1
|
Hushmandi K, Alimohammadi M, Heiat M, Hashemi M, Nabavi N, Tabari T, Raei M, Aref AR, Farahani N, Daneshi S, Taheriazam A. Targeting Wnt signaling in cancer drug resistance: Insights from pre-clinical and clinical research. Pathol Res Pract 2025; 267:155837. [PMID: 39954370 DOI: 10.1016/j.prp.2025.155837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cancer drug resistance, encompassing both acquired and intrinsic chemoresistance, remains a significant challenge in the clinical management of tumors. While advancements in drug discovery and the development of various small molecules and anti-cancer compounds have improved patient responses to chemotherapy, the frequent and prolonged use of these drugs continues to pose a high risk of developing chemoresistance. Therefore, understanding the primary mechanisms underlying drug resistance is crucial. Wnt proteins, as secreted signaling molecules, play a pivotal role in transmitting signals from the cell surface to the nucleus. Aberrant expression of Wnt proteins has been observed in a variety of solid and hematological tumors, where they contribute to key processes such as proliferation, metastasis, stemness, and immune evasion, often acting in an oncogenic manner. Notably, the role of the Wnt signaling pathway in modulating chemotherapy response in human cancers has garnered significant attention. This review focuses on the involvement of Wnt signaling and its related molecular pathways in drug resistance, highlighting their associations with cancer hallmarks, stemness, and tumorigenesis linked to chemoresistance. Additionally, the overexpression of Wnt proteins has been shown to accelerate cancer drug resistance, with regulation mediated by non-coding RNAs. Elevated Wnt activity reduces cell death in cancers, particularly by affecting mechanisms like apoptosis, autophagy, and ferroptosis. Furthermore, pharmacological compounds and small molecules have demonstrated the potential to modulate Wnt signaling in cancer therapy. Given its impact, Wnt expression can also serve as a prognostic marker and a factor influencing survival outcomes in human cancers.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
5
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Feasible Key against Relapses. BIOLOGY 2023; 12:biology12050683. [PMID: 37237497 DOI: 10.3390/biology12050683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wnt signaling is a highly conserved pathway in evolution which controls important processes such as cell proliferation, differentiation and migration, both in the embryo and in the adult. Dysregulation of this pathway can favor the development of different types of cancer, such as acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance capacity, favoring relapse of the disease. Although this pathway participates in the regulation of normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ana Belén Alonso-Aguado
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
7
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
9
|
Zheng Y, Yan RZ, Sun S, Kobayashi M, Xiang L, Yang R, Goedel A, Kang Y, Xue X, Esfahani SN, Liu Y, Resto Irizarry AM, Wu W, Li Y, Ji W, Niu Y, Chien KR, Li T, Shioda T, Fu J. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell 2022; 29:1402-1419.e8. [PMID: 36055194 PMCID: PMC9499422 DOI: 10.1016/j.stem.2022.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023]
Abstract
Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points. Molecular maps of lineage diversifications from the pluripotent human epiblast toward the amniotic ectoderm, primitive streak/mesoderm, and primordial germ cells were constructed and compared with in vivo primate data. The comparative transcriptome analyses reveal a critical role of NODAL signaling in human mesoderm and primordial germ cell specification, which is further functionally validated. Through comparative transcriptome analyses and validations with human blastocysts and in vitro cultured cynomolgus embryos, we further proposed stringent criteria for distinguishing between human blastocyst trophectoderm and early amniotic ectoderm cells.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Robin Zhexuan Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyu Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mutsumi Kobayashi
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA
| | - Lifeng Xiang
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunxiu Li
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Toshihiro Shioda
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature 2022; 607:816-822. [PMID: 35831507 DOI: 10.1038/s41586-022-04952-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.
Collapse
|
11
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
12
|
Degirmenci B, Dincer C, Demirel HC, Berkova L, Moor AE, Kahraman A, Hausmann G, Aguet M, Tuncbag N, Valenta T, Basler K. Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. iScience 2021; 24:103369. [PMID: 34849464 PMCID: PMC8607204 DOI: 10.1016/j.isci.2021.103369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors. Acquired expression of epithelial Wnts can drive colon cancer in murine AOM/DSS model Blocking epithelial Wnt-secretion induces apoptosis of AOM/DSS cancer cells The loss of epithelial Wnts promotes differentiation of Wnt-dependent colon tumors Organoids derived from AOM/DSS cancer depend on self-autonomously secreted Wnts
Collapse
Affiliation(s)
- Bahar Degirmenci
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Cansu Dincer
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Andreas E Moor
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
13
|
Li J, Cao J, Chen H, Tang X, Zhang H, Chen W. Functional characterization of two diacylglycerol acyltransferase 1 genes in Mortierella alpina. Lett Appl Microbiol 2021; 74:194-203. [PMID: 34755357 DOI: 10.1111/lam.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) is a crucial enzyme in the triacylglycerol (TAG) biosynthesis pathway. The oleaginous fungus Mortierella alpina can accumulate large amounts of arachidonic acid (ARA, C20:4) in the form of TAG. Therefore, it is important to study the functional characteristics of its DGAT. Two putative genes MaDGAT1A/1B encoding DGAT1 were identified in M. alpina ATCC 32222 genome by sequence alignment. Sequence alignment with identified DGAT1 homologs showed that MaDGAT1A/1B contain seven conserved motifs that are characteristic of the DGAT1 subfamily. Conserved domain analysis showed that both MaDGAT1A and MaDGAT1B belong to the Membrane-bound O-acyltransferases superfamily. The transforming with MaDGAT1A/1B genes could increase the accumulation of TAG in Saccharomyces cerevisiae to 4·47 and 7·48% of dry cell weight, which was 7·3-fold and 12·3-fold of the control group, respectively, but has no effect on the proportion of fatty acids in TAG. This study showed that MaDGAT1A/1B could effectively promote the accumulation of TAG and therefore may be used in metabolic engineering aimed to increase TAG production of oleaginous fungi.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - J Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - H Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - X Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P.R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P.R. China
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| |
Collapse
|
14
|
Torres VI, Barrera DP, Varas-Godoy M, Arancibia D, Inestrosa NC. Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Front Cell Dev Biol 2021; 9:735888. [PMID: 34722516 PMCID: PMC8548728 DOI: 10.3389/fcell.2021.735888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The Wnt signaling pathway induces various responses underlying the development and maturation of the nervous system. Wnt ligands are highly hydrophobic proteins that limit their diffusion through an aqueous extracellular medium to a target cell. Nevertheless, their attachment to small extracellular vesicles-like exosomes is one of the described mechanisms that allow their transport under this condition. Some Wnt ligands in these vehicles are expected to be dependent on post-translational modifications such as acylation. The mechanisms determining Wnt loading in exosomes and delivery to the target cells are largely unknown. Here, we took advantage of a cell model that secret a highly enriched population of small extracellular vesicles (sEVs), hippocampal HT-22 neurons. First, to establish the cell model, we characterized the morphological and biochemical properties of an enriched fraction of sEVs obtained from hippocampal HT-22 neurons that express NCAM-L1, a specific exosomal neuronal marker. Transmission electron microscopy showed a highly enriched fraction of exosome-like vesicles. Next, the exosomal presence of Wnt3a, Wnt5a, and Wnt7a was confirmed by western blot analysis and electron microscopy combined with immunogold. Also, we studied whether palmitoylation is a necessary post-translational modification for the transport Wnt in these vesicles. We found that proteinase-K treatment of exosomes selectively decreased their Wnt5a and Wnt7a content, suggesting that their expression is delimited to the exterior membrane surface. In contrast, Wnt3a remained attached, suggesting that it is localized within the exosome lumen. On the other hand, Wnt-C59, a specific inhibitor of porcupine O-acyltransferase (PORCN), decreased the association of Wnt with exosomes, suggesting that Wnt ligand acylation is necessary for them to be secreted by exosomes. These findings may help to understand the action of the Wnt ligands in the target cell, which could be defined during the packaging of the ligands in the secretory cell sEVs.
Collapse
Affiliation(s)
- Viviana I Torres
- Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela P Barrera
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Duxan Arancibia
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
15
|
Zhong Q, Zhao Y, Ye F, Xiao Z, Huang G, Xu M, Zhang Y, Zhan X, Sun K, Wang Z, Cheng S, Feng S, Zhao X, Zhang J, Lu P, Xu W, Zhou Q, Ma D. Cryo-EM structure of human Wntless in complex with Wnt3a. Nat Commun 2021; 12:4541. [PMID: 34315898 PMCID: PMC8316347 DOI: 10.1038/s41467-021-24731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Wntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.
Collapse
Affiliation(s)
- Qing Zhong
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanyu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fangfei Ye
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zaiyu Xiao
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Meng Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shanshan Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Xiuxiu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Jizhong Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Dan Ma
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Abstract
The liver is uniquely bestowed with an ability to regenerate following a surgical or toxicant insult. One of the most researched models to demonstrate the regenerative potential of this organ is the partial hepatectomy model, where two thirds of the liver is surgically resected. The remnant liver replenishes the lost mass within 1014 days in mice. The distinctive ability of the liver to regenerate has allowed living donor and split liver transplantation. One signaling pathway shown to be activated during the process of regeneration to contribute toward the mass and functional recovery of the liver is the Wnt/-catenin pathway. Very early after any insult to the liver, the cellmolecule circuitry of the Wnt/-catenin pathway is set into motion with the release of specific Wnt ligands from sinusoidal endothelial cells and macrophages, which, in a paracrine manner, engage Frizzled and LDL-related protein-5/6 coreceptors on hepatocytes to stabilize -catenin inducing its nuclear translocation. Nuclear -catenin interacts with T-cell factor family of transcription factors to induce target genes including cyclin D1 for proliferation, and others for regulating hepatocyte function. Working in collaboration with other signaling pathways, Wnt/-catenin signaling contributes to the restoration process without any compromise of function at any stage. Also, stimulation of this pathway through innovative means induces liver regeneration when this process is exhausted or compromised and thus has applications in the treatment of end-stage liver disease and in the field of liver transplantation. Thus, Wnt/-catenin signaling pathway is highly relevant in the discipline of hepatic regenerative medicine.
Collapse
Affiliation(s)
- Shikai Hu
- *School of Medicine, Tsinghua University, Beijing, China
- †Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- †Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- §Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res 2021; 167:105532. [DOI: 10.1016/j.phrs.2021.105532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
|
18
|
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:623753. [PMID: 33718363 PMCID: PMC7952446 DOI: 10.3389/fcell.2021.623753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Paclikova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Kotrbova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vitezslav Bryja
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
19
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
20
|
Sonavane PR, Willert K. Controlling Wnt Signaling Specificity and Implications for Targeting WNTs Pharmacologically. Handb Exp Pharmacol 2021; 269:3-28. [PMID: 34463853 DOI: 10.1007/164_2021_529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnt signaling is critical for proper development of the embryo and for tissue homeostasis in the adult. Activation of this signaling cascade is initiated by binding of the secreted Wnts to their receptors. With the mammalian genome encoding multiple Wnts and Wnt receptors, a longstanding question in the field has been how Wnt-receptor specificities are achieved. Emerging from these studies is a picture of exquisite control over Wnt protein production, secretion, distribution, and receptor interactions, culminating in activation of downstream signaling cascades that control a myriad of biological processes. Here we discuss mechanisms by which Wnt protein activities are tuned and illustrate how the multiple layers of regulation can be leveraged for therapeutic interventions in disease.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Casein Kinase 1α as a Regulator of Wnt-Driven Cancer. Int J Mol Sci 2020; 21:ijms21165940. [PMID: 32824859 PMCID: PMC7460588 DOI: 10.3390/ijms21165940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling regulates numerous cellular processes during embryonic development and adult tissue homeostasis. Underscoring this physiological importance, deregulation of the Wnt signaling pathway is associated with many disease states, including cancer. Here, we review pivotal regulatory events in the Wnt signaling pathway that drive cancer growth. We then discuss the roles of the established negative Wnt regulator, casein kinase 1α (CK1α), in Wnt signaling. Although the study of CK1α has been ongoing for several decades, the bulk of such research has focused on how it phosphorylates and regulates its various substrates. We focus here on what is known about the mechanisms controlling CK1α, including its putative regulatory proteins and alternative splicing variants. Finally, we describe the discovery and validation of a family of pharmacological CK1α activators capable of inhibiting Wnt pathway activity. One of the important advantages of CK1α activators, relative to other classes of Wnt inhibitors, is their reduced on-target toxicity, overcoming one of the major impediments to developing a clinically relevant Wnt inhibitor. Therefore, we also discuss mechanisms that regulate CK1α steady-state homeostasis, which may contribute to the deregulation of Wnt pathway activity in cancer and underlie the enhanced therapeutic index of CK1α activators.
Collapse
|
22
|
Insulin activates hepatic Wnt/β-catenin signaling through stearoyl-CoA desaturase 1 and Porcupine. Sci Rep 2020; 10:5186. [PMID: 32198362 PMCID: PMC7083857 DOI: 10.1038/s41598-020-61869-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/β-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/β-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/β-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/β-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/β-catenin pathway.
Collapse
|
23
|
Carrier of Wingless (Cow) Regulation of Drosophila Neuromuscular Junction Development. eNeuro 2020; 7:ENEURO.0285-19.2020. [PMID: 32024666 PMCID: PMC7070448 DOI: 10.1523/eneuro.0285-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
The first Wnt signaling ligand discovered, Drosophila Wingless [Wg (Wnt1 in mammals)], plays critical roles in neuromuscular junction (NMJ) development, regulating synaptic architecture, and function. Heparan sulfate proteoglycans (HSPGs), consisting of a core protein with heparan sulfate (HS) glycosaminoglycan (GAG) chains, bind to Wg ligands to control both extracellular distribution and intercellular signaling function. Drosophila HSPGs previously shown to regulate Wg trans-synaptic signaling at the NMJ include the glypican Dally-like protein (Dlp) and perlecan Terribly Reduced Optic Lobes (Trol). Here, we investigate synaptogenic functions of the most recently described Drosophila HSPG, secreted Carrier of Wingless (Cow), which directly binds Wg in the extracellular space. At the glutamatergic NMJ, we find that Cow secreted from the presynaptic motor neuron acts to limit synaptic architecture and neurotransmission strength. In cow null mutants, we find increased synaptic bouton number and elevated excitatory current amplitudes, phenocopying presynaptic Wg overexpression. We show cow null mutants exhibit an increased number of glutamatergic synapses and increased synaptic vesicle fusion frequency based both on GCaMP imaging and electrophysiology recording. We find that membrane-tethered Wg prevents cow null defects in NMJ development, indicating that Cow mediates secreted Wg signaling. It was shown previously that the secreted Wg deacylase Notum restricts Wg signaling at the NMJ, and we show here that Cow and Notum work through the same pathway to limit synaptic development. We conclude Cow acts cooperatively with Notum to coordinate neuromuscular synapse structural and functional differentiation via negative regulation of Wg trans-synaptic signaling within the extracellular synaptomatrix.
Collapse
|
24
|
Azbazdar Y, Ozalp O, Sezgin E, Veerapathiran S, Duncan AL, Sansom MSP, Eggeling C, Wohland T, Karaca E, Ozhan G. More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and Activity in Plasma Membrane Domains. Front Cell Dev Biol 2019; 7:281. [PMID: 31803740 PMCID: PMC6873803 DOI: 10.3389/fcell.2019.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
While the lateral organization of plasma membrane components has been shown to control binding of Wnt ligands to their receptors preferentially in the ordered membrane domains, the role of posttranslational lipid modification of Wnt on this selective binding is unknown. Here, we identify that the canonical Wnt is presumably acylated by palmitic acid, a saturated 16-carbon fatty acid, at a conserved serine residue. Acylation of Wnt3 is dispensable for its secretion and binding to Fz8 while it is essential for Wnt3's proper binding and domain-like diffusion in the ordered membrane domains. We further unravel that non-palmitoylated Wnt3 is unable to activate Wnt/β-catenin signaling either in zebrafish embryos or in mammalian cells. Based on these results, we propose that the lipidation of canonical Wnt, presumably by a saturated fatty acid, determines its competence in interacting with the receptors in the appropriate domains of the plasma membrane, ultimately keeping the signaling activity under control.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Anna L. Duncan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Super-Resolution Microscopy, Institute for Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| |
Collapse
|
25
|
Merenda A, Fenderico N, Maurice MM. Wnt Signaling in 3D: Recent Advances in the Applications of Intestinal Organoids. Trends Cell Biol 2019; 30:60-73. [PMID: 31718893 DOI: 10.1016/j.tcb.2019.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Intestinal organoids grown from adult stem cells have emerged as prototype 3D organotypic models for studying tissue renewal and homeostasis. Owing to their strict dependence on Wnt signaling, intestinal organoids offer an unprecedented opportunity to examine Wnt pathway regulation in normal physiology and cancer. We review how alterations in growth factor dependency and organoid morphology can be exploited to identify Wnt signaling mechanisms, characterize mutated pathway components, and predict responses of patient-derived tumors to targeted therapy. We discuss current deficits in the understanding of genotype-phenotype relationships that are to be considered when interpreting mutation-induced changes in organoid morphology.
Collapse
Affiliation(s)
- Alessandra Merenda
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, the Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, the Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
26
|
Resham K, Sharma SS. Pharmacological interventions targeting Wnt/β-catenin signaling pathway attenuate paclitaxel-induced peripheral neuropathy. Eur J Pharmacol 2019; 864:172714. [PMID: 31586636 DOI: 10.1016/j.ejphar.2019.172714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling pain condition which occurs as a consequence of cancer chemotherapy with anti-cancer agents like paclitaxel, oxaliplatin, etc. Despite immense research in the pathological pathways involved in CIPN, treatment options still remain limited. Recently, pathological involvement of Wnt signaling has been investigated in various neuropathic pain models, however there are no reports as yet on the role of Wnt signaling in CIPN. In the present study, we have investigated the neuroprotective effects of Wnt signaling inhibitors namely LGK974 (Porcupine inhibitor), NSC668036 (Disheveled inhibitor) and PNU76454 (β-catenin inhibitor) in paclitaxel-induced neuropathic pain. Paclitaxel (2 mg/kg, i. p.) was administered to male Sprague Dawley rats on four alternate days. After 21 days, paclitaxel-treated rats showed reduced behavioral pain thresholds (cold allodynia, heat & mechanical hyperalgesia) and nerve functions (nerve conduction velocity and nerve blood flow). Moreover, Wnt signaling proteins (Wnt3a, β-catenin, c-myc and Dvl1), inflammatory marker (matrix metalloproteinase 2) and endoplasmic reticulum stress marker (GRP78) were found to be upregulated in the sciatic nerves of paclitaxel-treated rats accompanied with loss of intraepidermal nerve fiber density as compared to the control rats. Intrathecal administration of Wnt inhibitors (each at dose of 10 and 30 μM) for three consecutive days to paclitaxel-treated rats, significantly improved behavioral pain thresholds and nerve functional parameters by inhibition of Wnt signaling, inflammation, endoplasmic reticulum stress and improvement of intraepidermal nerve fiber density. All these results suggested the neuroprotective potential of Wnt signaling inhibitors in CIPN.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
27
|
Petko J, Thileepan M, Sargen M, Canfield V, Levenson R. Alternative splicing of the Wnt trafficking protein, Wntless and its effects on protein-protein interactions. BMC Mol Cell Biol 2019; 20:22. [PMID: 31286866 PMCID: PMC6615345 DOI: 10.1186/s12860-019-0208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Wntless (Wls) is a protein that regulates secretion of Wnt signaling molecules from Wnt-producing cells. Wnt signaling is known to be critical for several developmental and homeostatic processes. However, Wnt-independent functions of Wls are now being elucidated. Primates express an alternative splice variant of Wls (here termed WlsX). WlsX contains an alternatively spliced COOH-terminus, and does not appear to be able to sustain significant levels of WNT secretion because of its inability to undergo retrograde trafficking to the endoplasmic reticulum. The functional significance for this alternatively spliced form of Wls has not yet been elucidated. We previously identified a cohort of Wls interacting proteins using a combination of yeast 2-hybrid and candidate gene approaches. Results In the present study, we analyzed the interaction of WlsX with previously identified Wls interactors, and additionally screened for novel protein interactors of WlsX utilizing a membrane yeast two hybrid screen. Three novel Wls interactors, Glycoprotein M6A (GPM6A), Alkylglycerol Monooxygenase (AGMO), and ORAI1 were identified. Each of these novel WlsX interactors, as well as all other Wls interacting proteins identified previously, with the exception of the mu-opioid receptor, were found to interact with both Wls and WlsX splice forms. We show that WlsX can form homodimers, but that WlsX may not interact with Wls. Conclusions WlsX has the ability to form homodimers and to interact with most known Wls interacting proteins. Taken together, our results suggest that Wls and WlsX may have overlapping, but distinct functions, including sensitivity to opioid drugs. While studies have focused on the ability of Wls interacting proteins to affect Wnt secretion, future efforts will explore the reciprocal regulation of these proteins by Wls, possibly via Wnt-independent mechanisms.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Biology Department, Penn State York, York, Pa, USA
| | - Victor Canfield
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
28
|
Wang F, Tarkkonen K, Nieminen‐Pihala V, Nagano K, Majidi RA, Puolakkainen T, Rummukainen P, Lehto J, Roivainen A, Zhang F, Mäkitie O, Baron R, Kiviranta R. Mesenchymal Cell-Derived Juxtacrine Wnt1 Signaling Regulates Osteoblast Activity and Osteoclast Differentiation. J Bone Miner Res 2019; 34:1129-1142. [PMID: 30690791 PMCID: PMC6850336 DOI: 10.1002/jbmr.3680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Human genetic evidence demonstrates that WNT1 mutations cause osteogenesis imperfecta (OI) and early-onset osteoporosis, implicating WNT1 as a major regulator of bone metabolism. However, its main cellular source and mechanisms of action in bone remain elusive. We generated global and limb bud mesenchymal cell-targeted deletion of Wnt1 in mice. Heterozygous deletion of Wnt1 resulted in mild trabecular osteopenia due to decreased osteoblast function. Targeted deletion of Wnt1 in mesenchymal progenitors led to spontaneous fractures due to impaired osteoblast function and increased bone resorption, mimicking the severe OI phenotype in humans with homozygous WNT1 mutations. Importantly, we showed for the first time that Wnt1 signals strictly in a juxtacrine manner to induce osteoblast differentiation and to suppress osteoclastogenesis, in part via canonical Wnt signaling. In conclusion, mesenchymal cell-derived Wnt1, acting in short range, is an essential regulator of bone homeostasis and an intriguing target for therapeutic interventions for bone diseases. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fan Wang
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | | | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | | | | | | | - Jemina Lehto
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Roivainen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Fu‐Ping Zhang
- Turku Center for Disease Modeling (TCDM)University of TurkuTurkuFinland
| | - Outi Mäkitie
- Folkhälsan Institute of GeneticsHelsinkiFinland
- Children's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental MedicineHarvard UniversityBostonMAUSA
| | - Riku Kiviranta
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of Endocrinology, Division of MedicineUniversity of Turku and Turku University HospitalTurkuFinland
| |
Collapse
|
29
|
Resham K, Sharma SS. Pharmacologic Inhibition of Porcupine, Disheveled, and β-Catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats. THE JOURNAL OF PAIN 2019; 20:1338-1352. [PMID: 31075529 DOI: 10.1016/j.jpain.2019.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Wnt signaling pathway has been investigated extensively for its diverse metabolic and pain-modulating mechanisms; recently its involvement has been postulated in the development of neuropathic pain. However, there are no reports as yet on the involvement of Wnt signaling pathway in one of the most debilitating neurovascular complication of diabetes, namely, diabetic peripheral neuropathy (DPN). Thus, in the present study, involvement of Wnt signaling was investigated in DPN using Wnt signaling inhibitors namely LGK974 (porcupine inhibitor), NSC668036 (disheveled inhibitor), and PNU74654 (β-catenin inhibitor). Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg) to male Sprague-Dawley rats. Diabetic rats after 6 weeks of diabetes induction showed increased expression of Wnt signaling proteins in the spinal cord (L4-L6 lumbar segment), dorsal root ganglions and sciatic nerves. Subsequent increase in inflammation, endoplasmic reticulum stress and loss of intraepidermal nerve fiber density was also observed, leading to neurobehavioral and nerve functional deficits in diabetic rats. Intrathecal administration of Wnt signaling inhibitors (each at doses of 10 and 30 µmol/L) in diabetic rats showed improvement in pain-associated behaviors (heat, cold, and mechanical hyperalgesia) and nerve functions (motor, sensory nerve conduction velocities, and nerve blood flow) by decreasing the expression of Wnt pathway proteins, inflammatory marker, matrix metalloproteinase 2, endoplasmic reticulum stress marker, glucose-regulated protein 78, and improving intraepidermal nerve fiber density. All these results signify the neuroprotective potential of Wnt signaling inhibitors in DPN. PERSPECTIVE: This study emphasizes the involvement of Wnt signaling pathway in DPN. Blockade of this pathway using Wnt inhibitors provided neuroprotection in experimental DPN in rats. This study may provide a basis for exploring the therapeutic potential of Wnt inhibitors in DPN patients.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
30
|
Kaemmerer E, Jeon MK, Berndt A, Liedtke C, Gassler N. Targeting Wnt Signaling via Notch in Intestinal Carcinogenesis. Cancers (Basel) 2019; 11:555. [PMID: 31003440 PMCID: PMC6520938 DOI: 10.3390/cancers11040555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
Proliferation and differentiation of intestinal epithelial cells is assisted by highly specialized and well-regulated signaling cascades. The Wnt pathway, which is one of the fundamental pathways in the intestine, contributes to the organization of proliferative intestinal crypts by positioning and cycling of intestinal stem cells and their derivatives. The Wnt pathway promotes differentiation of intestinal secretory cell types along the crypt-plateau and crypt-villus axis. In contrast to the Wnt pathway, the intestinal Notch cascade participates in cellular differentiation and directs progenitor cells towards an absorptive fate with diminished numbers of Paneth and goblet cells. Opposing activities of Notch and Wnt signaling in the regulation of intestinal stem cells and the enterocytic cell fate have been elucidated recently. In fact, targeting Notch was able to overcome tumorigenesis of intestinal adenomas, prevented carcinogenesis, and counteracted Paneth cell death in the absence of caspase 8. At present, pharmacological Notch inhibition is considered as an interesting tool targeting the intrinsic Wnt pathway activities in intestinal non-neoplastic disease and carcinogenesis.
Collapse
Affiliation(s)
- Elke Kaemmerer
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Min Kyung Jeon
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany.
| | - Christian Liedtke
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany.
| | - Nikolaus Gassler
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany.
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany.
| |
Collapse
|
31
|
Stanganello E, Zahavi EE, Burute M, Smits J, Jordens I, Maurice MM, Kapitein LC, Hoogenraad CC. Wnt Signaling Directs Neuronal Polarity and Axonal Growth. iScience 2019; 13:318-327. [PMID: 30878878 PMCID: PMC6423405 DOI: 10.1016/j.isci.2019.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
The establishment of neuronal polarity is driven by cytoskeletal remodeling that stabilizes and promotes the growth of a single axon from one of the multiple neurites. The importance of the local microtubule stabilization in this process has been revealed however, the external signals initiating the cytoskeletal rearrangements are not completely understood. In this study, we show that local activation of the canonical Wnt pathway regulates neuronal polarity and axonal outgrowth. We found that in the early stages of neuronal polarization, Wnt3a accumulates in one of the neurites of unpolarized cells and thereby could determine axon positioning. Subsequently, Wnt3a localizes to the growing axon, where it activates the canonical Wnt pathway and controls axon positioning and axonal length. We propose a model in which Wnt3a regulates the formation and growth of the axon by activating local intracellular signaling events leading to microtubule remodeling. Wnt3a distributes asymmetrically in early stages neurons A spatially localized Wnt3a source determines axon positioning and early guidance Concentration gradient of Wnt3a guides axonal outgrowth across a microfluidic chamber Wnt3a directly controls microtubules remodeling
Collapse
Affiliation(s)
- Eliana Stanganello
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eitan Erez Zahavi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mithila Burute
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jasper Smits
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ingrid Jordens
- Oncode Institute, Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Oncode Institute, Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
32
|
Moti N, Yu J, Boncompain G, Perez F, Virshup DM. Wnt traffic from endoplasmic reticulum to filopodia. PLoS One 2019; 14:e0212711. [PMID: 30794657 PMCID: PMC6386245 DOI: 10.1371/journal.pone.0212711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/07/2019] [Indexed: 11/26/2022] Open
Abstract
Wnts are a family of secreted palmitoleated glycoproteins that play key roles in cell to cell communication during development and regulate stem cell compartments in adults. Wnt receptors, downstream signaling cascades and target pathways have been extensively studied while less is known about how Wnts are secreted and move from producing cells to receiving cells. We used the synchronization system called Retention Using Selective Hook (RUSH) to study Wnt trafficking from endoplasmic reticulum to Golgi and then to plasma membrane and filopodia in real time. Inhibition of porcupine (PORCN) or knockout of Wntless (WLS) blocked Wnt exit from the ER. Wnt-containing vesicles paused at sub-cortical regions of the plasma membrane before exiting the cell. Wnt-containing vesicles were associated with filopodia extending to adjacent cells. These data visualize and confirm the role of WLS and PORCN in ER exit of Wnts and support the role of filopodia in Wnt signaling.
Collapse
Affiliation(s)
- Naushad Moti
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Jia Yu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Gaelle Boncompain
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR144 “Cell Biology and Cancer”, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR144 “Cell Biology and Cancer”, Paris, France
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lee CJ, Rana MS, Bae C, Li Y, Banerjee A. In vitro reconstitution of Wnt acylation reveals structural determinants of substrate recognition by the acyltransferase human Porcupine. J Biol Chem 2018; 294:231-245. [PMID: 30420431 DOI: 10.1074/jbc.ra118.005746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Wnt proteins regulate a large number of processes, including cellular growth, differentiation, and tissue homeostasis, through the highly conserved Wnt signaling pathway in metazoans. Porcupine (PORCN) is an endoplasmic reticulum (ER)-resident integral membrane enzyme that catalyzes posttranslational modification of Wnts with palmitoleic acid, an unsaturated lipid. This unique form of lipidation with palmitoleic acid is a vital step in the biogenesis and secretion of Wnt, and PORCN inhibitors are currently in clinical trials for cancer treatment. However, PORCN-mediated Wnt lipidation has not been reconstituted in vitro with purified enzyme. Here, we report the first successful purification of human PORCN and confirm, through in vitro reconstitution with the purified enzyme, that PORCN is necessary and sufficient for Wnt acylation. By systematically examining a series of substrate variants, we show that PORCN intimately recognizes the local structure of Wnt around the site of acylation. Our in vitro assay enabled us to examine the activity of PORCN with a range of fatty acyl-CoAs with varying length and unsaturation. The selectivity of human PORCN across a spectrum of fatty acyl-CoAs suggested that the kink in the unsaturated acyl chain is a key determinant of PORCN-mediated catalysis. Finally, we show that two putative PORCN inhibitors that were discovered with cell-based assays indeed target human PORCN. Together, these results provide discrete, high-resolution biochemical insights into the mechanism of PORCN-mediated Wnt acylation and pave the way for further detailed biochemical and structural studies.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitra S Rana
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- Protein/Peptide Sequencing Facility, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
34
|
Huang Y, Huang S, Di Scala C, Wang Q, Wandall HH, Fantini J, Zhang YQ. The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. eLife 2018; 7:38183. [PMID: 30355446 PMCID: PMC6202054 DOI: 10.7554/elife.38183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Lipids are structural components of cellular membranes and signaling molecules that are widely involved in development and diseases, but the underlying molecular mechanisms are poorly understood, partly because of the vast variety of lipid species and complexity of synthetic and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide (MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL MacCer promotes synaptic bouton formation via Wg signaling.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Sheng Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,Sino-Danish College, Sino-Danish Center for Education and Research, Chinese Academy of Sciences, Beijing, China
| | | | - Qifu Wang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Fantini
- UNIS UMR_S 1072, INSERM, Aix-Marseille Université, Marseille, France
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
35
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
36
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
37
|
West RJH, Briggs L, Perona Fjeldstad M, Ribchester RR, Sweeney ST. Sphingolipids regulate neuromuscular synapse structure and function in Drosophila. J Comp Neurol 2018; 526:1995-2009. [PMID: 29761896 PMCID: PMC6175220 DOI: 10.1002/cne.24466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
Sphingolipids are found in abundance at synapses and have been implicated in regulation of synapse structure, function, and degeneration. Their precise role in these processes, however, remains obscure. Serine Palmitoyl-transferase (SPT) is the first enzymatic step for synthesis of sphingolipids. Analysis of the Drosophila larval neuromuscular junction (NMJ) revealed mutations in the SPT enzyme subunit, lace/SPTLC2 resulted in deficits in synaptic structure and function. Although NMJ length is normal in lace mutants, the number of boutons per NMJ is reduced to ∼50% of the wild type number. Synaptic boutons in lace mutants are much larger but show little perturbation to the general ultrastructure. Electrophysiological analysis of lace mutant synapses revealed strong synaptic transmission coupled with predominance of depression over facilitation. The structural and functional phenotypes of lace mirrored aspects of Basigin (Bsg), a small Ig-domain adhesion molecule also known to regulate synaptic structure and function. Mutant combinations of lace and Bsg generated large synaptic boutons, while lace mutants showed abnormal accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to regulate structure of the synapse. In support of this, we found Bsg to be enriched in lipid rafts. Our data points to a role for sphingolipids in the regulation and fine-tuning of synaptic structure and function while sphingolipid regulation of synaptic structure may be mediated via the activity of Bsg.
Collapse
Affiliation(s)
- Ryan J. H. West
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Laura Briggs
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Maria Perona Fjeldstad
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Sean T. Sweeney
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| |
Collapse
|
38
|
Abstract
The scaffold protein APC has a well-known function in ensuring β-catenin destruction. In this issue of Developmental Cell, Saito-Diaz et al. (2018) uncover another role for APC in Wnt signaling: to prevent clathrin-dependent signalosome formation in the absence of ligand.
Collapse
Affiliation(s)
- Ian John McGough
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | | |
Collapse
|
39
|
Tassew NG, Charish J, Shabanzadeh AP, Luga V, Harada H, Farhani N, D'Onofrio P, Choi B, Ellabban A, Nickerson PEB, Wallace VA, Koeberle PD, Wrana JL, Monnier PP. Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell Rep 2018; 20:99-111. [PMID: 28683327 DOI: 10.1016/j.celrep.2017.06.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/19/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022] Open
Abstract
Developing strategies that promote axonal regeneration within the injured CNS is a major therapeutic challenge, as axonal outgrowth is potently inhibited by myelin and the glial scar. Although regeneration can be achieved using the genetic deletion of PTEN, a negative regulator of the mTOR pathway, this requires inactivation prior to nerve injury, thus precluding therapeutic application. Here, we show that, remarkably, fibroblast-derived exosomes (FD exosomes) enable neurite growth on CNS inhibitory proteins. Moreover, we demonstrate that, upon treatment with FD exosomes, Wnt10b is recruited toward lipid rafts and activates mTOR via GSK3β and TSC2. Application of FD exosomes shortly after optic nerve injury promoted robust axonal regeneration, which was strongly reduced in Wnt10b-deleted animals. This work uncovers an intercellular signaling pathway whereby FD exosomes mobilize an autocrine Wnt10b-mTOR pathway, thereby awakening the intrinsic capacity of neurons for regeneration, an important step toward healing the injured CNS.
Collapse
Affiliation(s)
- Nardos G Tassew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Jason Charish
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Alireza P Shabanzadeh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Valbona Luga
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 982 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Nahal Farhani
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Philippe D'Onofrio
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brian Choi
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmad Ellabban
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, 340 College Street, Toronto, ON M5T 3A9, Canada
| | - Paulo D Koeberle
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 982 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Philippe P Monnier
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, 340 College Street, Toronto, ON M5T 3A9, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
40
|
Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 2018; 75:785-795. [PMID: 28913633 PMCID: PMC5809524 DOI: 10.1007/s00018-017-2654-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 10/31/2022]
Abstract
Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
41
|
The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency. Genes (Basel) 2018; 9:genes9020093. [PMID: 29443926 PMCID: PMC5852589 DOI: 10.3390/genes9020093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
The technology to derive embryonic and induced pluripotent stem cells from early embryonic stages and adult somatic cells, respectively, emerged as a powerful resource to enable the establishment of new in vitro models, which recapitulate early developmental processes and disease. Additionally, pluripotent stem cells (PSCs) represent an invaluable source of relevant differentiated cell types with immense potential for regenerative medicine and cell replacement therapies. Pluripotent stem cells support self-renewal, potency and proliferation for extensive periods of culture in vitro. However, the core pathways that rule each of these cellular features specific to PSCs only recently began to be clarified. The Wnt signaling pathway is pivotal during early embryogenesis and is central for the induction and maintenance of the pluripotency of PSCs. Signaling by the Wnt family of ligands is conveyed intracellularly by the stabilization of β-catenin in the cytoplasm and in the nucleus, where it elicits the transcriptional activity of T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of transcription factors. Interestingly, in PSCs, the Wnt/β-catenin–TCF/LEF axis has several unrelated and sometimes opposite cellular functions such as self-renewal, stemness, lineage commitment and cell cycle regulation. In addition, tight control of the Wnt signaling pathway enhances reprogramming of somatic cells to induced pluripotency. Several recent research efforts emphasize the pleiotropic functions of the Wnt signaling pathway in the pluripotent state. Nonetheless, conflicting results and unanswered questions still linger. In this review, we will focus on the diverse functions of the canonical Wnt signaling pathway on the developmental processes preceding embryo implantation, as well as on its roles in pluripotent stem cell biology such as self-renewal and cell cycle regulation and somatic cell reprogramming.
Collapse
|
42
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
43
|
Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:1-19. [DOI: 10.1016/bs.pmbts.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Driehuis E, Clevers H. WNT signalling events near the cell membrane and their pharmacological targeting for the treatment of cancer. Br J Pharmacol 2017; 174:4547-4563. [PMID: 28244067 PMCID: PMC5727251 DOI: 10.1111/bph.13758] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
WNT signalling is an essential signalling pathway for all multicellular animals. Although first described more than 30 years ago, new components and regulators of the pathway are still being discovered. Considering its importance in both embryonic development and adult homeostasis, it is not surprising that this pathway is often deregulated in human diseases such as cancer. Recently, it became clear that in addition to cytoplasmic components such as β-catenin, other, membrane-bound or extracellular, components of the WNT pathway are also altered in cancer. This review gives an overview of the recent discoveries on WNT signalling events near the cell membrane. Furthermore, membrane-associated components of the WNT pathway, which are more accessible for therapeutic intervention, as well therapeutic approaches that already target those components will be discussed. In this way, we hope to stimulate the development of effective anti-cancer therapies that target this fascinating pathway. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW)UtrechtThe Netherlands
- University medical center (UMC)UtrechtThe Netherlands
- Princess Maxime Center (PMC)UtrechtThe Netherlands
| |
Collapse
|
45
|
Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:351-378. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type-specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
46
|
Menck K, Sönmezer C, Worst TS, Schulz M, Dihazi GH, Streit F, Erdmann G, Kling S, Boutros M, Binder C, Gross JC. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 2017; 6:1378056. [PMID: 29184623 PMCID: PMC5699186 DOI: 10.1080/20013078.2017.1378056] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane particles secreted from cells into all body fluids. Several EV populations exist differing in size and cellular origin. Using differential centrifugation EVs pelleting at 14,000 g ("microvesicles" (MV)) and 100,000 g ("exosomes") are distinguishable by protein markers. Neutral sphingomyelinase (nSMase) inhibition has been shown to inhibit exosome release from cells and has since been used to study their functional implications. How nSMases (also known as SMPD2 and SMPD3) affect the basal secretion of MVs is unclear. Here we investigated how SMPD2/3 impact both EV populations. SMPD2/3 inhibition by GW4869 or RNAi decreases secretion of exosomes, but also increases secretion of MVs from the plasma membrane. Both populations differ significantly in metabolite composition and Wnt proteins are specifically loaded onto MVs under these conditions. Taken together, our data reveal a novel regulatory function of SMPD2/3 in vesicle budding from the plasma membrane and clearly suggest that - despite the different vesicle biogenesis - the routes of vesicular export are adaptable.
Collapse
Affiliation(s)
- Kerstin Menck
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, and Université Aix-Marseille, Marseille, France.,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Can Sönmezer
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Stefan Worst
- Department of Urology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Matthias Schulz
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Gry Helene Dihazi
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | | | - Simon Kling
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Claudia Binder
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
47
|
Kopke DL, Lima SC, Alexandre C, Broadie K. Notum coordinates synapse development via extracellular regulation of Wingless trans-synaptic signaling. Development 2017; 144:3499-3510. [PMID: 28860114 DOI: 10.1242/dev.148130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
Synaptogenesis requires orchestrated communication between pre- and postsynaptic cells via coordinated trans-synaptic signaling across the extracellular synaptomatrix. The first Wnt signaling ligand discovered, Drosophila Wingless (Wg; Wnt1 in mammals), plays crucial roles in synaptic development, regulating synapse architecture as well as functional differentiation. Here, we investigate synaptogenic functions of the secreted extracellular deacylase Notum, which restricts Wg signaling by cleaving an essential palmitoleate moiety. At the glutamatergic neuromuscular junction (NMJ) synapse, we find that Notum secreted from the postsynaptic muscle acts to strongly modulate synapse growth, structural architecture, ultrastructural development and functional differentiation. In Notum null flies, we find upregulated extracellular Wg ligand and nuclear trans-synaptic signal transduction, as well as downstream misregulation of both pre- and postsynaptic molecular assembly. Structural, functional and molecular synaptogenic defects are all phenocopied by Wg overexpression, suggesting that Notum acts solely by inhibiting Wg trans-synaptic signaling. Moreover, these synaptic development phenotypes are suppressed by genetically correcting Wg levels in Notum null mutants, indicating that Notum normally functions to coordinate synaptic structural and functional differentiation via negative regulation of Wg trans-synaptic signaling in the extracellular synaptomatrix.
Collapse
Affiliation(s)
- Danielle L Kopke
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Sofia C Lima
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
48
|
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches. Brain Res Bull 2017; 138:96-105. [PMID: 28734904 DOI: 10.1016/j.brainresbull.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes.
Collapse
|
49
|
Hair Growth Cycle Is Arrested in SCD1 Deficiency by Impaired Wnt3a-Palmitoleoylation and Retrieved by the Artificial Lipid Barrier. J Invest Dermatol 2017; 137:1424-1433. [DOI: 10.1016/j.jid.2017.02.973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
|
50
|
Ng XW, Teh C, Korzh V, Wohland T. The Secreted Signaling Protein Wnt3 Is Associated with Membrane Domains In Vivo: A SPIM-FCS Study. Biophys J 2017; 111:418-429. [PMID: 27463143 DOI: 10.1016/j.bpj.2016.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
Wnt3 is a morphogen that activates the Wnt signaling pathway and regulates a multitude of biological processes ranging from cell proliferation and cell fate specification to differentiation over embryonic induction to neural patterning. Recent studies have shown that the palmitoylation of Wnt3 by Porcupine, a membrane-bound O-acyltransferase, plays a significant role in the intracellular membrane trafficking of Wnt3 and subsequently, its secretion in live zebrafish embryos, where chemical inhibition of Porcupine reduced the membrane-bound and secreted fractions of Wnt3 and eventually led to defective brain development. However, the membrane distribution of Wnt3 in cells remains not fully understood. Here, we determine the membrane organization of functionally active Wnt3-EGFP in cerebellar cells of live transgenic zebrafish embryos and the role of palmitoylation in its organization using single plane illumination microscopy-fluorescence correlation spectroscopy (SPIM-FCS), a multiplexed modality of FCS, which generates maps of molecular dynamics, concentration, and interaction of biomolecules. The FCS diffusion law was applied to SPIM-FCS data to study the subresolution membrane organization of Wnt3. We find that at the plasma membrane in vivo, Wnt3 is associated with cholesterol-dependent domains. This association reduces with increasing concentrations of Porcupine inhibitor (C59), confirming the importance of palmitoylation of Wnt3 for its association with cholesterol-dependent domains. Reduction of membrane cholesterol also results in a decrease of Wnt3 association with cholesterol-dependent domains in live zebrafish. This demonstrates for the first time, to our knowledge, in live vertebrate embryos that Wnt3 is associated with cholesterol-dependent domains.
Collapse
Affiliation(s)
- Xue Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|