1
|
Wilson C, Gapsys V, de Groot BL. Improving p Ka Predictions with Reparameterized Force Fields and Free Energy Calculations. J Chem Theory Comput 2025; 21:4095-4106. [PMID: 40173334 PMCID: PMC12020373 DOI: 10.1021/acs.jctc.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/04/2025]
Abstract
Given the growing interest in designing targeted covalent inhibitors, methods for rapidly and accurately probing pKas─and, by extension, the reactivities─of target cysteines are highly desirable. Complementary to cysteine, histidine is similarly relevant due to its frequent presence in protein active sites and its unique ability to exist in two tautomeric states. Here, we demonstrate that nonequilibrium free energy calculations can accurately determine the pKa values of both residues, often outperforming conventional predictors. Importantly, we find that (1) increasing the van der Waals radius of cysteine's sulfur atom, (2) modifying the backbone charges of histidine, and (3) introducing effective polarization by downscaling the side chain partial charges of both residues can all significantly improve pKa prediction accuracy. Using the modified CHARMM36m force field on the full dataset reduces the prediction error from 2.12 ± 0.27 pK to 1.28 ± 0.15 pK and increases the correlation with experiment from 0.25 ± 0.09 to 0.58 ± 0.08. Similarly, using the modified Amber14SB force field decreases the error from 3.21 ± 0.29 pK to 1.69 ± 0.23 pK and improves the correlation from 0.15 ± 0.10 to 0.36 ± 0.10.
Collapse
Affiliation(s)
- Carter
J. Wilson
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
2
|
Regulation and Maturation of the Shewanella oneidensis Sulfite Reductase SirA. Sci Rep 2020; 10:953. [PMID: 31969587 PMCID: PMC6976685 DOI: 10.1038/s41598-020-57587-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/27/2019] [Indexed: 01/12/2023] Open
Abstract
Shewanella oneidensis, a metal reducer and facultative anaerobe, expresses a large number of c-type cytochromes, many of which function as anaerobic reductases. All of these proteins contain the typical heme-binding motif CXXCH and require the Ccm proteins for maturation. Two c-type cytochrome reductases also possess atypical heme-binding sites, the NrfA nitrite reductase (CXXCK) and the SirA sulfite reductase (CX12NKGCH). S. oneidensis MR-1 encodes two cytochrome c synthetases (CcmF and SirE) and two apocytochrome c chaperones (CcmI and SirG). SirE located in the sir gene cluster is required for the maturation of SirA, but not NrfA. Here we show that maturation of SirA requires the combined function of the two apocytochrome c chaperones CcmI and SirG. Loss of either protein resulted in decreased sulfite reductase. Furthermore, SirA was not detected in a mutant that lacked both chaperones, perhaps due to misfolding or instability. These results suggest that CcmI interacts with SirEFG during SirA maturation, and with CcmF during maturation of NrfA. Additionally, we show that CRP regulates expression of sirA via the newly identified transcriptional regulatory protein, SirR.
Collapse
|
3
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
4
|
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS One 2018; 13:e0195358. [PMID: 29677198 PMCID: PMC5909903 DOI: 10.1371/journal.pone.0195358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.
Collapse
|
5
|
A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis. Microbiol Res 2017; 205:1-7. [DOI: 10.1016/j.micres.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
|
6
|
Janowski R, Scanu S, Niessing D, Madl T. Crystal and solution structural studies of mouse phospholipid hydroperoxide glutathione peroxidase 4. Acta Crystallogr F Struct Biol Commun 2016; 72:743-749. [PMID: 27710939 PMCID: PMC5053159 DOI: 10.1107/s2053230x16013686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
The mammalian glutathione peroxidase (GPx) family is a key component of the cellular antioxidative defence system. Within this family, GPx4 has unique features as it accepts a large class of hydroperoxy lipid substrates and has a plethora of biological functions, including sperm maturation, regulation of apoptosis and cerebral embryogenesis. In this paper, the structure of the cytoplasmic isoform of mouse phospholipid hydroperoxide glutathione peroxidase (O70325-2 GPx4) with selenocysteine 46 mutated to cysteine is reported solved at 1.8 Å resolution using X-ray crystallography. Furthermore, solution data of an isotope-labelled GPx protein are presented.
Collapse
Affiliation(s)
- Robert Janowski
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sandra Scanu
- Institute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Dierk Niessing
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Cell Biology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152 Munich, Germany
| | - Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| |
Collapse
|
7
|
Insights into the Function of a Second, Nonclassical Ahp Peroxidase, AhpA, in Oxidative Stress Resistance in Bacillus subtilis. J Bacteriol 2016; 198:1044-57. [PMID: 26787766 DOI: 10.1128/jb.00679-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Organisms growing aerobically generate reactive oxygen-containing molecules, such as hydrogen peroxide (H2O2). These reactive oxygen molecules damage enzymes and DNA and may even cause cell death. In response, Bacillus subtilis produces at least nine potential peroxide-scavenging enzymes, two of which appear to be the primary enzymes responsible for detoxifying peroxides during vegetative growth: a catalase (encoded by katA) and an alkylhydroperoxide reductase (Ahp, encoded by ahpC). AhpC uses two redox-active cysteine residues to reduce peroxides to nontoxic molecules. A specialized thioredoxin-like protein, AhpF, is then required to restore oxidized AhpC back to its reduced state. Curiously, B. subtilis has two genes encoding Ahp: ahpC and ahpA. Although AhpC is well characterized, very little is known about AhpA. In fact, numerous bacterial species have multiple ahp genes; however, these additional Ahp proteins are generally uncharacterized. We seek to understand the role of AhpA in the bacterium's defense against toxic peroxide molecules in relation to the roles previously assigned to AhpC and catalase. Our results demonstrate that AhpA has catalytic activity similar to that of the primary enzyme, AhpC. Furthermore, our results suggest that a unique thioredoxin redox protein, AhpT, may reduce AhpA upon its oxidation by peroxides. However, unlike AhpC, which is expressed well during vegetative growth, our results suggest that AhpA is expressed primarily during postexponential growth. IMPORTANCE B. subtilis appears to produce nine enzymes designed to protect cells against peroxides; two belong to the Ahp class of peroxidases. These studies provide an initial characterization of one of these Ahp homologs and demonstrate that the two Ahp enzymes are not simply replicates of each other, suggesting that they instead are expressed at different times during growth of the cells. These results highlight the need to further study the Ahp homologs to better understand how they differ from one another and to identify their function, if any, in protection against oxidative stress. Through these studies, we may better understand why bacteria have multiple enzymes designed to scavenge peroxides and thus have a more accurate understanding of oxidative stress resistance.
Collapse
|
8
|
Biochemical and functional characterization of a periplasmic disulfide oxidoreductase from Neisseria meningitidis essential for meningococcal viability. Biochem J 2015; 468:271-82. [PMID: 25826614 DOI: 10.1042/bj20140868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TlpAs (thioredoxin-like proteins) are bacterial thioredoxin-like periplasmic disulfide oxidoreductases generally involved in cytochrome c maturation (Ccm) process. They contain a characteristic CXXC active site motif involved in disulfide exchange reaction. In the human pathogenic Neisseria meningitidis species, no TlpA has been characterized so far. In the present study, using an in silico analysis, we identified a putative periplasmic TlpA, called TlpA2. Biochemical and kinetic characterizations of the soluble form of TlpA2, tTlpA2 (truncated TlpA2), were performed. A reduction potential of -0.230 V at pH 7 was calculated, suggesting that TlpA2 acts as a reductant in the oxidative environment of the periplasm. Using a second-order reactive probe, high pKapp (apparent pKa) values were determined for the two cysteines of the SCXXC motif. The tTlpA2 was shown to be efficiently reduced by the N-terminal domain of the DsbD, whereas tTlpA2 reduced a mimetic peptide of cytochrome c' with a catalytic efficiency similar to that observed with other disulfide oxidoreductase like ResA. Moreover, the corresponding gene tlpA2 was shown to be essential for the pathogen viability and able to partially complement a Bordetella pertussis CcsX mutant. Together, these data support an essential role of TlpA2 in the Ccm process in N. meningitidis.
Collapse
|
9
|
Protein flexibility and cysteine reactivity: influence of mobility on the H-bond network and effects on pKa prediction. Protein J 2015; 33:323-36. [PMID: 24809821 DOI: 10.1007/s10930-014-9564-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thanks to its chemical plasticity, cysteine (Cys) is a very versatile player in proteins. A major determinant of Cys reactivity is pKa: the ability to predict it is deemed critical in redox bioinformatics. I considered different computational methods for pKa predictions and ultimately applied one (propka, ppka1) to various datasets; for all residues I assessed the effect of (1) hydrogen bonding, electrostatics and solvation on predictions and (2) protein mobility on pKa variability. Particularly for Cys, exposure and H-bond contributions heavily dictated propka predictions. The prominence of H-bond contributions was previously reported: this may explain the effectiveness of ppka1 (with Cys, tested in a benchmark). However ppka1 was also very sensitive to protein mobility; I assessed the effects of mobility on particularly large (compared to previous studies) datasets of structural ensembles; I found that exposed Cys presented the highest pKa variability, ascribable to correspondingly high H-bond fluctuations associated with protein flexibility. The benefit of including protein dynamics in pKa predictions was previously proposed, but empirical methods were never tested in this sense; instead, giving their outstanding speed, they could lend particularly well to this purpose. I devised a strategy combining short range molecular dynamics with ppka1; the protocol aimed to mitigate high ppka1 variability by including a "statistical view" of fast conformational changes. Tested in a benchmark, the strategy lead to improved performances. These results provide new insights on Cys bioinformatics (pKa prediction protocols) and Cys biology (effect of mobility on exposed Cys properties).
Collapse
|
10
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
11
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. An extended active-site motif controls the reactivity of the thioredoxin fold. J Biol Chem 2014; 289:8681-96. [PMID: 24469455 PMCID: PMC3961690 DOI: 10.1074/jbc.m113.513457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | | | | | | | | | | |
Collapse
|
12
|
Saleh M, Bartual SG, Abdullah MR, Jensch I, Asmat TM, Petruschka L, Pribyl T, Gellert M, Lillig CH, Antelmann H, Hermoso JA, Hammerschmidt S. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol Med 2013; 5:1852-70. [PMID: 24136784 PMCID: PMC3914529 DOI: 10.1002/emmm.201202435] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 01/27/2023] Open
Abstract
The respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we characterize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their redox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the way for the design of novel antimicrobials.
Collapse
Affiliation(s)
- Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation. J Bacteriol 2013; 195:5242-9. [PMID: 24056109 DOI: 10.1128/jb.00917-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.
Collapse
|
14
|
Yoon JY, Kim J, An DR, Lee SJ, Kim HS, Im HN, Yoon HJ, Kim JY, Kim SJ, Han BW, Suh SW. Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:735-46. [PMID: 23633582 DOI: 10.1107/s0907444913001236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
16
|
Roos G, Foloppe N, Messens J. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 2013; 18:94-127. [PMID: 22746677 DOI: 10.1089/ars.2012.4521] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many cellular functions involve cysteine chemistry via thiol-disulfide exchange pathways. The nucleophilic cysteines of the enzymes involved are activated as thiolate. A thiolate is much more reactive than a neutral thiol. Therefore, determining and understanding the pK(a)s of functional cysteines are important aspects of biochemistry and molecular biology with direct implications for redox signaling. Here, we describe the experimental and theoretical methods to determine cysteine pK(a) values, and we examine the factors that control these pK(a)s. Drawing largely on experience gained with the thioredoxin superfamily, we examine the roles of solvation, charge-charge, helix macrodipole, and hydrogen bonding interactions as pK(a)-modulating factors. The contributions of these factors in influencing cysteine pK(a)s and the associated chemistry, including the relevance for the reaction kinetics and thermodynamics, are discussed. This analysis highlights the critical role of direct hydrogen bonding to the cysteine sulfur as a key factor modulating the equilibrium between thiol S-H and thiolate S(-). This role is easily understood intuitively and provides a framework for biochemical functional insights.
Collapse
Affiliation(s)
- Goedele Roos
- General Chemistry, Vrije University Brussel, Brussels, Belgium
| | | | | |
Collapse
|
17
|
Marino SM, Gladyshev VN. Analysis and functional prediction of reactive cysteine residues. J Biol Chem 2011; 287:4419-25. [PMID: 22157013 DOI: 10.1074/jbc.r111.275578] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pK(a), to algorithms for functional prediction of different types of Cys in proteins.
Collapse
Affiliation(s)
- Stefano M Marino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
18
|
Abstract
Organisms employ one of several different enzyme systems to mature cytochromes c. The biosynthetic process involves the periplasmic reduction of cysteine residues in the heme c attachment motif of the apocytochrome, transmembrane transport of heme b and stereospecific covalent heme attachment via thioether bonds. The biogenesis System II (or Ccs system) is employed by β-, δ- and ε-proteobacteria, Gram-positive bacteria, Aquificales and cyanobacteria, as well as by algal and plant chloroplasts. System II comprises four (sometimes only three) membrane-bound proteins: CcsA (or ResC) and CcsB (ResB) are the components of the cytochrome c synthase, whereas CcdA and CcsX (ResA) function in the generation of a reduced heme c attachment motif. Some ε-proteobacteria contain CcsBA fusion proteins constituting single polypeptide cytochrome c synthases especially amenable for functional studies. This minireview highlights the recent findings on the structure, function and specificity of individual System II components and outlines the future challenges that remain to our understanding of the fascinating post-translational protein maturation process in more detail.
Collapse
Affiliation(s)
- Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
19
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Goddard AD, Stevens JM, Ferguson SJ, Redfield C. Oxidation state-dependent protein-protein interactions in disulfide cascades. J Biol Chem 2011; 286:24943-56. [PMID: 21543317 PMCID: PMC3137068 DOI: 10.1074/jbc.m111.236141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal 2010; 13:1385-401. [PMID: 20214494 DOI: 10.1089/ars.2010.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes, CNRS UPR-Université de Strasbourg, France.
| | | | | | | |
Collapse
|
21
|
Gabilly ST, Dreyfuss BW, Karamoko M, Corvest V, Kropat J, Page MD, Merchant SS, Hamel PP. CCS5, a thioredoxin-like protein involved in the assembly of plastid c-type cytochromes. J Biol Chem 2010; 285:29738-49. [PMID: 20628047 DOI: 10.1074/jbc.m109.099069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-type cytochromes are metalloproteins with a heme molecule covalently linked to the sulfhydryls of a CXXCH heme-binding site. In plastids, at least six assembly factors are required for heme attachment to the apo-forms of cytochrome f and cytochrome c(6) in the thylakoid lumen. CCS5, controlling plastid cytochrome c assembly, was identified through insertional mutagenesis in the unicellular green alga Chlamydomonas reinhardtii. The complementing gene encodes a protein with similarity to Arabidopsis thaliana HCF164, which is a thylakoid membrane-anchored protein with a lumen-facing thioredoxin-like domain. HCF164 is required for cytochrome b(6)f biogenesis, but its activity and site of action in the assembly process has so far remained undeciphered. We show that CCS5 is a component of a trans-thylakoid redox pathway and operates by reducing the CXXCH heme-binding site of apocytochrome c prior to the heme ligation reaction. The proposal is based on the following findings: 1) the ccs5 mutant is rescued by exogenous thiols; 2) CCS5 interacts with apocytochrome f and c(6) in a yeast two-hybrid assay; and 3) recombinant CCS5 is able to reduce a disulfide in the CXXCH heme-binding site of apocytochrome f.
Collapse
Affiliation(s)
- Stéphane T Gabilly
- From the Department of Molecular Genetics and Department of Molecular Cellular Biochemistry and
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanders C, Turkarslan S, Lee DW, Daldal F. Cytochrome c biogenesis: the Ccm system. Trends Microbiol 2010; 18:266-74. [PMID: 20382024 DOI: 10.1016/j.tim.2010.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 11/15/2022]
Abstract
Cytochromes of c-type contain covalently attached hemes that are formed via thioether bonds between the vinyls of heme b and cysteines within C(1)XXC(2)H motifs of apocytochromes. In diverse organisms this post-translational modification relies on membrane-associated specific biogenesis proteins, referred to as cytochrome c maturation (Ccm) systems. A highly complex version of these systems, Ccm or System I, is found in Gram-negative bacteria, archaea and plant mitochondria. We describe emerging functional interactions between the Ccm components categorized into three conserved modules, and present a mechanistic view of the molecular basis of ubiquitous vinyl-2 approximately Cys(1) and vinyl-4 approximately Cys(2) heme b-apocytochrome thioether bonds in c-type cytochromes.
Collapse
Affiliation(s)
- Carsten Sanders
- Kutztown University, Department of Biology, Kutztown, PA 19530, USA
| | | | | | | |
Collapse
|
23
|
Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Conformational changes in redox pairs of protein structures. Protein Sci 2009; 18:1745-65. [PMID: 19598234 PMCID: PMC2776962 DOI: 10.1002/pro.175] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.
Collapse
Affiliation(s)
- Samuel W Fan
- Structural and Computational Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx. Thioredoxins are found in all types of cells and control several essential functions of life, including promotion of cell growth, inhibition of apoptosis, and modulation of inflammation. Thioredoxin has two ‘free’ cysteines in its active site, which are used to break disulfide bonds in oxidized substrate proteins. In the first step, an intermediate thioredoxin-protein complex is formed, which is broken in the second step, releasing the substrate protein in its reduced state. In other words, the disulfide is being transferred from the substrate protein to thioredoxin, or the electrons coming from thioredoxin are shuttled to the protein substrate. The exact reaction mechanism, i.e., the detailed succession of steps in which the reaction takes place, of how this mixed disulfide is broken is not known and has been debated over the last twenty years. With a multidisciplinary approach, combining computational and experimental work, we provide fresh insights into how conformational changes activate the catalytic cysteines with which this universal reduction mechanism is completed with the correct regioselectivity. This work illustrates the strengths of computational approaches in probing phenomena which are otherwise very difficult to investigate experimentally.
Collapse
|
25
|
Ahuja U, Kjelgaard P, Schulz BL, Thöny-Meyer L, Hederstedt L. Haem-delivery proteins in cytochrome c maturation System II. Mol Microbiol 2009; 73:1058-71. [PMID: 19682263 DOI: 10.1111/j.1365-2958.2009.06833.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cytochromes of the c-type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacter CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Crow A, Lewin A, Hecht O, Carlsson Möller M, Moore GR, Hederstedt L, Le Brun NE. Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J Biol Chem 2009; 284:23719-33. [PMID: 19535335 PMCID: PMC2749146 DOI: 10.1074/jbc.m109.005785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BdbD is a thiol:disulfide oxidoreductase (TDOR) from Bacillus subtilis that functions to introduce disulfide bonds in substrate proteins/peptides on the outside of the cytoplasmic membrane and, as such, plays a key role in disulfide bond management. Here we demonstrate that the protein is membrane-associated in B. subtilis and present the crystal structure of the soluble part of the protein lacking its membrane anchor. This reveals that BdbD is similar in structure to Escherichia coli DsbA, with a thioredoxin-like domain with an inserted helical domain. A major difference, however, is the presence in BdbD of a metal site, fully occupied by Ca2+, at an inter-domain position some 14 Å away from the CXXC active site. The midpoint reduction potential of soluble BdbD was determined as −75 mV versus normal hydrogen electrode, and the active site N-terminal cysteine thiol was shown to have a low pKa, consistent with BdbD being an oxidizing TDOR. Equilibrium unfolding studies revealed that the oxidizing power of the protein is based on the instability introduced by the disulfide bond in the oxidized form. The crystal structure of Ca2+-depleted BdbD showed that the protein remained folded, with only minor conformational changes. However, the reduced form of Ca2+-depleted BdbD was significantly less stable than reduced Ca2+-containing protein, and the midpoint reduction potential was shifted by approximately −20 mV, suggesting that Ca2+ functions to boost the oxidizing power of the protein. Finally, we demonstrate that electron exchange does not occur between BdbD and B. subtilis ResA, a low potential extra-cytoplasmic TDOR.
Collapse
Affiliation(s)
- Allister Crow
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Crow A, Liu Y, Möller MC, Le Brun NE, Hederstedt L. Structure and functional properties of Bacillus subtilis endospore biogenesis factor StoA. J Biol Chem 2009; 284:10056-66. [PMID: 19144642 PMCID: PMC2665060 DOI: 10.1074/jbc.m809566200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Indexed: 11/21/2022] Open
Abstract
Bacillus subtilis StoA is an extracytoplasmic thiol-disulfide oxidoreductase (TDOR) important for the synthesis of the endospore peptidoglycan cortex protective layer. Here we demonstrate that StoA is membrane-associated in B. subtilis and report the crystal structure of the soluble protein lacking its membrane anchor. This showed that StoA adopts a thioredoxin-like fold with N-terminal and internal additions that are characteristic of extracytoplasmic TDORs. The CXXC active site of the crystallized protein was found to be in a mixture of oxidized and reduced states, illustrating that there is little conformational variation between redox states. The midpoint reduction potential was determined as -248 mV versus normal hydrogen electrode at pH 7 consistent with StoA fulfilling a reductive role in endospore biogenesis. pK(a) values of the active site cysteines, Cys-65 and Cys-68, were determined to be 5.5 and 7.8. Although Cys-68 is buried within the structure, both cysteines were found to be accessible to cysteine-specific alkylating reagents. In vivo studies of site-directed variants of StoA revealed that the active site cysteines are functionally important, as is Glu-71, which lies close to the active site and is conserved in many reducing extracytoplasmic TDORs. The structure and biophysical properties of StoA are very similar to those of ResA, a B. subtilis extracytoplasmic TDOR involved in cytochrome c maturation, raising important general questions about how these similar but non-redundant proteins achieve specificity. A detailed comparison of the two proteins demonstrates that relatively subtle differences, largely located around the active sites of the proteins, are sufficient to confer specificity.
Collapse
Affiliation(s)
- Allister Crow
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Turkarslan S, Sanders C, Ekici S, Daldal F. Compensatory thio-redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome c maturation. Mol Microbiol 2008; 70:652-66. [PMID: 18786143 DOI: 10.1111/j.1365-2958.2008.06441.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During cytochrome c maturation (Ccm), the DsbA-dependent thio-oxidative protein-folding pathway is thought to introduce a disulphide bond into the haem-binding motif of apocytochromes c. This disulphide bond is believed to be reduced through a thio-reductive pathway involving the Ccm components CcdA (DsbD), CcmG and CcmH. Here, we show in Rhodobacter capsulatus that in the absence of DsbA cytochrome c levels were decreased and CcdA or CcmG or the putative glutathione transporter CydDC was not needed for Ccm. This decrease was not due to overproduction of the periplasmic protease DegP as a secondary effect of DsbA absence. In contrast, CcmH was absolutely necessary regardless of DsbA, indicating that compensatory thio-redox interactions excluded it. Remarkably, the double (DsbA-CcmG) and triple (DsbA-CcmG-CcdA) mutants produced cytochromes c at lower levels than the DsbA-null mutants, unless they contained a CcmG derivative (CcmG*) lacking its thio-reductive activity. Purified CcmG* can bind apocytochrome c in vitro, revealing for the first time a thiol-independent, direct interaction between apocytochrome c and CcmG. Furthermore, elimination of the thio-redox components does not abolish cytochrome c production, restricting the number of Ccm components essential for haem-apocyt c ligation per se during Ccm.
Collapse
Affiliation(s)
- Serdar Turkarslan
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Takayama Y, Werbeck ND, Komori H, Morita K, Ozawa K, Higuchi Y, Akutsu H. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3. Biochemistry 2008; 47:9405-15. [PMID: 18702516 DOI: 10.1021/bi8005708] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.
Collapse
Affiliation(s)
- Yuki Takayama
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA. Biochem J 2008; 414:81-91. [DOI: 10.1042/bj20080356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The thiol–disulfide oxidoreductase ResA from Bacillus subtilis fulfils a reductive role in cytochrome c maturation. The pKa values for the CEPC (one-letter code) active-site cysteine residues of ResA are unusual for thioredoxin-like proteins in that they are both high (>8) and within 0.5 unit of each other. To determine the contribution of the inter-cysteine dipeptide of ResA to its redox and acid–base properties, three variants (CPPC, CEHC and CPHC) were generated representing a stepwise conversion into the active-site sequence of the high-potential DsbA protein from Escherichia coli. The substitutions resulted in large decreases in the pKa values of both the active-site cysteine residues: in CPHC (DsbA-type) ResA, ΔpKa values of −2.5 were measured for both cysteine residues. Increases in midpoint reduction potentials were also observed, although these were comparatively small: CPHC (DsbA-type) ResA exhibited an increase of +40 mV compared with the wild-type protein. Unfolding studies revealed that, despite the observed differences in the properties of the reduced proteins, changes in stability were largely confined to the oxidized state. High-resolution structures of two of the variants (CEHC and CPHC ResA) in their reduced states were determined and are discussed in terms of the observed changes in properties. Finally, the in vivo functional properties of CEHC ResA are shown to be significantly affected compared with those of the wild-type protein.
Collapse
|
31
|
Quinternet M, Tsan P, Neiers F, Beaufils C, Boschi-Muller S, Averlant-Petit MC, Branlant G, Cung MT. Solution structure and dynamics of the reduced and oxidized forms of the N-terminal domain of PilB from Neisseria meningitidis. Biochemistry 2008; 47:8577-89. [PMID: 18651754 DOI: 10.1021/bi800884w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secreted form of the PilB protein was proposed to be involved in pathogen survival fighting against the defensive host's oxidative burst. PilB protein is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase A and B activities, respectively. The N-terminal domain, which possesses a CXXC motif, was recently shown to regenerate in vitro the reduced forms of the methionine sulfoxide reductase domains of PilB from their oxidized forms, as does the thioredoxin 1 from E. coli, via a disulfide bond exchange. The thioredoxin-like N-terminal domain belongs to the cytochrome maturation protein structural family, but it possesses a unique additional segment (99)FLHE (102) localized in a loop. This segment covers one edge of the active site in the crystal structure of the reduced form of the N-terminal domain of PilB. We have determined the solution structure and the dynamics of the N-terminal domain from Neisseria meningitidis, in its reduced and oxidized forms. The FLHE loop adopts, in both redox states, a well-defined conformation. Subtle conformational and dynamic changes upon oxidation are highlighted around the active site, as well as in the FLHE loop. The functional consequences of the cytochrome maturation protein topology and those of the presence of FLHE loop are discussed in relation to the enzymatic properties of the N-terminal domain.
Collapse
Affiliation(s)
- Marc Quinternet
- Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, Nancy Université, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pKa values of 6 or below. Chelator competition experiments demonstrated that the protein binds Cu(I) with extremely high affinity, with a small but significant pH-dependence over the range pH 6.5–8.0. From these data, a pH-corrected formation constant, β2=∼6×1022 M−2, was determined. Rapid exchange of Cu(I) between CopZ and the Cu(I)-chelator BCS (bathocuproine disulfonate) indicated that the mechanism of exchange does not involve simple dissociation of Cu(I) from CopZ (or BCS), but instead proceeds via the formation of a transient Cu(I)-mediated protein–chelator complex. Such a mechanism has similarities to the Cu(I)-exchange pathway that occurs between components of copper-trafficking pathways.
Collapse
|
33
|
The active-site cysteinyls and hydrophobic cavity residues of ResA are important for cytochrome c maturation in Bacillus subtilis. J Bacteriol 2008; 190:4697-705. [PMID: 18456809 DOI: 10.1128/jb.00145-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ResA is an extracytoplasmic membrane-bound thiol-disulfide oxidoreductase required for cytochrome c maturation in Bacillus subtilis. Previous biochemical and structural studies have revealed that the active-site cysteinyls cycle between oxidized and reduced states with a low reduction potential and that, upon reduction, a hydrophobic cavity forms close to the active site. Here we report in vivo studies of ResA-deficient B. subtilis complemented with a series of ResA variants. Using a range of methods to analyze the cellular cytochrome c content, we demonstrated (i) that the N-terminal transmembrane segment of ResA serves principally to anchor the protein to the cytoplasmic membrane but also plays a role in mediating the activity of the protein; (ii) that the active-site cysteines are important for cytochrome c maturation activity; (iii) that Pro141, which forms part of the hydrophobic cavity and which adopts a cis conformation, plays an important role in protein stability; (iv) that Glu80, which lies at the base of the hydrophobic cavity, is important for cytochrome c maturation activity; and, finally, (v) that Pro141 and Glu80 ResA mutant variants promote selective maturation of low levels of one c-type cytochrome, subunit II of the cytochrome c oxidase caa(3), indicating that this apocytochrome is distinct from the other three endogenous c-type cytochromes of B. subtilis.
Collapse
|
34
|
Allen JWA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 2008; 275:2385-402. [PMID: 18393999 DOI: 10.1111/j.1742-4658.2008.06380.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment is restricted to, but conserved throughout, the protist phylum Euglenozoa.
Collapse
|
35
|
Di Matteo A, Gianni S, Schininà ME, Giorgi A, Altieri F, Calosci N, Brunori M, Travaglini-Allocatelli C. A Strategic Protein in Cytochrome c Maturation. J Biol Chem 2007; 282:27012-27019. [PMID: 17623665 DOI: 10.1074/jbc.m702702200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcmH (cytochromes c maturation protein H) is an essential component of the assembly line necessary for the maturation of c-type cytochromes in the periplasm of Gram-negative bacteria. The protein is a membrane-anchored thiol-oxidoreductase that has been hypothesized to be involved in the recognition and reduction of apocytochrome c, a prerequisite for covalent heme attachment. Here, we present the 1.7A crystal structure of the soluble periplasmic domain of CcmH from the opportunistic pathogen Pseudomonas aeruginosa (Pa-CcmH*). The protein contains a three-helix bundle, i.e. a fold that is different from that of all other thiol-oxidoreductases reported so far. The catalytic Cys residues of the conserved LRCXXC motif (Cys(25) and Cys(28)), located in a long loop connecting the first two helices, form a disulfide bond in the oxidized enzyme. We have determined the pK(a) values of these 2 Cys residues of Pa-CcmH* (both >8) and propose a possible mechanistic role for a conserved Ser(36) and a water molecule in the active site. The interaction between Pa-CcmH* and Pa-apocyt c(551) (where cyt c(551) represents cytochrome c(551)) was characterized in vitro following the binding kinetics by stopped-flow using a Trp-containing fluorescent variant of Pa-CcmH* and a dansylated peptide, mimicking the apocytochrome c(551) heme binding motif. The kinetic results show that the protein has a moderate affinity to its apocyt substrate, consistent with the role of Pa-CcmH as an intermediate component of the assembly line for c-type cytochrome biogenesis.
Collapse
Affiliation(s)
- Adele Di Matteo
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - M Eugenia Schininà
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Fabio Altieri
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Nicoletta Calosci
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy.
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche and Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche (CNR), La Sapienza, Università di Roma, Piazzale A. Moro 5, 00185 Roma Italy
| |
Collapse
|
36
|
Lee JH, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2164-81. [PMID: 17706591 DOI: 10.1016/j.bbamem.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 03/22/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022]
Abstract
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
37
|
Geng H, Zhu Y, Mullen K, Zuber CS, Nakano MM. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis. J Bacteriol 2006; 189:1745-55. [PMID: 17189364 PMCID: PMC1855754 DOI: 10.1128/jb.01502-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system is required for transcription of genes involved in aerobic and anaerobic respiration in Bacillus subtilis. Phosphorylated ResD (ResD approximately P) interacts with target DNA to activate transcription. A strong sequence similarity was detected in promoter regions of some ResD-controlled genes including fnr and resA. Single-base substitutions in the fnr and resA promoters were performed to determine a ResD-binding sequence. DNase I footprinting analysis indicated that ResD approximately P itself does not bind to fnr, but interaction of ResD approximately P with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase (RNAP) facilitates cooperative binding of ResD approximately P and RNAP, thereby increasing fnr transcription initiation. Consistent with this result, amino acid substitutions in alphaCTD, such as Y263A, K267A, A269I, or N290A, sharply reduced fnr transcription in vivo, and the K267A alphaCTD protein, unlike the wild-type protein, did not increase ResD approximately P binding to the fnr promoter. Amino acid residues of alphaCTD required for ResD-dependent fnr transcription, with the exception of N290, which may interact with DNA, constitute a distinct surface, suggesting that these residues likely interact with ResD approximately P.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
38
|
Choi SK, Saier MH. Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J Mol Microbiol Biotechnol 2006; 11:104-10. [PMID: 16825793 DOI: 10.1159/000092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The resABCDE operon of Bacillus subtilis encodes a three-protein complex involved in cytochrome c biogenesis as well as the ResE sensor kinase and the ResD response regulator that control electron transfer and other functions in response to oxygen availability. We have investigated the mechanism of CcpA-mediated control of res operon expression which occurs maximally in the stationary phase of growth. Two CcpA-binding (CRE) sites were found in the res operon, one (CRE1) in the control region in front of the resA promoter, the other (CRE2) in the resB structural gene. Both CRE sites proved to be essential for full CcpA-mediated glucose repression of res operon expression. We propose that both looping and road block mechanisms are involved in res operon control by CcpA.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
39
|
Lewin A, Crow A, Oubrie A, Le Brun NE. Molecular Basis for Specificity of the Extracytoplasmic Thioredoxin ResA. J Biol Chem 2006; 281:35467-77. [PMID: 16971393 DOI: 10.1074/jbc.m607047200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ResA, an extracytoplasmic thioredoxin from Bacillus subtilis, acts in cytochrome c maturation by reducing the disulfide bond present in apocytochromes prior to covalent attachment of heme. This reaction is (and has to be) specific, as broad substrate specificity would result in unproductive shortcircuiting with the general oxidizing thioredoxin(s) present in the same compartment. Using mutational analysis and subsequent biochemical and structural characterization of active site variants, we show that reduced ResA displays unusually low reactivity at neutral pH, consistent with the observed high pKa values>8 for both active site cysteines. Residue Glu80 is shown to play a key role in controlling the acid-base properties of the active site. A model in which substrate binding dramatically enhances the reactivity of the active site cysteines is proposed to account for the specificity of the protein. Such a substratemediated activation mechanism is likely to have wide relevance for extracytoplasmic thioredoxins.
Collapse
Affiliation(s)
- Allison Lewin
- School of Chemical Sciences and Pharmacy, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
40
|
Alvarez B, Secades P, Prieto M, McBride MJ, Guijarro JA. A mutation in Flavobacterium psychrophilum tlpB inhibits gliding motility and induces biofilm formation. Appl Environ Microbiol 2006; 72:4044-53. [PMID: 16751514 PMCID: PMC1489658 DOI: 10.1128/aem.00128-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Flavobacterium psychrophilum is a psychrotrophic, fish-pathogenic bacterium belonging to the Cytophaga-Flavobacterium-Bacteroides group. Tn4351-induced mutants deficient in gliding motility, growth on iron-depleted media, and extracellular proteolytic activity were isolated. Some of these mutants were affected in only one of these characteristics, whereas others had defects in two or more. FP523, a mutant deficient in all of these properties, was studied further. FP523 had a Tn4351 insertion in tlpB (thiol oxidoreductase-like protein gene), which encodes a 41.4-kDa protein whose sequence does not exhibit high levels of similar to the sequences of proteins having known functions. TlpB has two domains; the N-terminal domains has five transmembrane regions, whereas the C-terminal domains has the Cys-X-X-Cys motif and other conserved motifs characteristic of thiol:disulfide oxidoreductases. Quantitative analysis of the thiol groups of periplasmic proteins revealed that TlpB is required for reduction of these groups. The tlpB gene is part of the fpt (F. psychrophilum thiol oxidoreductase) operon that contains two other genes, tlpA and tpiA, which encode a thiol:disulfide oxidoreductase and a triosephosphate isomerase, respectively. FP523 exhibited enhanced biofilm formation and decreased virulence and cytotoxicity. Complementation with the tlpB loci restored the wild-type phenotype. Gliding motility and biofilm formation appear to be antagonistic properties, which are both affected by TlpB.
Collapse
Affiliation(s)
- B Alvarez
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
41
|
Brot N, Collet JF, Johnson LC, Jönsson TJ, Weissbach H, Lowther WT. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J Biol Chem 2006; 281:32668-75. [PMID: 16926157 DOI: 10.1074/jbc.m604971200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the alpha domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologs are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this frame-work there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6A crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules, including TlpA, CcmG, and ResA. Subtle differences are observed in this loop when compared with the Neisseria meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.
Collapse
Affiliation(s)
- Nathan Brot
- Hospital for Special Surgery, Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
42
|
Möller M, Hederstedt L. Role of membrane-bound thiol-disulfide oxidoreductases in endospore-forming bacteria. Antioxid Redox Signal 2006; 8:823-33. [PMID: 16771673 DOI: 10.1089/ars.2006.8.823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thiol-disulfide oxidoreductases catalyze formation, disruption, or isomerization of disulfide bonds between cysteine residues in proteins. Much is known about the functional roles and properties of this class of redox enzymes in vegetative bacterial cells but their involvement in sporulation has remained unknown until recently. Two membrane-embedded thiol-disulfide oxidoreductases, CcdA and StoA/SpoIVH, conditionally required for efficient production of Bacillus subtilis heat-resistant endospores, have now been identified. Properties of mutant cells lacking the two enzymes indicate new aspects in the molecular details of endospore envelope development. This mini-review presents an overview of membrane-bound thiol-disulfide oxidoreductases in the Gram-positive bacterium B. subtilis and endospore synthesis. Accumulated experimental findings on CcdA and StoA/SpoIVH are reviewed. A model for the role of these proteins in endospore cortex biogenesis in presented.
Collapse
Affiliation(s)
- Mirja Möller
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
43
|
Ranaivoson FM, Kauffmann B, Neiers F, Wu J, Boschi-Muller S, Panjikar S, Aubry A, Branlant G, Favier F. The X-ray Structure of the N-terminal Domain of PILB from Neisseria meningitidis Reveals a Thioredoxin-fold. J Mol Biol 2006; 358:443-54. [PMID: 16530221 DOI: 10.1016/j.jmb.2006.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/15/2022]
Abstract
The secreted form of the PilB protein was recently shown to be bound to the outer membrane of Neisseria gonorrhoeae and proposed to be involved in survival of the pathogen to the host's oxidative burst. PilB is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase (Msr) A and B activities respectively, i.e. the ability to reduce specifically the S and the R enantiomers of the sulfoxide function of the methionine sulfoxides, which are easily formed upon oxidation of methionine residues. The N-terminal domain of PilB (Dom1(PILB)) of N.meningitidis, which possesses a CXXC motif, was recently shown to recycle the oxidized forms of the PilB Msr domains in vitro, as the Escherichia coli thioredoxin (Trx) 1 does. The X-ray structure of Dom1(PILB) of N.meningitidis determined here shows a Trx-fold, in agreement with the biochemical properties of Dom1(PILB). However, substantial structural differences with E.coli Trx1 exist. Dom1(PILB) displays more structural homologies with the periplasmic disulfide oxidoreductases involved in cytochrome maturation pathways in bacteria. The active site of the reduced form of Dom1(PILB) reveals a high level of stabilization of the N-terminal catalytic cysteine residue and a hydrophobic environment of the C-terminal recycling cysteine in the CXXC motif, consistent with the pK(app) values measured for Cys67 (<6) and Cys70 (9.3), respectively. Compared to cytochrome maturation disulfide oxidoreductases and to Trx1, one edge of the active site is covered by four additional residues (99)FLHE(102). The putative role of the resulting protuberance is discussed in relation to the disulfide reductase properties of Dom1(PILB).
Collapse
Affiliation(s)
- Fanomezana M Ranaivoson
- LCM3B, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abajian C, Rosenzweig AC. Crystal structure of yeast Sco1. J Biol Inorg Chem 2006; 11:459-66. [PMID: 16570183 DOI: 10.1007/s00775-006-0096-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-A resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.
Collapse
Affiliation(s)
- Carnie Abajian
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
45
|
Allen JWA, Ferguson SJ. What is the substrate specificity of the System I cytochrome c biogenesis apparatus? Biochem Soc Trans 2006; 34:150-1. [PMID: 16417507 DOI: 10.1042/bst0340150] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-Type cytochromes are characterized by covalent attachment of haem to protein through thioether bonds between the vinyl groups of the haem and the thiols of a CXXCH motif. Proteins of this type play crucial roles in the biochemistry of the nitrogen cycle. Many Gram-negative bacteria use the Ccm (cytochrome c maturation) proteins for the post-translational haem attachment to their c-type cytochromes; in the present paper, we discuss the substrate specificity of the Ccm apparatus. The main conclusion is that the feature recognized and required in the apocytochrome is simply the two cysteines and the histidine of the haem-binding motif.
Collapse
Affiliation(s)
- J W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
46
|
Colbert CL, Wu Q, Erbel PJA, Gardner KH, Deisenhofer J. Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation. Proc Natl Acad Sci U S A 2006; 103:4410-5. [PMID: 16537372 PMCID: PMC1400588 DOI: 10.1073/pnas.0600552103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalent attachment of heme cofactors to the apo-polypeptides via thioether bonds is unique to the maturation of c-type cytochromes. A number of thiol-disulfide oxidoreductases prepare the apocytochrome for heme insertion in system I and II cytochrome c maturation. Although most thiol-disulfide oxidoreductases are nonspecific, the less common, specific thiol-disulfide oxidoreductases may be key to directing the usage of electrons. Here we demonstrate that unlike other thiol-disulfide oxidoreductases, the protein responsible for reducing oxidized apocytochrome c in Bacillus subtilis, ResA, is specific for cytochrome c550 and utilizes alternate conformations to recognize redox partners. We report solution NMR evidence that ResA undergoes a redox-dependent conformational change between oxidation states, as well as data showing that ResA utilizes a surface cavity present only in the reduced state to recognize a peptide derived from cytochrome c550. Finally, we confirm that ResA is a specific thiol-disulfide oxidoreductase by comparing its reactivity to our mimetic peptide with its reactivity to oxidized glutathione, a nonspecific substrate. This study biochemically demonstrates the specificity of this thiol-disulfide oxidoreductase and enables us to outline a structural mechanism of regulating the usage of electrons in a thiol-disulfide oxidoreductase system.
Collapse
Affiliation(s)
| | - Qiong Wu
- *Biochemistry and
- Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Paul J. A. Erbel
- *Biochemistry and
- Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Kevin H. Gardner
- *Biochemistry and
- Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | | |
Collapse
|
47
|
Zhang X, Hu Y, Guo X, Lescop E, Li Y, Xia B, Jin C. The Bacillus subtilis YkuV Is a Thiol:Disulfide Oxidoreductase Revealed by Its Redox Structures and Activity. J Biol Chem 2006; 281:8296-304. [PMID: 16418167 DOI: 10.1074/jbc.m512015200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bacillus subtilis YkuV responds to environmental oxidative stress and plays an important role for the bacteria to adapt to the environment. Bioinformatic analysis suggests that YkuV is a homolog of membrane-anchored proteins and belongs to the thioredoxin-like protein superfamily containing the typical Cys-Xaa-Xaa-Cys active motif. However, the biological function of this protein remains unknown thus far. In order to elucidate the biological function, we have determined the solution structures of both the oxidized and reduced forms of B. subtilis YkuV by NMR spectroscopy and performed biochemical studies. Our results demonstrated that the reduced YkuV has a low midpoint redox potential, allowing it to reduce a variety of protein substrates. The overall structures of both oxidized and reduced forms are similar, with a typical thioredoxin-like fold. However, significant conformational changes in the Cys-Xaa-Xaa-Cys active motif of the tertiary structures are observed between the two forms. In addition, the backbone dynamics provide further insights in understanding the strong redox potential of the reduced YkuV. Furthermore, we demonstrated that YkuV is able to reduce different protein substrates in vitro. Together, our results clearly established that YkuV may function as a general thiol:disulfide oxidoreductase, which acts as an alternative for thioredoxin or thioredoxin reductase to maintain the reducing environment in the cell cytoplasm.
Collapse
Affiliation(s)
- Xinxin Zhang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Oxidative folding in the endoplasmic reticulum is accomplished by a group of oxidoreductases where the protein disulfide isomerase (PDI) plays a key role. Structurally, redox-active PDI domains, like many other enzymes utilizing cysteine chemistry, adopt characteristic thioredoxin folds. However, this structural unit is not necessarily associated with the redox function and the current review focuses on the interesting example of a loss-of-function PDI-like protein from the endoplasmic reticulum, ERp29. ERp29 shares a common predecessor with PDI; however in the course of divergent evolution it has lost a hallmark active site motif of redox enzymes but retained the characteristic structural fold in one of its domains. Although the functional characterization of ERp29 is far from completion, all available data point to its important role in the early secretory pathway and allow tentative categorization as a secretion factor/escort protein of a broad profile.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
49
|
Allen J, Leach N, Ferguson S. The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus. Biochem J 2005; 389:587-92. [PMID: 15801911 PMCID: PMC1175137 DOI: 10.1042/bj20041894] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-type cytochromes are characterized by covalent attachment of haem to the protein by two thioether bonds formed between the haem vinyl groups and the cysteine sulphurs in a CXXCH peptide motif. In Escherichia coli and many other Gram-negative bacteria, this post-translational haem attachment is catalysed by the Ccm (cytochrome c maturation) system. The features of the apocytochrome substrate required and recognized by the Ccm apparatus are uncertain. In the present study, we report investigations of maturation of cytochrome b562 variants containing CXXCR, CXXCK or CXXCM haem-binding motifs. None of them showed any evidence for correct maturation by the Ccm system. However, we have determined, for each variant, that the proteins (i) were expressed in large amounts, (ii) could bind haem in vivo and/or in vitro and (iii) were not degraded in the cell. Together with previous observations, these results strongly suggest that the apocytochrome substrate feature recognized by the Ccm system is simply the two cysteine residues and the histidine of the CXXCH haem-binding motif. Using the same experimental approach, we have also investigated a cytochrome b562 variant containing the special CWSCK motif that binds the active-site haem of E. coli nitrite reductase NrfA. Whereas a CWSCH analogue was matured by the Ccm apparatus in large amounts, the CWSCK form was not detectably matured either by the Ccm system or by the dedicated Nrf biogenesis proteins, implying that the substrate recognition features for haem attachment in NrfA may be more extensive than the CWSCK motif.
Collapse
Affiliation(s)
- James W. A. Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Nicholas Leach
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
50
|
Abstract
Numerous bacterial proteins involved in the nitrogen cycle, and other processes, require c-type haem as a cofactor. c-type cytochromes are formed by covalent attachment of haem to the conserved CXXCH motif. Here, we briefly review what is presently known about cytochrome c maturation in Bacillus subtilis with particular emphasis on the crystal structures of ResA.
Collapse
Affiliation(s)
- A Crow
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|