intake of folic acid (FA) is related to the methylation status (MS) of VSD-associated genes (AXIN1, MTHFR, TBX1, and TBX20). Methods: Prospective case–control study; 48 mothers and their children were evaluated. The mothers’ dietary variables were collected through a food frequency questionnaire focusing on FA and the consumption of supplements with FA. The MS of promoters of genes was determined in the children. Results: The intake of FA supplements was significantly higher in the control mothers. In terms of maternal folic acid consumption, significant differences were found in the first trimester of pregnancy. Significant differences were observed in the MS of MTHFR and AXIN1 genes in VSD and control children. A correlation between maternal FA supplementation and MS of AXIN1 and TBX20 genes was found in control and VSD children, respectively. Conclusions: A lower MS of AXIN1 genes and a higher MS of TBX20 genes is associated with FA maternal supplementation.
Collapse
Affiliation(s)
- Sandra M. González-Peña
- Clinical Nutrition, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (S.M.G.-P.); (P.R.A.-R.)
- International Iberoamerican University of México, Campeche 24560, Mexico
| | - Geovana Calvo-Anguiano
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
| | - Laura E. Martínez-de-Villarreal
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
| | - Patricia R. Ancer-Rodríguez
- Clinical Nutrition, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (S.M.G.-P.); (P.R.A.-R.)
| | - José J. Lugo-Trampe
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
| | - Donato Saldivar-Rodríguez
- Gynecology and Obstetrics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico;
| | - María D. Hernández-Almaguer
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
- Medicine Faculty, Autonomous University of Baja California, Mexicali 21000, Mexico
| | - Melissa Calzada-Dávila
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
| | | | - Luis D. Campos-Acevedo
- Genetics Department, Hospital Universitario “Dr. José Eleuterio González” and Medicine Faculty, Autonomous University of Nuevo León, Monterrey 64460, Mexico; (G.C.-A.); (L.E.M.-d.-V.); (J.J.L.-T.); (M.D.H.-A.); (M.C.-D.)
- Correspondence: ; Tel.: +52-01-81-8348-3704
| |
Collapse
|
7
|
Verma U, Khaire K, Desai I, Sharma S, Balakrishnan S. Early embryonic exposure to chlorpyrifos-cypermethrin combination induces pattern deficits in the heart of domestic hen. ENVIRONMENTAL TOXICOLOGY 2021; 36:707-721. [PMID: 33270332 DOI: 10.1002/tox.23074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Exposure to chlorpyrifos-cypermethrin combination during early development resulted in defective looping and ventricular noncompaction of heart in domestic chicken. The study was extended to elucidate the molecular basis of this novel observation. The primary culture of chicken embryonic heart cells showed a concentration-dependent loss of viability when challenged with this combination of technical-grade insecticides. Comet assay, DNA ladder assay, and analyses of appropriate markers at transcript and protein levels, revealed that chlorpyrifos-cypermethrin combination induced cell death by activating apoptosis. Parallelly, the tissues derived from control and experimental group hearts were checked for apoptotic markers, and the result was much similar to that of the in-vitro study. Further analysis showed that chlorpyrifos-cypermethrin combination deranged the expression pattern of the transcriptional regulators of cardiogenesis, namely TBX20, GATA5, HAND2, and MYOCD. This, together with heightened apoptosis, could well be the reason behind the observed structural anomalies in the heart of chlorpyrifos-cypermethrin poisoned embryos.
Collapse
Affiliation(s)
- Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Isha Desai
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Shashikant Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
8
|
Chen Y, Xiao D, Zhang L, Cai CL, Li BY, Liu Y. The Role of Tbx20 in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:638542. [PMID: 33585493 PMCID: PMC7876368 DOI: 10.3389/fcell.2021.638542] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tbx20 is a member of the Tbx1 subfamily of T-box-containing genes and is known to play a variety of fundamental roles in cardiovascular development and homeostasis as well as cardiac remodeling in response to pathophysiological stresses. Mutations in TBX20 are widely associated with the complex spectrum of congenital heart defects (CHDs) in humans, which includes defects in chamber septation, chamber growth, and valvulogenesis. In addition, genetic variants of TBX20 have been found to be associated with dilated cardiomyopathy and heart arrhythmia. This broad spectrum of cardiac morphogenetic and functional defects is likely due to its broad expression pattern in multiple cardiogenic cell lineages and its critical regulation of transcriptional networks during cardiac development. In this review, we summarize recent findings in our general understanding of the role of Tbx20 in regulating several important aspects of cardiac development and homeostasis and heart function.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Deyong Xiao
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Lu Zhang
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Chen-Leng Cai
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| |
Collapse
|
9
|
Abstract
Endocardial cells are specialized endothelial cells that form the innermost layer of the heart wall. By virtue of genetic lineage-tracing technology, many of the unexpected roles of endocardium during murine heart development, diseases, and regeneration have been identified recently. In addition to heart valves developed from the well-known endothelial to mesenchymal transition, recent fate-mapping studies using mouse models reveal that multiple cardiac cell lineages are also originated from the endocardium. This review focuses on a variety of different cell types that are recently reported to be endocardium derived during murine heart development, diseases, and regeneration. These multiple cell fates underpin the unprecedented roles of endocardial progenitors in function, pathological progression, and regeneration of the heart. Because emerging studies suggest that developmental mechanisms can be redeployed and recapitulated in promoting heart disease development and also cardiac repair and regeneration, understanding the mechanistic regulation of endocardial plasticity and modulation of their cell fate conversion may uncover new therapeutic potential in facilitating heart regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Kathy O Lui
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Bin Zhou
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| |
Collapse
|
10
|
Gong J, Sheng W, Ma D, Huang G, Liu F. DNA methylation status of TBX20 in patients with tetralogy of Fallot. BMC Med Genomics 2019; 12:75. [PMID: 31138201 PMCID: PMC6540552 DOI: 10.1186/s12920-019-0534-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background TBX20 plays an important role in heart development; however, its epigenetic regulation in the pathogenesis of tetralogy of Fallot (TOF) remains unclear. Methods The methylation levels of the TBX20 promoter region in the right ventricular myocardial tissues of TOF and control samples were measured by the Sequenom MassARRAY platform. Bisulphite-sequencing PCR (BSP) was used to confirm the TBX20 methylation of CpG sites in cells. Dual-luciferase reporter assays were performed to detect the influence of TBX20 methylation and Sp1 transcription factors on gene activity. An electrophoretic mobility shift assay (EMSA) was used to explore the binding of the Sp1 transcription factor to the TBX20 promoter. Results TOF cases had a significantly lower TBX20_M1 methylation level than controls (median methylation: 20.40% vs. 38.73%; p = 0.0047). The Sp1 transcription factor, which binds to Sp1 binding sites in the TBX20_M1 region and promotes TBX20 gene activity, was blocked by the methylation of Sp1 binding sites in normal controls. With decreasing methylation in the TOF cases, the Sp1 transcription factor can bind to its binding site within the TBX20 promoter M1 region and promote TBX20 gene expression. Conclusions Hypomethylation of the TBX20 promoter region was observed in the TOF cases, and the high expression of the TBX20 gene may be caused by activated Sp1 transcription factor binding because of the decreasing methylation at the Sp1 transcription factor binding sites within TBX20_M1.
Collapse
Affiliation(s)
- Juan Gong
- Children Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Wei Sheng
- Children Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Guoying Huang
- Children Hospital of Fudan University, Shanghai, 201102, China. .,Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Fang Liu
- Children Hospital of Fudan University, Shanghai, 201102, China. .,Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| |
Collapse
|
11
|
Xie H, Hong N, Zhang E, Li F, Sun K, Yu Y. Identification of Rare Copy Number Variants Associated With Pulmonary Atresia With Ventricular Septal Defect. Front Genet 2019; 10:15. [PMID: 30745907 PMCID: PMC6360179 DOI: 10.3389/fgene.2019.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Copy number variants (CNVs) are major variations contributing to the gene heterogeneity of congenital heart diseases (CHD). pulmonary atresia with ventricular septal defect (PA-VSD) is a rare form of cyanotic CHD characterized by complex manifestations and the genetic determinants underlying PA-VSD are still largely unknown. We investigated rare CNVs in a recruited cohort of 100 unrelated patients with PA-VSD, PA-IVS, or TOF and a population-matched control cohort of 100 healthy children using whole-exome sequencing. Comparing rare CNVs in PA-VSD cases and that in PA-IVS or TOF positive controls, we observed twenty-two rare CNVs only in PA-VSD, five rare CNVs only in PA-VSD and TOF as well as thirteen rare CNVs only in PA-VSD and PA-IVS. Six of these CNVs were considered pathogenic or potentially pathogenic to PA-VSD: 16p11.2 del (PPP4C and TBX6), 5q35.3 del (FLT4), 5p13.1 del (RICTOR), 6p21.33 dup (TNXB), 7p15.2 del (HNRNPA2B1), and 19p13.3 dup (FGF22). The gene networks showed that four putative candidate genes for PA-VSD, PPP4C, FLT4, RICTOR, and FGF22 had strong interaction with well-known cardiac genes relevant to heart or blood vessel development. Meanwhile, the analysis of transcriptome array revealed that PPP4C and RICTOR were also significantly expressed in human embryonic heart. In conclusion, three rare novel CNVs were identified only in PA-VSD: 16p11.2 del (PPP4C), 5q35.3 del (FLT4) and 5p13.1 del (RICTOR), implicating novel candidate genes of interest for PA-VSD. Our study provided new insights into understanding for the pathogenesis of PA-VSD and helped elucidate critical genes for PA-VSD.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Erge Zhang
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Yang X, Kong Q, Li Z, Xu M, Cai Z, Zhao C. Association between the promoter methylation of the TBX20 gene and tetralogy of fallot. SCAND CARDIOVASC J 2018; 52:287-291. [PMID: 30084275 DOI: 10.1080/14017431.2018.1499955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the association between promoter methylation of the TBX20 gene and tetralogy of Fallot (TOF). Methods. The methylation level of TBX20 promoter regions in 23 patients with TOF and five controls were analyzed through bisulfite sequencing polymerase chain reaction. Meanwhile, the expression of TBX20 mRNA was measured using real time fluorescence quantitative polymerase chain reaction. RESULTS The region -400 to -48 in the TBX20 promoter consisting of 42 CpG sites was predicted to contain multiple transcription factor binding sites. In this study, the overall methylation level in this region was lower in patients with TOF than in the controls (P = .035). Among the 42 CpG sites, the methylation percentages of the CpG 26 site in the TOF cases were lower than those in the controls (P = .016). The mRNA expression of TBX20 in the right ventricular outflow tract myocardium was increased in TOF cases in contrast to those in the controls (P < .001). The methylation levels in TOF cases were correlated with mRNA expression values (r = -0.81, P < .001). CONCLUSION The downregulated methylation level at TBX20 promoter may be responsible for the elevated mRNA expression levels in patients with TOF. The abnormal methylation status of the TBX20 promoter may contribute to the pathogenesis of TOF.
Collapse
Affiliation(s)
- Xiaofei Yang
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China.,b Department of Pediatrics , Yidu central hospital of Weifang , Weifang , China
| | - Qingyu Kong
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| | - Zhenghao Li
- b Department of Pediatrics , Yidu central hospital of Weifang , Weifang , China
| | - Min Xu
- c Department of Pediatrics , The People's Hospital of Yucheng City , Dezhou , China
| | - Zhifeng Cai
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| | - Cuifen Zhao
- a Department of Pediatrics , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
13
|
Firulli BA, Toolan KP, Harkin J, Millar H, Pineda S, Firulli AB. The HAND1 frameshift A126FS mutation does not cause hypoplastic left heart syndrome in mice. Cardiovasc Res 2018; 113:1732-1742. [PMID: 29016838 DOI: 10.1093/cvr/cvx166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Aims To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). Methods and results HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. Conclusions Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.
Collapse
Affiliation(s)
- Beth A Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Kevin P Toolan
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Jade Harkin
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Hannah Millar
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Santiago Pineda
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Departments of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
14
|
Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and Epigenomics of Congenital Heart Defects: Expert Review and Lessons Learned in Africa. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:301-321. [PMID: 29762087 PMCID: PMC6016577 DOI: 10.1089/omi.2018.0033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHD) are structural malformations found at birth with a prevalence of 1%. The clinical trajectory of CHD is highly variable and thus in need of robust diagnostics and therapeutics. Major surgical interventions are often required for most CHDs. In Africa, despite advances in life sciences infrastructure and improving education of medical scholars, the limited clinical data suggest that CHD detection and correction are still not at par with the rest of the world. But the toll and genetics of CHDs in Africa has seldom been systematically investigated. We present an expert review on CHD with lessons learned on Africa. We found variable CHD phenotype prevalence in Africa across countries and populations. There are important gaps and paucity in genomic studies of CHD in African populations. Among the available genomic studies, the key findings in Africa were variants in GATA4 (P193H), MTHFR 677TT, and MTHFR 1298CC that were associated with atrial septal defect, ventricular septal defect (VSD), Tetralogy of Fallot (TOF), and patent ductus arteriosus phenotypes and 22q.11 deletion, which is associated with TOF. There were no data on epigenomic association of CHD in Africa, however, other studies have shown an altered expression of miR-421 and miR-1233-3p to be associated with TOF and hypermethylation of CpG islands in the promoter of SCO2 gene also been associated with TOF and VSD in children with non-syndromic CHD. These findings signal the urgent need to develop and implement genetic and genomic research on CHD to identify the hereditary and genome-environment interactions contributing to CHD. These projected studies would also offer comparisons on CHD pathophysiology between African and other populations worldwide. Genomic research on CHD in Africa should be developed in parallel with next generation technology policy research and responsible innovation frameworks that examine the social and political factors that shape the emergence and societal embedding of new technologies.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
| | - Kevin Dzobo
- 3 ICGEB, Cape Town Component, University of Cape Town , Cape Town, South Africa
- 4 Division of Medical Biochemistry, IIDMM, Department of IBM, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nana Akyaa Yao
- 5 National Cardiothoracic Centre, Korle Bu Teaching Hospital , Accra, Ghana
- 6 University of Ghana Medical School, University of Ghana , Accra, Ghana
| | - Emile Chimusa
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Jonathan Evans
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Emmanuel Okai
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
- 7 Cape Coast Teaching Hospital , Cape Coast, Ghana
| | - Paul Kruszka
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Maximilian Muenke
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Gordon Awandare
- 9 Department of Biochemistry, WACCBIP, University of Ghana , Legon, Accra, Ghana
| | - Ambroise Wonkam
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
15
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, de Vries AA, Mojarrad M, Naderi-Meshkin H, Neshati Z, Kerachian MA. Cardiomyogenic differentiation of human adipose-derived mesenchymal stem cells transduced with Tbx20-encoding lentiviral vectors. J Cell Biochem 2018; 119:6146-6153. [PMID: 29637615 DOI: 10.1002/jcb.26818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
Abstract
Ischemic heart disease often results in myocardial infarction and is the leading cause of mortality and morbidity worldwide. Improvement in the function of infarcted myocardium is a main purpose of cardiac regenerative medicine. One possible way to reach this goal is via stem cell therapy. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types but display limited cardiomyogenic differentiation potential. Members of the T-box family of transcription factors including Tbx20 play important roles in heart development and cardiomyocyte homeostasis. Therefore, in the current study, we investigated the potential of Tbx20 to enhance the cardiomyogenic differentiation of human adipose-derived MSCs (ADMSCs). Human ADMSCs were transduced with a bicistronic lentiviral vector encoding Tbx20 (murine) and the enhanced green fluorescent protein (eGFP) and analyzed 7 and 14 days post transduction. Transduction of human ADMSCs with this lentiviral vector increased the expression of the cardiomyogenic differentiation markers ACTN1, TNNI3, ACTC1, NKX2.5, TBX20 (human), and GATA4 as revealed by RT-qPCR. Consistently, immunocytological results showed elevated expression of α-actinin and cardiac troponin I in these cells in comparison to the cells transduced with control lentiviral particles coding for eGFP alone. Accordingly, forced expression of Tbx20 exerts cardiomyogenic effects on human ADMSCs by increasing the expression of cardiomyogenic differentiation markers at the RNA and protein level.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Antoine Af de Vries
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Meng J, Xu WY, Chen X, Lin T, Deng XY. Gene locations may contribute to predicting gene regulatory relationships. J Zhejiang Univ Sci B 2018; 19:25-37. [PMID: 29308605 DOI: 10.1631/jzus.b1700303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose that locations of genes on chromosomes can contribute to the prediction of gene regulatory relationships. We constructed a time-based gene regulatory network of zebrafish cardiogenesis on the basis of a spatio-temporal neighborhood method. Through the network, specific regulatory pathways and order of gene expression during zebrafish cardiogenesis were obtained. By comparing the order with locations of these genes on chromosomes, we discovered that there exists a reversal phenomenon between the order and order of gene locations. The discovery provides an inherent rule to instruct exploration of gene regulatory relationships. Specifically, the discovery can help to predict if regulatory relationships between genes exist and contribute to evaluating the correctness of discovered gene regulatory relationships.
Collapse
Affiliation(s)
- Jun Meng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Yuan Xu
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Chen
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Lin
- Laboratory of Machine Learning and Optimization, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne 999034, Switzerland
| | - Xiao-Yu Deng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Prathipati P, Nandi SS, Mishra PK. Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy. Stem Cell Rev Rep 2017; 13:79-91. [PMID: 27807762 DOI: 10.1007/s12015-016-9696-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.
Collapse
Affiliation(s)
- Priyanka Prathipati
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Pang KL, Parnall M, Loughna S. Effect of altered haemodynamics on the developing mitral valve in chick embryonic heart. J Mol Cell Cardiol 2017; 108:114-126. [PMID: 28576718 PMCID: PMC5529288 DOI: 10.1016/j.yjmcc.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 12/31/2022]
Abstract
Intracardiac haemodynamics is crucial for normal cardiogenesis, with recent evidence showing valvulogenesis is haemodynamically dependent and inextricably linked with shear stress. Although valve anomalies have been associated with genetic mutations, often the cause is unknown. However, altered haemodynamics have been suggested as a pathogenic contributor to bicuspid aortic valve disease. Conversely, how abnormal haemodynamics impacts mitral valve development is still poorly understood. In order to analyse altered blood flow, the outflow tract of the chick heart was constricted using a ligature to increase cardiac pressure overload. Outflow tract-banding was performed at HH21, with harvesting at crucial valve development stages (HH26, HH29 and HH35). Although normal valve morphology was found in HH26 outflow tract banded hearts, smaller and dysmorphic mitral valve primordia were seen upon altered haemodynamics in histological and stereological analysis at HH29 and HH35. A decrease in apoptosis, and aberrant expression of a shear stress responsive gene and extracellular matrix markers in the endocardial cushions were seen in the chick HH29 outflow tract banded hearts. In addition, dysregulation of extracellular matrix (ECM) proteins fibrillin-2, type III collagen and tenascin were further demonstrated in more mature primordial mitral valve leaflets at HH35, with a concomitant decrease of ECM cross-linking enzyme, transglutaminase-2. These data provide compelling evidence that normal haemodynamics are a prerequisite for normal mitral valve morphogenesis, and abnormal blood flow could be a contributing factor in mitral valve defects, with differentiation as a possible underlying mechanism.
Collapse
Affiliation(s)
- Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
19
|
Zamir L, Singh R, Nathan E, Patrick R, Yifa O, Yahalom-Ronen Y, Arraf AA, Schultheiss TM, Suo S, Han JDJ, Peng G, Jing N, Wang Y, Palpant N, Tam PP, Harvey RP, Tzahor E. Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. eLife 2017; 6:20994. [PMID: 28271994 PMCID: PMC5400512 DOI: 10.7554/elife.20994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/06/2017] [Indexed: 01/10/2023] Open
Abstract
Novel regenerative therapies may stem from deeper understanding of the mechanisms governing cardiovascular lineage diversification. Using enhancer mapping and live imaging in avian embryos, and genetic lineage tracing in mice, we investigated the spatio-temporal dynamics of cardiovascular progenitor populations. We show that expression of the cardiac transcription factor Nkx2.5 marks a mesodermal population outside of the cardiac crescent in the extraembryonic and lateral plate mesoderm, with characteristics of hemogenic angioblasts. Extra-cardiac Nkx2.5 lineage progenitors migrate into the embryo and contribute to clusters of CD41+/CD45+ and RUNX1+ cells in the endocardium, the aorta-gonad-mesonephros region of the dorsal aorta and liver. We also demonstrated that ectopic expression of Nkx2.5 in chick embryos activates the hemoangiogenic gene expression program. Taken together, we identified a hemogenic angioblast cell lineage characterized by transient Nkx2.5 expression that contributes to hemogenic endothelium and endocardium, suggesting a novel role for Nkx2.5 in hemoangiogenic lineage specification and diversification. DOI:http://dx.doi.org/10.7554/eLife.20994.001 As an animal embryo develops, it establishes a circulatory system that includes the heart, vessels and blood. Vessels and blood initially form in the yolk sac, a membrane that surrounds the embryo. These yolk sac vessels act as a rudimentary circulatory system, connecting to the heart and blood vessels within the embryo itself. In older embryos, cells in the inner layer of the largest blood vessel (known as the dorsal aorta) generate blood stem cells that give rise to the different types of blood cells. A gene called Nkx2.5 encodes a protein that controls the activity of a number of complex genetic programs and has been long studied as a key player in the development of the heart. Nkx2.5 is essential for forming normal heart muscle cells and for shaping the primitive heart and its surrounding vessels into a working organ. Interfering with the normal activity of the Nkx2.5 gene results in severe defects in blood vessels and the heart. However, many details are missing on the role played by Nkx2.5 in specifying the different cellular components of the circulatory system and heart. Zamir et al. genetically engineered chick and mouse embryos to produce fluorescent markers that could be used to trace the cells that become part of blood vessels and heart. The experiments found that some of the cells that form the blood and vessels in the yolk sac originate from within the membranes surrounding the embryo, outside of the areas previously reported to give rise to the heart. The Nkx2.5 gene is active in these cells for only a short period of time as they migrate toward the heart and dorsal aorta, where they give rise to blood stem cells These findings suggest that Nkx2.5 plays an important role in triggering developmental processes that eventually give rise to blood vessels and blood cells. The next step following on from this work will be to find out what genes the protein encoded by Nkx2.5 regulates to drive these processes. Mapping the genes that control the early origins of blood and blood-forming vessels will help biologists understand this complex and vital tissue system, and develop new treatments for patients with conditions that affect their circulatory system. In the future, this knowledge may also help to engineer synthetic blood and blood products for use in trauma and genetic diseases. DOI:http://dx.doi.org/10.7554/eLife.20994.002
Collapse
Affiliation(s)
- Lyad Zamir
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Reena Singh
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Elisha Nathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Oren Yifa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shengbao Suo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, The University of Washington, Seattle, United States
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Patrick Pl Tam
- School of Medical Sciences, Sydney Medical School, The University of Sydney, Westmead, Australia.,Embryology Unit, Children's Medical Research Institute, Westmead, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia.,St. Vincent's Clinical School, School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, Australia
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Lu F, Langenbacher A, Chen JN. Tbx20 drives cardiac progenitor formation and cardiomyocyte proliferation in zebrafish. Dev Biol 2016; 421:139-148. [PMID: 27940156 DOI: 10.1016/j.ydbio.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Tbx20 is a T-box transcription factor that plays essential roles in the development and maintenance of the heart. Although it is expressed by cardiac progenitors in all species examined, an involvement of Tbx20 in cardiac progenitor formation in vertebrates has not been previously described. Here we report the identification of a zebrafish tbx20 mutation that results in an inactive, truncated protein lacking any functional domains. The cardiac progenitor population is strongly diminished in this mutant, leading to the formation of a small, stretched-out heart. We found that overexpression of Tbx20 results in an enlarged heart with significantly more cardiomyocytes. Interestingly, this increase in cell number is caused by both enhanced cardiac progenitor cell formation and the proliferation of differentiated cardiomyocytes, and is dependent upon the activity of Tbx20's T-box and transcription activation domains. Together, our findings highlight a previously unappreciated role for Tbx20 in promoting cardiac progenitor formation in vertebrates and reveal a novel function for its activation domain in cardiac cell proliferation during embryogenesis.
Collapse
Affiliation(s)
- Fei Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Adam Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States.
| |
Collapse
|
21
|
Abstract
T-box genes are important development regulators in vertebrates with specific patterns of expression and precise roles during embryogenesis. They encode transcription factors that regulate gene transcription, often in the early stages of development. The hallmark of this family of proteins is the presence of a conserved DNA binding motif, the "T-domain." Mutations in T-box genes can cause developmental disorders in humans, mostly due to functional deficiency of the relevant proteins. Recent studies have also highlighted the role of some T-box genes in cancer and in cardiomyopathy, extending their role in human disease. In this review, we focus on ten T-box genes with a special emphasis on their roles in human disease.
Collapse
Affiliation(s)
- T K Ghosh
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - J D Brook
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - A Wilsdon
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
22
|
Abstract
TBX5 is a member of the T-box transcription factor family and is primarily known for its role in cardiac and forelimb development. Human patients with dominant mutations in TBX5 are characterized by Holt-Oram syndrome, and show defects of the cardiac septa, cardiac conduction system, and the anterior forelimb. The range of cardiac defects associated with TBX5 mutations in humans suggests multiple roles for the transcription factor in cardiac development and function. Animal models demonstrate similar defects and have provided a useful platform for investigating the roles of TBX5 during embryonic development. During early cardiac development, TBX5 appears to act primarily as a transcriptional activator of genes associated with cardiomyocyte maturation and upstream of morphological signals for septation. During later cardiac development, TBX5 is required for patterning of the cardiac conduction system and maintenance of mature cardiomyocyte function. A comprehensive understanding of the integral roles of TBX5 throughout cardiac development and adult life will be critical for understanding human cardiac morphology and function.
Collapse
Affiliation(s)
- J D Steimle
- University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
23
|
Greulich F, Rudat C, Farin HF, Christoffels VM, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS One 2016; 11:e0156787. [PMID: 27253890 PMCID: PMC4890940 DOI: 10.1371/journal.pone.0156787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an essential source of cells and signals for the formation of the cardiac fibrous skeleton and the coronary vasculature, and for the maturation of the myocardium during embryonic development. The molecular factors that control epicardial mobilization and differentiation, and direct the epicardial-myocardial cross-talk are, however, insufficiently understood. The T-box transcription factor gene Tbx18 is specifically expressed in the epicardium of vertebrate embryos. Loss of Tbx18 is dispensable for epicardial development, but may influence coronary vessel maturation. In contrast, over-expression of an activator version of TBX18 severely impairs epicardial development by premature differentiation of epicardial cells into SMCs indicating a potential redundancy of Tbx18 with other repressors of the T-box gene family. Here, we show that Tbx2 and Tbx20 are co-expressed with Tbx18 at different stages of epicardial development. Using a conditional gene targeting approach we find that neither the epicardial loss of Tbx2 nor the combined loss of Tbx2 and Tbx18 affects epicardial development. Similarly, we observed that the heterozygous loss of Tbx20 with and without additional loss of Tbx18 does not impact on epicardial integrity and mobilization in mouse embryos. Thus, Tbx18 does not function redundantly with Tbx2 or Tbx20 in epicardial development.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Henner F. Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
24
|
Mittal A, Sharma R, Prasad R, Bahl A, Khullar M. Role of cardiac TBX20 in dilated cardiomyopathy. Mol Cell Biochem 2016; 414:129-36. [PMID: 26895318 DOI: 10.1007/s11010-016-2666-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
Abstract
Dilated cardiomyopathy (DCM) is an important cause of heart failure and sudden cardiac death worldwide. Transcription factor TBX20 has been shown to play a crucial role in cardiac development and maintenance of adult mouse heart. Recent studies suggest that TBX20 may have a role in pathophysiology of DCM. In the present study, we examined TBX20 expression in idiopathic DCM patients and in an animal model of cardiomyopathy, and studied its correlation with echocardiographic indices of LV function. Endomyocardial biopsies (EMBs) from intraventricular septal from the right ventricle region were obtained from idiopathic DCM patients (IDCM, n = 30) and from patients with ventricular septal defect (VSD, n = 14) with normal LVEF who served as controls. An animal model of DCM was developed by right renal artery ligation in Wistar rats. Cardiac TBX20 mRNA levels were measured by real-time PCR in IDCM, controls, and in rats. The role of DNA promoter methylation and copy number variation (CNVs) in regulating TBX20 gene expression was also investigated. Cardiac TBX20 mRNA levels were significantly increased (8.9 fold, p < 0.001) in IDCM patients and in RAL rats as compared to the control group. Cardiac TBX20 expression showed a negative correlation with LVEF (r = -0.71, p < 0.001) and a positive correlation with left ventricular end-systolic volume (r = 0.39, p = 0.038). No significant difference in TBX20 CNVs and promoter methylation was observed between IDCM patients and control group. Our results suggest a potential role of TBX20 in pathophysiology of DCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
25
|
Xiang FL, Guo M, Yutzey KE. Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac Function After Myocardial Infarction. Circulation 2016; 133:1081-92. [PMID: 26841808 DOI: 10.1161/circulationaha.115.019357] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Adult mammalian cardiomyocytes (CMs) have the potential to proliferate, but this is not sufficient to generate adequate CMs after myocardial infarction (MI). The transcription factor Tbx20 is required for CM proliferation during development and adult CM homeostasis. The ability of Tbx20 overexpression (Tbx20(OE)) to promote adult CM proliferation and to improve cardiac function after MI was examined. METHODS AND RESULTS Tbx20(OE) was induced specifically in adult mouse differentiated CMs. Increased CM proliferation and fetal-like characteristics were found in Tbx20(OE) hearts compared with controls without causing pathology 4 weeks after Tbx20(OE) at baseline. Moreover, Tbx20(OE) in adult CM after MI significantly improved survival, cardiac function, and infarct size 4 weeks after MI. Improved cardiac repair, as indicated by increased CM proliferation and capillary density, was observed in the MI border zone of Tbx20(OE) hearts compared with controls. Expression of proliferation activator (cyclin D1, E1, and IGF1) and fetal contractile protein (ssTNI, βMHC) mRNA was increased whereas negative cell-cycle regulators (p21, Meis1) were decreased in Tbx20(OE) hearts compared with controls under both baseline and MI conditions. Tbx20(OE) in adult hearts activates multiple proproliferation pathways, including Akt, YAP and BMP. Interestingly, p21, Meis1, and a novel cell-cycle inhibitory gene, Btg2, are directly bound and repressed by Tbx20 with induction of proliferation in neonatal CM. CONCLUSIONS Tbx20(OE), specifically in adult CM, activates multiple cardiac proliferative pathways, directly represses cell-cycle inhibitory genes p21, Meis1, and Btg2, promotes adult CM proliferation; and preserves cardiac performance after MI.
Collapse
Affiliation(s)
- Fu-Li Xiang
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Minzhe Guo
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Katherine E Yutzey
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.).
| |
Collapse
|
26
|
Wang G, Huang WQ, Cui SD, Li S, Wang XY, Li Y, Chuai M, Cao L, Li JC, Lu DX, Yang X. Autophagy is involved in high glucose-induced heart tube malformation. Cell Cycle 2015; 14:772-83. [PMID: 25738919 DOI: 10.1080/15384101.2014.1000170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Both pre-gestational and gestational diabetes have an adverse impact on heart development, but little is known about the influence on the early stage of heart tube formation. Using early gastrulating chick embryos, we investigated the influence of high glucose on the process of heart tube formation, specifically during the primary heart field phase. We demonstrated that high-glucose exposure resulted in 3 types of heart tube malformation: 1) ventricular hypertrophy, 2) ventricular hypertrophy with dextrocardia and 3) ventricular hypertrophy and dextrocardia with the fusion anomaly of a bilateral primary heart tube. Next, we found that these malformation phenotypes of heart tubes might mainly originate from the migratory anomaly of gastrulating precardiac mesoderm cells rather than cell proliferation in the developmental process of bilateral primary heart field primordia. The treatment of rapamycin (RAPA), an autophagy inducer, led to a similar heart tube malformation phenotype as high glucose. Additionally, high-glucose exposure promoted the expression of the key autophagy protein LC3B in early chick tissue. Atg7 is strongly expressed in the fusion site of bilateral primary heart tubes. All of these data imply that autophagy could be involved in the process of high-glucose-induced malformation of the heart tube.
Collapse
Affiliation(s)
- Guang Wang
- a Division of Histology and Embryology ; Key Laboratory for Regenerative Medicine of the Ministry of Education ; Medical College ; Jinan University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen J, Sun F, Fu J, Zhang H. Association of TBX20 gene polymorphism with congenital heart disease in Han Chinese neonates. Pediatr Cardiol 2015; 36:737-42. [PMID: 25487630 DOI: 10.1007/s00246-014-1073-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
As a transcription factor mainly expressed in cardiovascular system, T-box 20 (TBX20) plays an important role in embryonic cardiovascular system development and adult heart function. Previous studies have identified associations of two SNPs in the T-box DNA-binding domain of TBX20 with congenital heart disease (CHD) in two Caucasian families, but the associations of TBX20 mutations underlying the more common populations with CHD remain to be uncovered. In this study, 25 unrelated Chinese Han neonates with CHD and 25 healthy children as controls were investigated for TBX20 mutations. SNP genotyping was performed by PCR-DNA sequencing. The selected SNPs were well genotyped and SNP rs3999941 was found to be strongly associated with CHD (p = 0.007). The minor allele of rs3999941 showed a high-risk factor for CHD (OR 4.24; 95 % CI 1.41-12.71). Besides, we found a new SNP site located at the 657th nucleotide of the exon 5 of TBX20 gene which may also be associated with CHD, c.657A>C. The frequency was significantly different between two groups (p = 0.011), the minor allele of SNP c.657A>C also showed a risk factor for CHD (OR 2.56; 95 % CI 1.02-6.46). These findings suggested that the TC genotype of SNP rs3999941 and AC genotype of the new SNP c.657A>C in the TBX20 gene may be risk factors for CHD and thus screening of these SNPs may have some implications in the prevention and treatment of CHD in Han Chinese children.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Pediatrics, Second Hospital of Tianjin Medical University, 23 Pingjiang Street, Hexi District, Tianjin, 300211, China
| | | | | | | |
Collapse
|
28
|
Yamak A, Georges RO, Sheikh-Hassani M, Morin M, Komati H, Nemer M. Novel exons in the tbx5 gene locus generate protein isoforms with distinct expression domains and function. J Biol Chem 2015; 290:6844-56. [PMID: 25623069 DOI: 10.1074/jbc.m114.634451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBX5 is the gene mutated in Holt-Oram syndrome, an autosomal dominant disorder with complex heart and limb deformities. Its protein product is a member of the T-box family of transcription factors and an evolutionarily conserved dosage-sensitive regulator of heart and limb development. Understanding TBX5 regulation is therefore of paramount importance. Here we uncover the existence of novel exons and provide evidence that TBX5 activity may be extensively regulated through alternative splicing to produce protein isoforms with differing N- and C-terminal domains. These isoforms are also present in human heart, indicative of an evolutionarily conserved regulatory mechanism. The newly identified isoforms have different transcriptional properties and can antagonize TBX5a target gene activation. Droplet Digital PCR as well as immunohistochemistry with isoform-specific antibodies reveal differential as well as overlapping expression domains. In particular, we find that the predominant isoform in skeletal myoblasts is Tbx5c, and we show that it is dramatically up-regulated in differentiating myotubes and is essential for myotube formation. Mechanistically, TBX5c antagonizes TBX5a activation of pro-proliferative signals such as IGF-1, FGF-10, and BMP4. The results provide new insight into Tbx5 regulation and function that will further our understanding of its role in health and disease. The finding of new exons in the Tbx5 locus may also be relevant to mutational screening especially in the 30% of Holt-Oram syndrome patients with no mutations in the known TBX5a exons.
Collapse
Affiliation(s)
- Abir Yamak
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Romain O Georges
- the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Massomeh Sheikh-Hassani
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Martin Morin
- the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Hiba Komati
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and
| | - Mona Nemer
- From the Laboratory of Molecular Genetics and Cardiac Regeneration, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 and the Graduate Program in Molecular Biology, Institut de Recherches Cliniques de Montréal (IRCM), Université de Montréal, Montréal, Québec H2W 1R7, Canada
| |
Collapse
|
29
|
Tong X, Zu Y, Li Z, Li W, Ying L, Yang J, Wang X, He S, Liu D, Zhu Z, Chen J, Lin S, Zhang B. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nat Commun 2014; 5:3153. [DOI: 10.1038/ncomms4153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023] Open
|
30
|
Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y, Yang S, Xu Z, Dai J, Pan S, Da M, Wang X, Qian B, Wen Y, Wen J, Xing J, Guo X, Xia Y, Ma H, Jin G, Yu S, Liu J, Zhou Z, Wang X, Chen Y, Sha J, Shen H. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 2013; 45:818-821. [PMID: 23708190 DOI: 10.1038/ng.2636] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Congenital heart malformation (CHM) is the most common form of congenital human birth anomaly and is the leading cause of infant mortality. Although some causative genes have been identified, little progress has been made in identifying genes in which low-penetrance susceptibility variants occur in the majority of sporadic CHM cases. To identify common genetic variants associated with sporadic non-syndromic CHM in Han Chinese populations, we performed a multistage genome-wide association study (GWAS) in a total of 4,225 CHM cases and 5,112 non-CHM controls. The GWAS stage included 945 cases and 1,246 controls and was followed by 2-stage validation with 2,160 cases and 3,866 controls. The combined analyses identified significant associations (P < 5.0 × 10⁻⁸) at 1p12 (rs2474937 near TBX15; odds ratio (OR) = 1.40; P = 8.44 × 10⁻¹⁰) and 4q31.1 (rs1531070 in MAML3; OR = 1.40; P = 4.99 × 10⁻¹²). These results extend current knowledge of genetic contributions to CHM in Han Chinese populations.
Collapse
Affiliation(s)
- Zhibin Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ban Q, Liu X, Hui W, Chen D, Zhao Z, Jia B. Comparative Analysis of Nkx2-5/GATA4/TBX5 Expression in Chicken, Quail and Chicken-quail Hybrids during the Early Stage of Cardiac Development in Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:476-82. [PMID: 25049812 PMCID: PMC4093392 DOI: 10.5713/ajas.2012.12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/28/2013] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Abstract
The present study makes an investigation into expression of genes related to cardiac development in chicken, quail and chicken-quail hybrids during the early stage of embryogenesis. Real-time PCR was used to detect mRNA expressions of Nkx2-5, GATA4 and TBX5 in the heart of chicken, quail and chicken-quail hybrids embryos during the 3rd to 7th days of incubation. Results showed that NKX2-5 mRNA displayed a similar expression trend in chicken, quail and chicken-quail hybrids. The initial and highest expression of Nkx2-5 was focused on the 3rd day of incubation, then it declined till 5th day of incubation, thereafter, it fluctuated. Expression of Nkx2-5 gene in quail was significantly higher than in chicken and chicken-quail hybrids, and no significant difference was observed between the two latter species. GATA4 mRNA showed a similar expression trend between chicken and quail, which displayed a steady increase from 3rd to 6th d, then, the expression level decreased. However, GATA4 mRNA expression in chicken-quail hybrids was significantly higher than that in chicken and quail from 3rd to 5th d (p<0.01), but significantly lower than that in chicken and quail during the later stage of the experiment (p<0.05), due to the dramatic drop from 5th d onwards (p<0.01). TBX5 mRNA expression in chicken and quail showed the same trend as GATA4 expressed in the two species. Furthermore, TBX5 expression in chicken-quail hybrids was significantly higher than that in chicken and quail during the whole course of experiment, although relatively lower TBX5 expression was detected in the early stage. In conclusion, Nkx2-5, GATA4 and TBX5 genes showed dynamic changes during the process of cardiac development in chicken, quail and their hybrids embryos. In addition, the expression trend in chicken was similar to that in quail, and there was no significant difference for gene expression level, except NKX2-5. However, expression of these genes in chicken-quail hybrids was significantly different from their parents, the difference mechanism needs to be further explored.
Collapse
Affiliation(s)
- Qian Ban
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| | - Wenqiao Hui
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| | - Danying Chen
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, China
| |
Collapse
|
32
|
Miyanishi H, Okubo K, Nobata S, Takei Y. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies. Endocrinology 2013. [PMID: 23183183 DOI: 10.1210/en.2012-1730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.
Collapse
Affiliation(s)
- Hiroshi Miyanishi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
33
|
Evolution and development of the building plan of the vertebrate heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:783-94. [PMID: 23063530 DOI: 10.1016/j.bbamcr.2012.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Early cardiac development involves the formation of a heart tube, looping of the tube and formation of chambers. These processes are highly similar among all vertebrates, which suggest the existence of evolutionary conservation of the building plan of the heart. From the jawless lampreys to man, T-box transcription factors like Tbx5 and Tbx20 are fundamental for heart formation, whereas Tbx2 and Tbx3 repress chamber formation on the sinu-atrial and atrioventricular borders. Also, electrocardiograms from different vertebrates are alike, even though the fish heart only has two chambers whereas the mammalian heart has four chambers divided by septa and in addition has much higher heart rates. We conclude that most features of the high-performance hearts of mammals and birds can be traced back to less developed traits in the hearts of ectothermic vertebrates. This article is part of a Special Issue entitled: Cardiomyocyte biology: Cardiac pathways of differentiation, metabolism and contraction.
Collapse
|
34
|
Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012; 5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Tsai TC, Lu JK, Choo SL, Yeh SY, Tang RB, Lee HY, Lu JH. The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio) embryos. J Biomed Sci 2012; 19:63. [PMID: 22776023 PMCID: PMC3407474 DOI: 10.1186/1423-0127-19-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/09/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysmorphogenesis and multiple organ defects are well known in zebrafish (Danio rerio) embryos with T-box transcription factor 5 (tbx5) deficiencies, mimicking human Holt-Oram syndrome. METHODS Using an oligonucleotide-based microarray analysis to study the expression of special genes in tbx5 morphants, we demonstrated that GH and some GH-related genes were markedly downregulated. Zebrafish embryos microinjected with tbx5-morpholino (MO) antisense RNA and mismatched antisense RNA in the 1-cell stage served as controls, while zebrafish embryos co-injected with exogenous growth hormone (GH) concomitant with tbx5-MO comprised the treatment group. RESULTS The attenuating effects of GH in tbx5-MO knockdown embryos were quantified and observed at 24, 30, 48, 72, and 96 h post-fertilization. Though the understanding of mechanisms involving GH in the tbx5 functioning complex is limited, exogenous GH supplied to tbx5 knockdown zebrafish embryos is able to enhance the expression of downstream mediators in the GH and insulin-like growth factor (IGF)-1 pathway, including igf1, ghra, and ghrb, and signal transductors (erk1, akt2), and eventually to correct dysmorphogenesis in various organs including the heart and pectoral fins. Supplementary GH also reduced apoptosis as determined by a TUNEL assay and decreased the expression of apoptosis-related genes and proteins (bcl2 and bad) according to semiquantitative reverse-transcription polymerase chain reaction and immunohistochemical analysis, respectively, as well as improving cell cycle-related genes (p27 and cdk2) and cardiomyogenetic genes (amhc, vmhc, and cmlc2). CONCLUSIONS Based on our results, tbx5 knockdown causes a pseudo GH deficiency in zebrafish during early embryonic stages, and supplementation of exogenous GH can partially restore dysmorphogenesis, apoptosis, cell growth inhibition, and abnormal cardiomyogenesis in tbx5 knockdown zebrafish in a paracrine manner.
Collapse
Affiliation(s)
- Tzu-Chun Tsai
- Department of Medical Research and Education, National Yang-Ming University Hospital, Yilan, Taiwan, Republic of China
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Jen-Kann Lu
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Sie-Lin Choo
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Shu-Yu Yeh
- Laboratory of Molecular Biology, Institute of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Ren-Bing Tang
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Hsin-Yu Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jen-Her Lu
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
36
|
Qiao Y, Wanyan H, Xing Q, Xie W, Pang S, Shan J, Yan B. Genetic analysis of the TBX20 gene promoter region in patients with ventricular septal defects. Gene 2012; 500:28-31. [DOI: 10.1016/j.gene.2012.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/05/2012] [Accepted: 03/13/2012] [Indexed: 01/08/2023]
|
37
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2012; 40:3329-3347. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Abstract
Heart valves are dynamic structures that open and close during the cardiac cycle to maintain unidirectional blood flow throughout life. Insufficient valve function, commonly due to congenital malformations leads to disruptions in hemodynamics and eventual heart failure. Mature valve leaflets are composed of a heterogeneous population of interstitial cells and stratified extracellular matrix, surrounded by a layer of endothelial cells. This defined connective tissue "architecture" provides the valve with all the necessary biomechanical properties required to efficiently function while withstanding constant cyclic shear stress. Valvular endothelial cells (VECs) play essential roles in establishing the valve structures during embryonic development and are important for maintaining lifelong valve integrity and function. In contrast to a continuous endothelium over the surface of healthy valve leaflets, VEC disruption is commonly observed in malfunctioning valves and is associated with pathological processes that promote valve sclerosis and calcification. Increasing our understanding of the roles of VECs in development and disease has lead to promising advances in the development of endothelial cell-based therapies for treating valve disease.
Collapse
|
39
|
Lee MP, Yutzey KE. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 2011; 6:e29758. [PMID: 22242143 PMCID: PMC3248441 DOI: 10.1371/journal.pone.0029758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion (ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM) molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function, and contain Twist1-responsive regulatory sequences.
Collapse
Affiliation(s)
- Mary P. Lee
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 2011; 363:234-46. [PMID: 22226977 DOI: 10.1016/j.ydbio.2011.12.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/29/2011] [Accepted: 12/20/2011] [Indexed: 11/21/2022]
Abstract
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.
Collapse
|
41
|
Zhang W, Chen H, Wang Y, Yong W, Zhu W, Liu Y, Wagner GR, Payne RM, Field LJ, Xin H, Cai CL, Shou W. Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J Biol Chem 2011; 286:36820-9. [PMID: 21890625 DOI: 10.1074/jbc.m111.279679] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 10 (BMP10) belongs to the TGFβ-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation.
Collapse
Affiliation(s)
- Wenjun Zhang
- Riley Heart Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aanhaanen WTJ, Moorman AFM, Christoffels VM. Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. ACTA ACUST UNITED AC 2011; 91:565-77. [PMID: 21630423 DOI: 10.1002/bdra.20826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
Defects originating from the atrioventricular canal region are part of a wide spectrum of congenital cardiovascular malformations that frequently affect newborns. These defects include partial or complete atrioventricular septal defects, atrioventricular valve defects, and arrhythmias, such as atrioventricular re-entry tachycardia, atrioventricular nodal block, and ventricular preexcitation. Insight into the cellular origin of the atrioventricular canal myocardium and the molecular mechanisms that control its development will aid in the understanding of the etiology of the atrioventricular defects. This review discusses current knowledge concerning the origin and fate of the atrioventricular canal myocardium, the molecular mechanisms that determine its specification and differentiation, and its role in the development of certain malformations such as those that underlie ventricular preexcitation.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. ACTA ACUST UNITED AC 2011; 91:495-510. [PMID: 21538812 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
44
|
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011; 91:185-95. [DOI: 10.1093/cvr/cvr127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Abstract
The multi-chambered mammalian heart arises from a simple tube by polar elongation, myocardial differentiation and morphogenesis. Members of the large family of T-box (Tbx) transcription factors have been identified as crucial players that act in distinct subprogrammes during cardiac regionalization. Tbx1 and Tbx18 ensure elongation of the cardiac tube at the anterior and posterior pole, respectively. Tbx1 acts in the pharyngeal mesoderm to maintain proliferation of mesenchymal precursor cells for formation of a myocardialized and septated outflow tract. Tbx18 is expressed in the sinus venosus region and is required for myocardialization of the caval veins and the sinoatrial node. Tbx5 and Tbx20 function in the early heart tube and independently activate the chamber myocardial gene programme, whereas Tbx2 and Tbx3 locally repress this programme to favour valvuloseptal and conduction system development. Here, we summarize that these T-box factors act in different molecular circuits and control target gene expression using diverse molecular strategies including binding to distinct protein interaction partners.
Collapse
Affiliation(s)
- Franziska Greulich
- Institute for Molecular Biology, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
46
|
Rajala K, Pekkanen-Mattila M, Aalto-Setälä K. Cardiac differentiation of pluripotent stem cells. Stem Cells Int 2011; 2011:383709. [PMID: 21603143 PMCID: PMC3096314 DOI: 10.4061/2011/383709] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/01/2011] [Accepted: 02/08/2011] [Indexed: 01/12/2023] Open
Abstract
The ability of human pluripotent stem cells to differentiate towards the cardiac lineage has attracted significant interest, initially with a strong focus on regenerative medicine. The ultimate goal to repair the heart by cardiomyocyte replacement has, however, proven challenging. Human cardiac differentiation has been difficult to control, but methods are improving, and the process, to a certain extent, can be manipulated and directed. The stem cell-derived cardiomyocytes described to date exhibit rather immature functional and structural characteristics compared to adult cardiomyocytes. Thus, a future challenge will be to develop strategies to reach a higher degree of cardiomyocyte maturation in vitro, to isolate cardiomyocytes from the heterogeneous pool of differentiating cells, as well as to guide the differentiation into the desired subtype, that is, ventricular, atrial, and pacemaker cells. In this paper, we will discuss the strategies for the generation of cardiomyocytes from pluripotent stem cells and their characteristics, as well as highlight some applications for the cells.
Collapse
Affiliation(s)
- Kristiina Rajala
- Regea - Institute for Regenerative Medicine, University of Tampere, Tampere University Hospital, 33520 Tampere, Finland
| | | | | |
Collapse
|
47
|
Jafari G, Appleford PJ, Seago J, Pocock R, Woollard A. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mech Dev 2010; 128:49-58. [PMID: 20933597 DOI: 10.1016/j.mod.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells. We find that mab-9 expression in unc-37 mutants is also elevated in DA motor neurons, consistent with known roles for UNC-37 as a co-repressor with UNC-4. These results identify mab-9 as a novel target of the UNC-4/UNC-37 repressor complex in motor neurons, and suggest that mis-expression of mab-9 may contribute to the neuronal wiring defects in unc-4 and unc-37 mutants.
Collapse
Affiliation(s)
- Gholamali Jafari
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Ng SY, Wong CK, Tsang SY. Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol 2010; 299:C1234-49. [PMID: 20844252 DOI: 10.1152/ajpcell.00402.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction has been the leading cause of morbidity and mortality in developed countries over the past few decades. The transplantation of cardiomyocytes offers a potential method of treatment. However, cardiomyocytes are in high demand and their supply is extremely limited. Embryonic stem cells (ESCs), which have been isolated from the inner cell mass of blastocysts, can self-renew and are pluripotent, meaning they have the ability to develop into any type of cell, including cardiomyocytes. This suggests that ESCs could be a good source of genuine cardiomyocytes for future therapeutic purposes. However, problems with the yield and purity of ESC-derived cardiomyocytes, among other hurdles for the therapeutic application of ESC-derived cardiomyocytes (e.g., potential immunorejection and tumor formation problems), need to be overcome before these cells can be used effectively for cell replacement therapy. ESC-derived cardiomyocytes consist of nodal, atrial, and ventricular cardiomyocytes. Specifically, for treatment of myocardial infarction, transplantation of a sufficient quantity of ventricular cardiomyocytes, rather than nodal or atrial cardiomyocytes, is preferred. Hence, it is important to find ways of increasing the yield and purity of specific types of cardiomyocytes. Atrial and ventricular cardiomyocytes have differential expression of genes (transcription factors, structural proteins, ion channels, etc.) and are functionally distinct. This paper presents a thorough review of differential gene expression in atrial and ventricular myocytes, their expression throughout development, and their regulation. An understanding of the molecular and functional differences between atrial and ventricular myocytes allows discussion of potential strategies for preferentially directing ESCs to differentiate into chamber-specific cells, or for fine tuning the ESC-derived cardiomyocytes into specific electrical and contractile phenotypes resembling chamber-specific cells.
Collapse
Affiliation(s)
- Sze Ying Ng
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
49
|
Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ-LIM protein family: new insights into organ development. Bioessays 2010; 32:100-8. [PMID: 20091751 DOI: 10.1002/bies.200900148] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent work on the PDZ-LIM protein family has revealed that it has important activities at the cellular level, mediating signals between the nucleus and the cytoskeleton, with significant impact on organ development. We review and integrate current knowledge about the PDZ-LIM protein family and propose a new functional role, sequestering nuclear factors in the cytoplasm. Characterized by their PDZ and LIM domains, the PDZ-LIM family is comprised of evolutionarily conserved proteins found throughout the animal kingdom, from worms to humans. Combining two functional domains in one protein, PDZ-LIM proteins have wide-ranging and multi-compartmental cell functions during development and homeostasis. In contrast, misregulation can lead to cancer formation and progression. New emerging roles include interactions with integrins, T-box transcription factors, and receptor tyrosine kinases. Facilitating the assembly of protein complexes, PDZ-LIM proteins can act as signal modulators, influence actin dynamics, regulate cell architecture, and control gene transcription.
Collapse
Affiliation(s)
- Jennifer Krcmery
- Department of Pediatrics, Northwestern University, The Feinberg School of Medicine, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | | | |
Collapse
|
50
|
Rikin A, Evans T. The tbx/bHLH transcription factor mga regulates gata4 and organogenesis. Dev Dyn 2010; 239:535-47. [PMID: 20044811 DOI: 10.1002/dvdy.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mga gene encodes a unique transcription factor containing both TBOX and bHLHzip DNA-binding domains. Here we describe the structure, expression pattern, and loss-of-function phenotype for zebrafish mga. The mga gene is conserved with mammalian homologs for both DNA-binding domains. It is expressed maternally, and subsequently in the developing brain, heart, and gut, and its depletion causes morphogenetic defects in each of these organ systems. The heart and gut phenotypes are similar to those described previously for loss of gata4, and the mga morphant shows increased levels of gata4 transcripts in lateral mesoderm. Knockdown of gata4 rescues the early heart-looping defect (but not the gut defect), indicating that mga restricts the normal levels of Gata4 required for heart tube looping, while both genes are important for gut development. Transcript profiling experiments show that mga functions early to influence key regulators of mesendoderm, including tbx6, cas, and sox17.
Collapse
Affiliation(s)
- Amir Rikin
- Department of Surgery, Weill Cornell Medical College, New York, New York, USA
| | | |
Collapse
|