1
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
2
|
Khambata K, Raut S, Parte P, Balasinor NH. Estrogen Receptor Signaling Alters Sperm DNA Methylation Landscape in Adult Male Rats. Endocrinology 2025; 166:bqaf017. [PMID: 39865879 DOI: 10.1210/endocr/bqaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Because the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing in caudal sperm DNA was performed. The differentially methylated CpG (DMC) sites were validated by pyrosequencing, and the expression of differentially methylated genes (DMGs) was evaluated in testis by quantitative RT-PCR. Activation of ERα signaling brought about large-scale changes in the sperm DNA methylome compared to ERβ. There were 28074 DMCs and 5189 DMGs obtained after ERα agonist 4,4',4''-(4-Propyl-[1H] pyrazole-1,3,5-triyl) (PPT) treatment, whereas 1492 DMCs and 336 DMGs for ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). In genic regions, most of the DMCs were intronic, followed by promoter and upstream regions. DMCs were distributed around the transcription start site and in transcription factor-binding regions, implicating their plausible role in gene expression regulation. Genes important for spermatogenesis were identified and validated which showed a similar trend of differential methylation as obtained by whole genome-bisulfite sequencing. The expression of the DMGs was also found to be altered in the testis. There was a considerable overlap (14% to 50%) of PPT DMGs with the DMGs reported to be affected in clinical conditions of male infertility. This study highlights the role of ERs in shaping the sperm epigenome and that aberrant estrogen signaling could be a contributing factor in clinical conditions of male infertility.
Collapse
Affiliation(s)
- Kushaan Khambata
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Sanketa Raut
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Priyanka Parte
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Nafisa H Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| |
Collapse
|
3
|
Sutovsky P, Zelenkova N, Postlerova P, Zigo M. Proteostasis as a Sentry for Sperm Quality and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:273-303. [PMID: 40301261 DOI: 10.1007/978-3-031-82990-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| | - Natalie Zelenkova
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Tirpak F, Hamilton LE, Schnabel RD, Sutovsky P. Biomarker-based high-throughput sperm phenotyping: Andrology in the age of precision medicine and agriculture. Anim Reprod Sci 2024; 271:107636. [PMID: 39522272 DOI: 10.1016/j.anireprosci.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Reproductive efficiency is crucial for animal agriculture. This economically important aspect can be influenced by environmental burdens, nutritional imbalance, and gonadal or gametic malformations of genetic origin. Successful implementation of genomic-driven selective breeding in cattle depends on the reproductive performance of artificial insemination (AI) sires with valuable genomic production traits. Reproduction is traditionally viewed as a complex set of polygenic traits that are negatively impacted by using a small number of often closely related sires selected for AI due to their superior genetics. Despite recent progress, it remains difficult to define relationships between sire genome and variation in sperm phenotypes, even though several types of heritable, non-compensable sperm defects have been identified. In this review, we discuss the concept of sperm quality biomarker discovery and genomics of male fertility. We also outline a multidisciplinary genome-to-phenome approach for investigating heritable mutations and their impacts on bull fertility, sperm phenotypes and paternal contributions to early pregnancy. High-precision phenotyping requires novel, state-of-the-art instrumentation for sperm quality evaluation and development of new biomarkers of sperm quality in farm animals, with potential for incorporation into andrology-specific machine learning protocols and translation to human andrology. We conclude that reproduction is a complex phenotype that can be deciphered and explored for more precise male fertility evaluation and higher reproductive efficiency.
Collapse
Affiliation(s)
- Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Genetics Area Program, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Sousa JA, McKay DM, Raman M. Selenium, Immunity, and Inflammatory Bowel Disease. Nutrients 2024; 16:3620. [PMID: 39519453 PMCID: PMC11547411 DOI: 10.3390/nu16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Dietary intervention is a subject of growing interest in the management of inflammatory bowel disease (IBD), as new incident cases across the globe are rapidly rising, suggesting environmental factors as contributing elements. Dietary components and micronutrients have been associated with IBD pathogenesis or reductions in disease severity. Selenium, a diet-derived essential micronutrient that is important for proper immune system function, has received limited attention in the context of IBD. Selenium deficiency is a common finding in patients with IBD, but few clinical trials have been published to address the consequences of this deficiency. Here, we review the physiological and immunological roles of selenium and its putative role in IBD, and draw attention to knowledge gaps and unresolved issues, with the goal of stimulating more research on selenium in IBD.
Collapse
Affiliation(s)
- James A. Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
7
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
8
|
Li C, Shen C, Xiong W, Ge H, Shen Y, Chi J, Zhang H, Tang L, Lu S, Wang J, Fei J, Wang Z. Spem2, a novel testis-enriched gene, is required for spermiogenesis and fertilization in mice. Cell Mol Life Sci 2024; 81:108. [PMID: 38421455 PMCID: PMC10904452 DOI: 10.1007/s00018-024-05147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jun Chi
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jinjin Wang
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China.
| |
Collapse
|
9
|
Sommer MJ, Cha S, Varabyou A, Rincon N, Park S, Minkin I, Pertea M, Steinegger M, Salzberg SL. Structure-guided isoform identification for the human transcriptome. eLife 2022; 11:e82556. [PMID: 36519529 PMCID: PMC9812405 DOI: 10.7554/elife.82556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Recently developed methods to predict three-dimensional protein structure with high accuracy have opened new avenues for genome and proteome research. We explore a new hypothesis in genome annotation, namely whether computationally predicted structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by protein structure predictions, we evaluated over 230,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues. From this set of assembled transcripts, we identified hundreds of isoforms with more confidently predicted structure and potentially superior function in comparison to canonical isoforms in the latest human gene database. We illustrate our new method with examples where structure provides a guide to function in combination with expression and evolutionary evidence. Additionally, we provide the complete set of structures as a resource to better understand the function of human genes and their isoforms. These results demonstrate the promise of protein structure prediction as a genome annotation tool, allowing us to refine even the most highly curated catalog of human proteins. More generally we demonstrate a practical, structure-guided approach that can be used to enhance the annotation of any genome.
Collapse
Affiliation(s)
- Markus J Sommer
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of EngineeringBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sooyoung Cha
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- Artificial Intelligence Institute, Seoul National UniversitySeoulRepublic of Korea
| | - Ales Varabyou
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Natalia Rincon
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of EngineeringBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sukhwan Park
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- Artificial Intelligence Institute, Seoul National UniversitySeoulRepublic of Korea
| | - Ilia Minkin
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of EngineeringBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Mihaela Pertea
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of EngineeringBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Martin Steinegger
- School of Biological Sciences, Seoul National UniversitySeoulRepublic of Korea
- Artificial Intelligence Institute, Seoul National UniversitySeoulRepublic of Korea
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of EngineeringBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
10
|
Huang S, Huang Y, Li S, He Y. Chromosome 17 translocation affects sperm morphology: Two case studies and literature review. Andrologia 2022; 54:e14620. [PMID: 36270636 DOI: 10.1111/and.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
We present two cases of infertile males with teratozoospermia stemming from chromosome 17 translocation. The patients present karyotypes that have not been previously reported. Genes located on breakpoints (17p11.2, 9q31, and 11p15) were analysed to find the probable mechanism affecting sperm morphology. Our results suggest that ALKBH5, TOP3A, and LLGL1 interactions may be an underlying cause of abnormal sperm head morphology. Translocation of chromosome 17 occurred in conjunction with chromosome 9 and chromosome 11 translocation in the two cases, resulting in oligozoospermia and asthenozoospermia, respectively. These abnormal phenotypes may involve meiosis- and motility-related genes such as LDHC, DNHD1, UBQLN3, and NUP98. Translocation is thus a risk factor for sperm morphological abnormalities and motility deficiency. The interaction network of 22 genes on breakpoints suggests that they contribute to spermatogenesis as a group. In conclusion, this study highlighted the importance of investigating genes linked to sperm morphology, together with chromosome 17 translocation and reproductive risks. For patients interested in screening before a future pregnancy, we recommend preimplantation genetic diagnosis to reduce the risk of karyotypically unbalanced foetuses and birth defects.
Collapse
Affiliation(s)
- Shan Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingting Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Wang H, Dou Q, Jeong KJ, Choi J, Gladyshev VN, Chung JJ. Redox regulation by TXNRD3 during epididymal maturation underlies capacitation-associated mitochondrial activity and sperm motility in mice. J Biol Chem 2022; 298:102077. [PMID: 35643315 PMCID: PMC9218152 DOI: 10.1016/j.jbc.2022.102077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 10/26/2022] Open
Abstract
During epididymal transit, redox remodeling protects mammalian spermatozoa, preparing them for survival in the subsequent journey to fertilization. However, molecular mechanisms of redox regulation in sperm development and maturation remain largely elusive. In this study, we report that thioredoxin-glutathione reductase (TXNRD3), a thioredoxin reductase family member particularly abundant in elongating spermatids at the site of mitochondrial sheath formation, regulates redox homeostasis to support male fertility. Using Txnrd3-/- mice, our biochemical, ultrastructural, and live cell imaging analyses revealed impairments in sperm morphology and motility under conditions of TXNRD3 deficiency. We find that mitochondria develop more defined cristae during capacitation in wildtype sperm. Furthermore, we show that absence of TXNRD3 alters thiol redox status in both the head and tail during sperm maturation and capacitation, resulting in defective mitochondrial ultrastructure and activity under capacitating conditions. These findings provide insights into molecular mechanisms of redox homeostasis and bioenergetics during sperm maturation, capacitation, and fertilization.
Collapse
Affiliation(s)
- Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Qianhui Dou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyung Jo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea; Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
12
|
Sarkar S, Yadav S, Mehta P, Gupta G, Rajender S. Histone Methylation Regulates Gene Expression in the Round Spermatids to Set the RNA Payloads of Sperm. Reprod Sci 2022; 29:857-882. [PMID: 35015293 DOI: 10.1007/s43032-021-00837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
Gene expression during spermatogenesis undergoes significant changes due to a demanding sequence of mitosis, meiosis, and differentiation. We investigated the contribution of H3 histone modifications to gene regulation in the round spermatids. Round spermatids were purified from rat testes using centrifugal elutriation and Percoll density-gradient centrifugation. After enzymatic chromatin shearing, immuno-precipitation using antibodies against histone marks H3k4me3 and H3K9me3 was undertaken. The immunoprecipitated DNA fragments were subjected to massive parallel sequencing. Gene expression in round spermatids and sperm was analyzed by transcriptome sequencing using next-generation sequencing methods. ChIP-seq analysis showed significant peak enrichment in H3K4me3 marks in active chromatin regions and H3K9me3 peak enrichment in repressive regions. We found 53 genes which showed overlapping peak enrichment in both H3K4me3 and H3K9me3 marks. Some of the top H3K4me3-enriched genes were involved in sperm tail formation (Odf1, Odf3, Odf4, Oaz3, Ccdc42, Ccdc63, and Ccdc181), chromatin condensation (Dync1h1, Dynll1, and Kdm3a), and sperm functions such as acrosome reaction (Acrbp and Fabp9), energy generation (Gapdhs), and signaling for motility (Tssk1b, Tssk2, and Tssk4). Transcriptome sequencing in round spermatids found 64% transcripts of the H3K4me3-enriched genes at high levels and of about 25% of H3K9me3-enriched genes at very low levels. Transcriptome sequencing in sperm found that more than 99% of the ChIP-seq corresponding transcripts were also present in sperm. H3K4me3 enrichment in the round spermatids correlates significantly with gene expression and H3K9me3 correlates with gene silencing that contribute to sperm differentiation and setting the RNA payloads of sperm.
Collapse
Affiliation(s)
- Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Sperm Redox System Equilibrium: Implications for Fertilization and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:345-367. [DOI: 10.1007/978-3-030-89340-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Jastrząb A, Skrzydlewska E. Regulacja układu zależnego od tioredoksyny jako element farmakoterapii w chorobach z zaburzeniami równowagi redoks. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
Działanie wielu czynników egzogennych, a także zaburzone procesy metaboliczne komórek przyczyniają się do nasilonego wytwarzania oksydantów, a to zaburza równowagę redoks, wywołując zmiany metaboliczne, w tym śmierci lub transformacji nowotworowej komórek. Jednak każda komórka zawiera antyoksydanty, które mają zapobiegać tego typu sytuacjom. Jednym z układów antyoksydacyjnych, funkcjonujących w komórkach, jest układ zależny od tioredoksyny, w skład którego wchodzą: tioredoksyna (Trx), reduktaza tioredoksyny (TrxR) oraz peroksydaza tioredoksyny (TPx), które mogą redukować utlenione składniki komórek kosztem fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH). Działanie takie wynika z budowy przestrzennej Trx oraz TrxR, która umożliwia wytworzenie wewnątrzcząsteczkowego mostka disulfidowego w obrębie cząsteczki tioredoksyny oraz dwóch międzycząsteczkowych mostków selenosulfidowych w obrębie dimeru reduktazy tioredoksyny. Inną, równie istotną funkcją układu zależnego od tioredoksyny jest regulowanie ekspresji wielu białek za pośrednictwem takich czynników jak czynnik transkrypcyjnego NF-κB oraz kinaza regulująca apoptozę (ASK-1), które uruchamiają kaskady przemian metabolicznych prowadzących ostatecznie do proliferacji lub apoptozy komórek. Wzrost ekspresji/aktywności składników systemu zależnego od Trx obserwuje się w rozwoju wielu nowotworów. Dlatego też poszukiwanie selektywnych inhibitorów tioredoksyny lub reduktazy tioredoksyny jest obecnie jednym z głównych kierunków badań w farmakoterapii nowotworów. Wykazano, że wiele naturalnie występujących związków polifenolowych pochodzenia naturalnego o działaniu antyoksydacyjnym (np. kwercetyna czy kurkumina) powoduje inaktywację układu Trx-TrxR. Jednocześnie wiele syntetycznych związków, w tym związki kompleksowe, które stosowane są w terapii przeciwnowotworowej (np. cisplatyna, auranofina, moteksafina gadolinu), również hamują działanie układu zależnego od Trx.
Collapse
Affiliation(s)
- Anna Jastrząb
- Zakład Chemii Nieorganicznej i Analitycznej , Uniwersytet Medyczny w Białymstoku
| | | |
Collapse
|
15
|
Ahlering P, Sutovsky M, Gliedt D, Branson K, Miranda Vizuete A, Sutovsky P. Sperm content of TXNDC8 reflects sperm chromatin structure, pregnancy establishment, and incidence of multiple births after ART. Syst Biol Reprod Med 2020; 66:311-321. [PMID: 32851881 DOI: 10.1080/19396368.2020.1801889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Male germline-specific thioredoxin domain containing 8 (TXNDC8; alias SPTRX3) accumulates indefective human spermatozoa. We assessed the efficiency of two-step semen purification inremoving spermatozoa carrying TXNDC8, and examined the relationship of TXNDC8 with theoutcomes of assisted reproductive therapy (ART), conventional semen parameters, and sperm DNA integrity in sperm chromatin structure assay (SCSA). Semen samples (n = 255) from 91 ART couples were screened in two independent trials, both including a two-step, gradient-and-swim-up separation procedure yielding A-samples (raw semen), B-samples (gradient separated), and C-samples (gradient-and-swim-up). The C-samples were used for intracytoplasmic sperm injection (ICSI) with morphologically selected spermatozoa (IMSSI). Percentage of TXNDC8-positive spermatozoaincreased progressively from A to B/C-samples in both trials. In the first trial (35 couples), the TXNDC8 correlated positively with sperm DNA fragmentation index (%DFI; r = 0.66) measured before separation, and negatively with sperm concentration (r = -0.57) and motility (r = -0.67), also taken before separation. The high DNA stainability index (%HDS) correlated with the percentage of spermatozoa lacking TXNDC8 (r = 0.68). Both SCSA and TXNDC8 parameters showed moderate correlations (r = 0.33-0.66) with blood serum levels of hCG on day 11 (Beta 1) and day13 (Beta 2) after oocyte retrieval. In the second trial (56 couples), fathers of multiplets had a significantly lower percentage of TXNDC8-positive spermatozoa in B-sample (gradient separationonly) compared to men who conceived a singleton pregnancy (p = 0.01) and those who produced no pregnancy (p = 0.02). Those multiplets' fathers also had a significantly higher sperm concentration while their SCSA parameters did not differ from others. It is concluded that theTXNDC8 levels correlate with SCSA and conventional raw semen parameters, and are predictive of pregnancy outcome and multiple births after ART. Two-step purification does not efficiently remove TXNDC8 carrying spermatozoa. ABBREVIATIONS ART- assisted reproductive therapy; DFI- DNA fragmentation index; FC- flow cytometry (FC); hCG: human chorionic gonadotropin; HDS: high DNA stainability index; HEPES- (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); HTF- human tubal fluid; ICSI- intracytoplasmic sperm injection; IgG- immunoglobulin G; IMSSI- ICSI with morphologically selected spermatozoa; IVF- in vitro fertilization; IU-: intrauterine insemination; NGS- normal goat serum; PBS- phosphate buffered saline; PVP- polyvinylpyrrolidone; SAB- spontaneous abortion; SCSA- sperm chromatin structure assay; SPTRX3- spermatid specific thioredoxin 3; SSS- synthetic serum substitute; TRITC- tetramethyl rhodamine isothiocyanate; TX-100- Triton X-100; TXNDC- thioredoxin domain-containing proteins; TXNDC8- thioredoxin domain containing 8; TUNEL- Terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Peter Ahlering
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri , Columbia, MO, 65211-5300, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri , Columbia, MO, 65211-5300, USA
| | - Douglas Gliedt
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Kellie Branson
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Antonio Miranda Vizuete
- Instituto de Biomedicina de SevillaHospital, Universitario Virgen del Rocío/CSIC/Universidad de , Sevilla, SPAIN
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri , Columbia, MO, 65211-5300, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri , Columbia, MO, 65211-5300, USA
| |
Collapse
|
16
|
Tian F, Wang J, Li Y, Yang C, Zhang R, Wang X, Ju Z, Jiang Q, Huang J, Wang C, Chen J, Sun Y. Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Abstract
Significance: Spermatozoa are very sensitive to high levels of reactive oxygen species (ROS) due to the limited antioxidant systems present in these terminal cells. However, tight regulation of ROS levels must be ensured to accomplish the unique goal of the spermatozoon, that is, the transfer of the paternal genome into the mature oocyte during the fertilization process. Thus, it is essential that the restricted antioxidant enzymatic systems are active for sperm function. Recent Advances: Oxidative stress is associated with low sperm quality. High levels of ROS in spermatozoa produce oxidation of lipids, proteins, and DNA that lead to lipid peroxidation, oxidation of essential structural proteins and enzymes, and mutations due to oxidation of DNA. Critical Issues: In this study, we described the available knockout mouse models that helped to better understand the role of different antioxidant enzymes in male fertility. We focused mainly on those studies that directly explore the effects of the lack of these enzymes in male fertility and included information when existing knockout mouse models produced for other purposes were used. Special attention was given in this review to the consequences of the absence of antioxidant enzymes on sperm quality and fertility of aging males from the knockout models. Future Directions: Further studies using novel mouse models lacking different antioxidants and their combinations are essential to understand the consequences of high levels of ROS in aging testes, epididymes, spermatozoa, and embryo development to produce a healthy baby.
Collapse
Affiliation(s)
- Eleonora Scarlata
- Division of Urology, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- Division of Urology, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,The Research Institute, McGill University Health Centre, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
19
|
Gellert M, Hossain MF, Berens FJF, Bruhn LW, Urbainsky C, Liebscher V, Lillig CH. Substrate specificity of thioredoxins and glutaredoxins - towards a functional classification. Heliyon 2019; 5:e02943. [PMID: 31890941 PMCID: PMC6928294 DOI: 10.1016/j.heliyon.2019.e02943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
The spatio-temporal reduction and oxidation of protein thiols is an essential mechanism in signal transduction in all kingdoms of life. Thioredoxin (Trx) family proteins efficiently catalyze thiol-disulfide exchange reactions and the proteins are widely recognized for their importance in the operation of thiol switches. Trx family proteins have a broad and at the same time very distinct substrate specificity – a prerequisite for redox switching. Despite of multiple efforts, the true nature for this specificity is still under debate. Here, we comprehensively compare the classification/clustering of various redoxins from all domains of life based on their similarity in amino acid sequence, tertiary structure, and their electrostatic properties. We correlate these similarities to the existence of common interaction partners, identified in various previous studies and suggested by proteomic screenings. These analyses confirm that primary and tertiary structure similarity, and thereby all common classification systems, do not correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. Instead, a number of examples clearly demonstrate the importance of electrostatic similarity for their target specificity, independent of their belonging to the Trx or glutaredoxin subfamilies.
Collapse
Affiliation(s)
- Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Felix Jacob Ferdinand Berens
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Lukas Willy Bruhn
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Claudia Urbainsky
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Volkmar Liebscher
- Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| |
Collapse
|
20
|
Wang R, Yu Y, Wang Q, Jiang Y, Li L, Zhu H, Liu R, Zhang H. Clinical Features of Infertile Men Carrying a Chromosome 9 Translocation. Open Med (Wars) 2019; 14:854-862. [PMID: 31737790 PMCID: PMC6843491 DOI: 10.1515/med-2019-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
Previous studies indicated that chromosome 9 translocations are involved in reduced male fertility and increased chance of miscarriage in the female partner. The aim of this study was to review the clinical features and genetic counselling requirements of infertile men carrying chromosome 9 translocations. This study analyzed fertile-age male carriers of chromosome 9 translocations, and included 12 clinical cases in our hospital. In our cases, three cases had oligozoospermia or severe oligozoospermia, while nine cases had normal semen. Of the latter nine cases, seven were associated with recurrent spontaneous abortions, and two produced a phenotypically normal child as confirmed by amniocentesis. Male chromosome 9 translocations and specific breakpoints from reported papers were searched using PubMed and CNKI database. A literature review identified 76 male patients who carried chromosome 9 translocations. Breakpoints at 9p12, 9p11, 9p10 and 9q34.1 were related to pregestational infertility, while breakpoints at 9p21, 9q10, 9q11, 9q13, 9q21.1, 9q22, 9q22.2, 9q22.3, 9q34, 9q34.2 and 9q34.3 exhibited gestational infertility. Chromosome translocations involving chromosome 9 lead to increased risk of miscarriage. Carriers of chromosome 9 translocations should be counselled to consider in vitro fertilization accompanied by preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Ruixue Wang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Yang Yu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Qiyuan Wang
- Experimental School of Changchun Jida Middle School, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Linlin Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Haibo Zhu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| |
Collapse
|
21
|
Overview of thioredoxin system and targeted therapies for acute leukemia. Mitochondrion 2019; 47:38-46. [PMID: 31029641 DOI: 10.1016/j.mito.2019.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
22
|
Oxidative Stress Gene Expression Profile Correlates with Cancer Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2597581. [PMID: 28770020 PMCID: PMC5523271 DOI: 10.1155/2017/2597581] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
Abstract
The role of altered redox status and high reactive oxygen species (ROS) is still controversial in cancer development and progression. Intracellular levels of ROS are elevated in cancer cells suggesting a role in cancer initiation and progression; on the contrary, ROS elevated levels may induce programmed cell death and have been associated with cancer suppression. Thus, it is crucial to consider the double-face of ROS, for novel therapeutic strategies targeting redox regulatory mechanisms. In this review, in order to derive cancer-type specific oxidative stress genes' profile and their potential prognostic role, we integrated a publicly available oxidative stress gene signature with patient survival data from the Cancer Genome Atlas database. Overall, we found several genes statistically significant associated with poor prognosis in the examined six tumor types. Among them, FoxM1 and thioredoxin reductase1 expression showed the same pattern in four out of six cancers, suggesting their specific critical role in cancer-related oxidative stress adaptation. Our analysis also unveiled an enriched cellular network, highlighting specific pathways, in which many genes are strictly correlated. Finally, we discussed novel findings on the correlation between oxidative stress and cancer stem cells in order to define those pathways to be prioritized in drug development.
Collapse
|
23
|
Sutovsky P, Aarabi M, Miranda-Vizuete A, Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J Androl 2016; 17:554-60. [PMID: 25999356 PMCID: PMC4492044 DOI: 10.4103/1008-682x.153847] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biomarker-based sperm analysis elevates the treatment of human infertility and ameliorates reproductive performance in livestock. The negative biomarker-based approach focuses on proteins and ligands unique to defective spermatozoa, regardless of their morphological phenotype, lending itself to analysis by flow cytometry (FC). A prime example is the spermatid specific thioredoxin SPTRX3/TXNDC8, retained in the nuclear vacuoles and superfluous cytoplasm of defective human spermatozoa. Infertile couples with high semen SPTRX3 are less likely to conceive by assisted reproductive therapies (ART) and more prone to recurrent miscarriage while low SPTRX3 has been associated with multiple ART births. Ubiquitin, a small, proteolysis-promoting covalent posttranslational protein modifier is found on the surface of defective posttesticular spermatozoa and in the damaged protein aggregates, the aggresomes of spermiogenic origin. Semen ubiquitin content correlates negatively with fertility and conventional semen parameters, and with sperm binding of lectins LCA (Lens culinaris agglutinin; reveals altered sperm surface) and PNA (Arachis hypogaea/peanut agglutinin; reveals acrosomal malformation or damage). The Postacrosomal Sheath WWI Domain Binding Protein (PAWP), implicated in oocyte activation during fertilization, is ectopic or absent from defective human and animal spermatozoa. Consequently, FC-parameters of PAWP correlate with ART outcomes in infertile couples and with fertility in bulls. Assays based on the above biomarkers have been combined into multiplex FC semen screening protocols, and the surface expression of lectins and ubiquitin has been utilized to develop nanoparticle-based bull semen purification method validated by field artificial insemination trials. These advances go hand-in-hand with the innovation of FC-technology and genomics/proteomics-based biomarker discovery.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Science and Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA,
| | | | | | | |
Collapse
|
24
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
25
|
Conrad M, Ingold I, Buday K, Kobayashi S, Angeli JPF. ROS, thiols and thiol-regulating systems in male gametogenesis. Biochim Biophys Acta Gen Subj 2014; 1850:1566-74. [PMID: 25450170 DOI: 10.1016/j.bbagen.2014.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND During maturation and storage, spermatozoa generate substantial amounts of reactive oxygen species (ROS) and are thus forced to cope with an increasingly oxidative environment that is both needed and detrimental to their biology. Such a janus-faceted intermediate needs to be tightly controlled and this is done by a wide array of redox enzymes. These enzymes not only have to prevent unspecific modifications of essential cellular biomolecules by quenching undesired ROS, but they are also required and often directly involved in critical protein modifications. SCOPE OF REVIEW The present review is conceived to present an update on what is known about critical roles of redox enzymes, whereby special emphasis is put on the family of glutathione peroxidases, which for the time being presents the best characterized tasks during gametogenesis. MAJOR CONCLUSIONS We therefore demonstrate that understanding the function of (seleno)thiol-based oxidases/reductases is not a trivial task and relevant knowledge will be mainly gained by using robust systems, as exemplified by several (conditional) knockout studies. We thus stress the importance of using such models for providing unequivocal evidence in the molecular understanding of redox regulatory mechanisms in sperm maturation. GENERAL SIGNIFICANCE ROS are not merely detrimental by-products of metabolism and their proper generation and usage by specific enzymes is essential for vital functions as beautifully exemplified during male gametogenesis. As such, lessons learnt from thiol-based oxidases/reductases in male gametogenesis could be used as a general principle for other organs as it is most likely not only restricted to this developmental phase. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Irina Ingold
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Katalin Buday
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sho Kobayashi
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Department of Functional Genomics and Biotechnology, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jose Pedro Friedmann Angeli
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
26
|
Kurihara M, Shiraishi A, Satake H, Kimura AP. A conserved noncoding sequence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long noncoding RNA. J Mol Biol 2014; 426:3069-93. [PMID: 25020229 DOI: 10.1016/j.jmb.2014.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Tissue-specific gene expression is tightly regulated by various elements such as promoters, enhancers, and long noncoding RNAs (lncRNAs). In the present study, we identified a conserved noncoding sequence (CNS1) as a novel enhancer for the spermatocyte-specific mouse testicular cell adhesion molecule 1 (Tcam1) gene. CNS1 was located 3.4kb upstream of the Tcam1 gene and associated with histone H3K4 mono-methylation in testicular germ cells. By the in vitro reporter gene assay, CNS1 could enhance Tcam1 promoter activity only in GC-2spd(ts) cells, which were derived from mouse spermatocytes. When we integrated the 6.9-kb 5'-flanking sequence of Tcam1 with or without a deletion of CNS1 linked to the enhanced green fluorescent protein gene into the chromatin of GC-2spd(ts) cells, CNS1 significantly enhanced Tcam1 promoter activity. These results indicate that CNS1 could function as a spermatocyte-specific enhancer. Interestingly, CNS1 also showed high bidirectional promoter activity in the reporter assay, and consistent with this, the Smarcd2 gene and lncRNA, designated lncRNA-Tcam1, were transcribed from adjacent regions of CNS1. While Smarcd2 was ubiquitously expressed, lncRNA-Tcam1 expression was restricted to testicular germ cells, although this lncRNA did not participate in Tcam1 activation. Ubiquitous Smarcd2 expression was correlated to CpG hypo-methylation of CNS1 and partially controlled by Sp1. However, for lncRNA-Tcam1 transcription, the strong association with histone acetylation and histone H3K4 tri-methylation also appeared to be required. The present data suggest that CNS1 is a spermatocyte-specific enhancer for the Tcam1 gene and a bidirectional promoter of Smarcd2 and lncRNA-Tcam1.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
27
|
Fujii J, Imai H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. SPERMATOGENESIS 2014; 4:e979108. [PMID: 26413390 PMCID: PMC4581049 DOI: 10.4161/21565562.2014.979108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/16/2014] [Indexed: 01/13/2023]
Abstract
Reduction-oxidation (Redox) reactions are ubiquitous mechanisms for vital activities in all organisms, and they play pivotal roles in the regulation of spermatogenesis as well. Here we focus on 3 redox-involved processes that have drawn much recent attention: the regulation of signal transduction by reactive oxygen species (ROS) such as hydrogen peroxide, oxidative protein folding in the endoplasmic reticulum (ER), and sulfoxidation of protamines during sperm chromatin condensation. The first 2 of these processes are emerging topics in cell biology and are applicable to most living cells, which includes spermatogenic cells. The roles of ROS in signal transduction have been elucidated in the last 2 decades and have received broad attention, most notably from the viewpoint of the proper control of mitotic signals. Redox processes in the ER are important because this is the organelle where secretory and membrane proteins are synthesized and proceed toward their functional structure, so that malfunction of the ER affects not only the involved cells but also the accepting cells of the secreted proteins in multicellular organisms. Sulfoxidation is the third of these processes, and the sulfoxidation of chromatin is a unique process in sperm maturation. During recent sulfoxidase research, GPX4 has emerged as a promising enzyme that plays essential roles in the production of fertile sperm, but the involvement of other redox proteins is also becoming evident. Because the molecules involved in the redox reactions are prone to oxidation, they can be sensitive to oxidative damage, which makes them potential targets for antioxidant therapy.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology; Graduate School of Medical Science; Yamagata University; Yamagata, Japan
| | - Hirotaka Imai
- School of Pharmaceutical Sciences; Kitasato University; Minato-ku, Tokyo, Japan
| |
Collapse
|
28
|
Molecular analysis of testis biopsy and semen pellet as complementary methods with histopathological analysis of testis in non-obstructive azoospermia. J Assist Reprod Genet 2014; 31:707-15. [PMID: 24728569 DOI: 10.1007/s10815-014-0220-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/14/2014] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Non-obstructive azoospermia (NOA) is one the many causes of male infertility (10 %) resulting from testicular failure. Multiple testicular biopsies fail to find mature sperm in at least 50 % of cases Therefore; hunting for sensitive and specific biomarkers of spermatogenesis that could better determine the fertility status in NOA can lead to improved management of male infertility. Therefore, we evaluated sperm production through analyses of germ cell-specific transcripts (DAZ, TSPY1, SPTRX3 and SPTRX1) in semen and testicular biopsies of men with azoospermia. METHODS We collected semen (N=83) and testis biopsies (N=31) from men with non-obstructive azoospermia. We later extracted RNA and synthesized cDNA using washed semen precipitate and testicular tissues. We also performed semi-nested PCR with designed specific primers. Using H&E method, an expert pathologist performed the histopathological evaluation. Having categorized the patients into three groups based on histopathological results, we calculated the agreement between molecular results of semen and tissues with histopathological findings for each patient using Kappa statistical test. RESULTS Molecular findings of precipitated semen and testicular tissues were in disagreement with histopathological results in most cases. Molecular analysis of testis biopsies showed significant difference (Kappa coefficient=0.009, P value=0.894) with histopathological results; TSPY1, DAZ, SPTRX3 and SPTRX1 were respectively detected in 94 %, 94 %, 17.6 % and 52.9 % of men diagnosed with germ cell aplasia. CONCLUSIONS Molecular analysis of semen does not provide sufficient sensitivity and specificity to be used as a screening test at the present time, but it is a useful adjunct to histopathological methods in men with NOA. Spermatid/sperm specific transcripts indicated the possibility to find mature sperm following repeated multiple testicular sperm extraction (TESE) or microdisection TESE (mTESE).
Collapse
|
29
|
Smith TB, Baker MA, Connaughton HS, Habenicht U, Aitken RJ. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free Radic Biol Med 2013; 65:872-881. [PMID: 23707457 DOI: 10.1016/j.freeradbiomed.2013.05.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
Abstract
Oxidative stress in the male germ line is known to be a key factor in both the etiology of male infertility and the high levels of DNA damage encountered in human spermatozoa. Because the latter has been associated with a variety of adverse clinical outcomes, including miscarriage and developmental abnormalities in the offspring, the mechanisms that spermatozoa use to defend themselves against oxidative stress are of great interest. In this context, the male germ line expresses three unique forms of thioredoxin, known as thioredoxin domain-containing proteins (Txndc2, Txndc3, and Txndc8). Two of these proteins, Txndc2 and Txndc3, retain association with the spermatozoa after spermiation and potentially play an important role in regulating the redox status of the mature gamete. To address this area, we have functionally deleted the sperm-specific thioredoxins from the male germ line of mice by either exon deletion (Txndc2) or mutation of the bioactive cysteines (Txndc3). The combined inactivation of these Txndc isoforms did not have an overall impact on spermatogenesis, epididymal sperm maturation, or fertility. However, Txndc deficiency in spermatozoa did lead to age-dependent changes in these cells as reflected by accelerated motility loss, high rates of DNA damage, increases in reactive oxygen species generation, enhanced formation of lipid aldehyde-protein adducts, and impaired protamination of the sperm chromatin. These results suggest that although there is considerable redundancy in the systems employed by spermatozoa to defend themselves against oxidative stress, the sperm-specific thioredoxins, Txndc2 and Txndc3, are critically important in protecting these cells against the increases in oxidative stress associated with paternal age.
Collapse
Affiliation(s)
- T B Smith
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - M A Baker
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - H S Connaughton
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - U Habenicht
- TRG Gynecology & Andrology and Male Health Care Research, Bayer Schering Pharma AG, Berlin, Germany
| | - R J Aitken
- Reproductive Science Group, Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
30
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
31
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
32
|
Oxidative stress and redox regulation of gametogenesis, fertilization, and embryonic development. Reprod Med Biol 2013; 13:71-79. [PMID: 29699151 DOI: 10.1007/s12522-013-0170-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/18/2013] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress caused by elevated reactive oxygen species (ROS) is one of the predominant causes of both male and female infertility. Oxidative stress conditions cause either cell death or senescence by oxidation of cellular molecules including nucleic acid, proteins, and lipids. It is particularly important to minimize oxidative stress when in vitro fertilization is performed for the purpose of assisted reproduction. The problems associated with assisted reproductive technology are becoming evident, and it is now the time to clarify its mechanisms and cope with them. On the other hand, the beneficial roles of ROS, such as intracellular signaling, have become evident. The antithetical functions of ROS make it more difficult to overcome the problems caused by oxidative stress. Despite the difficulty in understanding mammalian reproduction, the mechanisms and problems can be gradually unveiled by advanced technology such as genetic modification of animals.
Collapse
|
33
|
Semen levels of spermatid-specific thioredoxin-3 correlate with pregnancy rates in ART couples. PLoS One 2013; 8:e61000. [PMID: 23734172 PMCID: PMC3667087 DOI: 10.1371/journal.pone.0061000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Spermatid specific thioredoxin-3 (SPTRX3 or TXNDC8) is a testis/male germ line specific member of thioredoxin family that accumulates in the superfluous cytoplasm of defective human spermatozoa. We hypothesized that semen levels of SPTRX3 are reflective of treatment outcome in assisted reproductive therapy (ART) couples treated by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Relationship between SPTRX3 and treatment outcome was investigated in 239 couples undergoing ART at an infertility clinic. Sperm content of SPTRX3 was evaluated by flow cytometry and epifluorescence microscopy, and correlated with clinical semen analysis parameters, and data on embryo development and pregnancy establishment. High SPTRX3 levels (>15% SPTRX3-positive spermatozoa) were found in 51% of male infertility patients (n = 72), in 20% of men from couples with unexplained, idiopathic infertility (n = 61) and in 14% of men from couples previously diagnosed with female-only infertility (n = 85). Couples with high SPTRX3 produced fewer two-pronuclear zygotes and had a reduced pregnancy rate (19.2% pregnant with >15% SPTRX3-positive spermatozoa vs. 41.2% pregnant with <5% SPTRX3-positive sperm; one-sided p<0.05). The average pregnancy rate of all 239 couples was 25.1%. Live birth rate was 19.2% and lowest average SPTRX3 levels were found in couples that delivered twins. Men with >15% of SPTRX3-positive spermatozoa, a cutoff value established by ROC analysis, had their chance of fathering children by IVF or ICSI reduced by nearly two-thirds. The percentage of SPTRX3-positive spermatozoa had predictive value for pregnancy after ART. Gradient purification and sperm swim-up failed to remove all SPTRX3-positive spermatozoa from semen prepared for ART. In summary, the elevated semen content of SPTRX3 in men from ART couples coincided with reduced incidence of pregnancy by IVF or ICSI, identifying SPTRX3 as a candidate biomarker reflective of ART outcome.
Collapse
|
34
|
Özdemirler Erata G, Küçükgergin C, Aktan G, Kadioglu A, Uysal M, Koçak-Toker N. Is thioredoxin reductase involved in the defense against DNA fragmentation in varicocele? Asian J Androl 2013; 15:518-22. [PMID: 23603921 DOI: 10.1038/aja.2013.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 12/26/2012] [Accepted: 01/20/2013] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the role of thioredoxin reductase (TR) and inducible heat shock protein 70 (iHsp70) and their relationship with sperm quality in varicocele (VAR) patients. Semen samples were obtained from 16 subfertile men diagnosed as VAR and 10 fertile men who applied to the Andrology Laboratory of Istanbul Medical Faculty of Istanbul University. The sperm TR and iHsp 70 expression levels were determined using Western blot analysis. The TR activity of the sperm was assayed spectrophometrically. The sperm quality was evaluated both by conventional sperm analysis and by a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique that assayed DNA-fragmented spermatozoa in semen samples. The percentage of TUNEL-positive spermatozoa in the VAR group (16.3%± 5.6%) was higher than that in the fertile group (5.5%± 1.9%). Significant inverse correlations were detected between the percentage of TUNEL-positive cells and both the concentration (r=-0.609; P=0.001) and motility (r=-0.550; P=0.004) of spermatozoa. Both the TR expression and activity were increased significantly in the VAR group (U=22.0; P=0.001 and U=33.5; P=0.012, respectively) as analyzed using the Mann-Whitney U Wilcoxon rank sum W test. Furthermore, significant positive correlations were found between TR expression and activity (r=0.406; P=0.040) and between TR expression and the percentage of TUNEL-positive cells (r=0.665; P=0.001). Sperm iHsp70 expression did not differ between the VAR and fertile groups. In conclusion, increased sperm TR expression might be a defense mechanism against apoptosis in the spermatozoa of men with VAR.
Collapse
Affiliation(s)
- Gül Özdemirler Erata
- Department of Biochemistry, Istanbul Medical Faculty, University of Istanbul, Çapa, 34093, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Traverso JA, Pulido A, Rodríguez-García MI, Alché JD. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:465. [PMID: 24294217 PMCID: PMC3827552 DOI: 10.3389/fpls.2013.00465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 05/19/2023]
Abstract
The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network.
Collapse
Affiliation(s)
- Jose A. Traverso
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Amada Pulido
- Departamento de Fisiología Vegetal, Universidad de GranadaGranada, Spain
| | | | - Juan D. Alché
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alché, Plant Reproductive Biology Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish Council for Scientific Research, Profesor Albareda 1, 18008 Granada, Spain e-mail:
| |
Collapse
|
36
|
Aponte PM, Schlatt S, Franca LRD. Biotechnological approaches to the treatment of aspermatogenic men. Clinics (Sao Paulo) 2013; 68 Suppl 1:157-67. [PMID: 23503966 PMCID: PMC3583150 DOI: 10.6061/clinics/2013(sup01)18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023] Open
Abstract
Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity.
Collapse
Affiliation(s)
- Pedro Manuel Aponte
- Department of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | |
Collapse
|
37
|
Zhang H, Cao D, Cui W, Ji M, Qian X, Zhong L. Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radic Biol Med 2010; 49:2010-8. [PMID: 20951799 DOI: 10.1016/j.freeradbiomed.2010.09.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/18/2010] [Accepted: 09/27/2010] [Indexed: 11/23/2022]
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) function as antioxidant and anti-apoptotic proteins, which are often up-regulated in drug-resistant cancer cells. (-)-epigallocatechin-3-gallate (EGCG) is a naturally occurring antioxidant in green tea, but also exhibits prooxidant and apoptosis-inducing properties. We have previously showed a linkage between EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG. However, the molecular events underlying the importance of Trx/TrxR in EGCG-induced cytotoxicity remain unclear. Here, we show that the crosstalk between EGCG and Trx/TrxR occurred in a redox-dependent manner, and EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells. Moreover, EGCG displayed great reactivity with Cys/Sec residues that have low pK(a) values. The structure of EGCG suggests that its quinone form would readily react with thiolate and selenolate nucleophiles. Using mass spectrometry, we have demonstrated the formation of EGCG-Trx1 (Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates, confirming that EGCG quinone specifically conjugates with active-site Cys(32) in Trx or C-terminal Cys/Selenocysteine (Sec) couple in TrxR under conditions where Trx/TrxR are reduced. Non-reduced form of Trx/TrxR could escape from EGCG inhibition. These data reveal a potential mechanism for enhancing EGCG-induced cancer cell death by the NADPH-dependent reduction of Trx/TrxR.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
38
|
Saïd L, Banni M, Kerkeni A, Saïd K, Messaoudi I. Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 2010; 48:2759-65. [DOI: 10.1016/j.fct.2010.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 01/14/2023]
|
39
|
Abstract
Immunoinfertility is one of several causes of infertility in humans. Although progress on antisperm immunity and infertility has advanced during the past three decades, the nature of a real antisperm antibody (ASA) is still poorly understood. Dozens of sperm antigens have been isolated and characterized in association with infertility. However, it is difficult to identify a single predominant target antigen that could interact with all the ASAs. There are some protective mechanisms preventing ASA production in males and females. As chronic infection, vasectomy and vasovasostomy, heavy metals, and testicular cancer and torsion may induce the production of ASAs, they may be responsible for decreased motility and sperm penetration of cervical mucus, and the blockage of the acrosome reaction and the sperm-egg interaction. Many ASA assay methods have been developed, each with advantages and disadvantages. Efforts for the treatment of ASA-mediated infertility have been attempted. However, current therapy for ASA-associated infertility is almost empiric and largely unproven.
Collapse
Affiliation(s)
- Jin-Chun Lu
- Department of Laboratory Science, Nanjing Hospital, Jiangsu Corps, The Armed Police Force, PLA, 256 Heyan Road, Nanjing 210028, China.
| | | | | |
Collapse
|
40
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
41
|
Buckman C, George TC, Friend S, Sutovsky M, Miranda-Vizuete A, Ozanon C, Morrissey P, Sutovsky P. High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry. Syst Biol Reprod Med 2010; 55:244-51. [PMID: 19938959 DOI: 10.3109/19396360903056224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.
Collapse
Affiliation(s)
- Clayton Buckman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 2009; 11:2741-58. [PMID: 19583492 PMCID: PMC2821134 DOI: 10.1089/ars.2009.2683] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) are the key mediators of pathogenesis in cardiovascular diseases. Members of the thioredoxin superfamily take an active part in scavenging reactive oxygen species, thus playing an essential role in maintaining the intracellular redox status. The alteration in the expression levels of thioredoxin family members and related molecules constitute effective biomarkers in various diseases, including cardiovascular complications that involve oxidative stress. Thioredoxin, glutaredoxin, peroxiredoxin, and glutathione peroxidase, along with their isoforms, are involved in interaction with the members of metabolic and signaling pathways, thus making them attractive targets for clinical intervention. Studies with cells and transgenic animals have supported this notion and raised the hope for possible gene therapy as modern genetic medicine. Of all the molecules, thioredoxins, glutaredoxins, and peroxiredoxins are emphasized, because a growing body of evidence reveals their essential and regulatory role in several steps of redox regulation. In this review, we discuss some pertinent observations regarding their distribution, structure, functions, and interactions with the several survival- and death-signaling pathways, especially in the myocardium.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Cardiovascular Research Center, Department of Surgery, School of Medicine, University of Connecticut Health Center , Farmington, CT 06030-1110, USA.
| | | | | | | | | |
Collapse
|
43
|
Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 2009; 419:149-58. [PMID: 19105792 DOI: 10.1042/bj20081526] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prx (peroxiredoxin) is a multifunctional redox protein with thioredoxin-dependent peroxidase activity. Prx4 is present as a secretory protein in most tissues, whereas in sexually mature testes it is anchored in the ER (endoplasmic reticulum) membrane of spermatogenic cells via an uncleaved N-terminal hydrophobic peptide. We generated a Prx4 knockout mouse to investigate the function of Prx4 in vivo. Prx4(-/y) mice lacking Prx4 expression in all cells were obtained by mating Prx4(flox/+) female mice with Cre-transgenic male mice that ubiquitously expressed Cre recombinase. The resulting Prx4(-/y) male mice were fertile, and most organs were nearly normal in size, except for testicular atrophy. The number of deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive spermatogenic cells was higher in Prx4(-/y) mice than in Prx4(+/y) mice and increased remarkably in response to warming the lower abdomen at 43 degrees C for 15 min. Cells reactive to antibodies against 4-hydroxynonenal and 8-hydroxyguanine were high in the Prx4(-/y) mice and concomitant with elevated oxidation of lipid and protein thiols. The cauda epididymis of Prx4(-/y) mice contained round spermatocytes, which were not found in Prx4(+/y) mice, and displayed oligozoospermia. However, mature spermatozoa from the epididymis of Prx4(-/y) mice exhibited normal fertilization In vitro. Taken together, these results indicate that spermatogenic cells lacking Prx4 are more susceptible to cell death via oxidative damage than their wild-type counterparts. Our results suggest that the presence of Prx4, most likely the membrane-bound form, is important for spermatogenesis, but not an absolute requisite.
Collapse
|
44
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 504] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
45
|
Manandhar G, Miranda-Vizuete A, Pedrajas JR, Krause WJ, Zimmerman S, Sutovsky M, Sutovsky P. Peroxiredoxin 2 and peroxidase enzymatic activity of mammalian spermatozoa. Biol Reprod 2009; 80:1168-77. [PMID: 19208552 DOI: 10.1095/biolreprod.108.071738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Peroxiredoxin 2 (PRDX2) is a highly efficient redox protein that neutralizes hydrogen peroxide, resulting in protection of cells from oxidative damage and in regulation of peroxide-mediated signal transduction events. The oxidized form of PRDX2 is reverted back to the reduced form by the thioredoxin system. In the present study, we investigated the presence of PRDX2 in mouse and boar spermatozoa and in mouse spermatids using proteomic techniques and immunocytochemistry. Sperm and spermatid extracts displayed a 20-kDa PRDX2 band on Western blotting. PRDX2 occurred as a Triton-soluble form in spermatids and as a Triton-insoluble form in mature spermatozoa. Boar seminiferous tubule extracts were immunoprecipitated with PRDX2 antibody and separated by SDS-PAGE. Peptide mass fingerprinting by matrix-assisted laser desorption ionization-time of flight (TOF) and microsequencing by nanospray quadrupole-quadrupole TOF tandem mass spectrometry revealed the presence of PRDX2 ions in the immunoprecipitated band, along with sperm mitochondria-associated cysteine-rich protein, cellular nucleic acid-binding protein, and glutathione peroxidase 4. In mouse spermatocytes and spermatids, diffuse labeling of PRDX2 was observed in the cytoplasm and residual bodies. After spermiation, PRDX2 localization became confined to the mitochondrial sheath of the sperm tail midpiece. Boar spermatozoa displayed similar PRDX2 localization as in mouse spermatozoa. Boar spermatozoa with disrupted acrosomes expressed PRDX2 in the postacrosomal sheath region. Peroxidase enzyme activity of boar sperm extracts was evaluated by estimating the rate of NADPH oxidation in the presence or absence of a glutathione depletor (diethyl maleate) or a glutathione reductase inhibitor (carmustine). Diethyl maleate partially inhibited peroxidase activity, whereas carmustine showed an insignificant effect. These observations suggest that glutathione and glutathione reductase activity contribute only partially to the total peroxidase activity of the sperm extract. While the specific role of PRDX2 in the total peroxidase activity of sperm extract is still an open question, the present study for the first time (to our knowledge) shows the presence of PRDX2 in mammalian spermatozoa. Peroxidase activity in sperm extracts is not due to the glutathione system and therefore possibly involves PRDX2 and other peroxiredoxins.
Collapse
Affiliation(s)
- Gaurishankar Manandhar
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Hudemann C, Lönn ME, Godoy JR, Zahedi Avval F, Capani F, Holmgren A, Lillig CH. Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms. Antioxid Redox Signal 2009; 11:1-14. [PMID: 18707224 DOI: 10.1089/ars.2008.2068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase involved in the maintenance of mitochondrial redox homeostasis. Grx2 was first characterized as mitochondrial protein, but alternative mRNA variants lacking the transit peptide-encoding first exon were demonstrated for human and proposed for mouse. We systematically screened for alternative transcript variants of mouse Grx2. We identified a total of six exons, three constitutive (II, III, and IV), two alternative first exons (exons Ia and Ic), and one single-cassette exon (exon IIIb) located between exons III and IV. Exons Ic and IIIb are not present in the human genome; mice lack human exon Ib. The six exons give rise to five transcript variants that encode three protein isoforms: mitochondrial Grx2a, a cytosolic isoform that is homologous to the cytosolic/nuclear human Grx2c and present in specific cells of many tissues and the testis-specific isoform Grx2d that is unique to mice. Mouse Grx2c can form an iron/sulfur cluster-bridged dimer, is enzymatically active as a monomer, and can donate electrons to ribonucleotide reductase. Testicular cells lack mitochondrial Grx2a but contain cytosolic Grx2. Prominent immunostaining was detected in spermatogonia and spermatids. These results provide evidence for additional functions of Grx2 in the cytosol, in cell proliferation, and in cellular differentiation.
Collapse
Affiliation(s)
- Christoph Hudemann
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Function of reactive oxygen species during animal development: Passive or active? Dev Biol 2008; 320:1-11. [DOI: 10.1016/j.ydbio.2008.04.041] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 02/07/2023]
|
48
|
Nakamura N, Miranda-Vizuete A, Miki K, Mori C, Eddy EM. Cleavage of disulfide bonds in mouse spermatogenic cell-specific type 1 hexokinase isozyme is associated with increased hexokinase activity and initiation of sperm motility. Biol Reprod 2008; 79:537-45. [PMID: 18509164 DOI: 10.1095/biolreprod.108.067561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated.
Collapse
Affiliation(s)
- Noriko Nakamura
- Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
49
|
Dammeyer P, Damdimopoulos AE, Nordman T, Jiménez A, Miranda-Vizuete A, Arnér ESJ. Induction of cell membrane protrusions by the N-terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1. J Biol Chem 2007; 283:2814-21. [PMID: 18042542 DOI: 10.1074/jbc.m708939200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human thioredoxin system has a wide range of functions in cells including regulation of cell proliferation and differentiation, immune system modulation, antioxidant defense, redox control of transcription factor activity, and promotion of cancer development. A key component of this enzymatic system is the selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene. Transcription of TXNRD1 involves alternative splicing, leading to a number of transcripts also encoding isoforms of TrxR1 that differ from each other at their N-terminal domains. Here we have studied the TXNRD1_v3 isoform containing an atypical N-terminal glutaredoxin (Grx) domain. Expression of the transcript of this isoform was found predominantly in testis but was also detected in ovary, spleen, heart, liver, kidney, and pancreas. By immunohistochemical analysis in human testis with antibodies specific for the Grx domain of TXNRD1_v3, the protein was found to be predominantly expressed in the Leydig cells. Expression of the TXNRD1_v3 transcript was also found in several cancer cell lines (HCC1937, H23, A549, U1810, or H157), and in HeLa cells, it was induced by estradiol or testosterone treatments. Surprisingly, green fluorescent protein fusions with the complete TXNRD1_v3 protein or with only its Grx domain localized to distinct cellular sites in proximity to actin, and furthermore, had a potent capacity to rapidly induce cell membrane protrusions. Analyses of these structures suggested that the Grx domain of TXNRD1_v3 localizes first in the emerging protrusion and is then followed into the protrusions by actin and subsequently by tubulin. The results presented thus reveal that TXNRD1_v3 has a unique and distinct expression pattern in human cells and suggest that the protein can guide actin polymerization in relation to cell membrane restructuring.
Collapse
Affiliation(s)
- Pascal Dammeyer
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Luo YH, Kuo CF, Huang KJ, Wu JJ, Lei HY, Lin MT, Chuang WJ, Liu CC, Lin CF, Lin YS. Streptococcal pyrogenic exotoxin B antibodies in a mouse model of glomerulonephritis. Kidney Int 2007; 72:716-24. [PMID: 17637712 DOI: 10.1038/sj.ki.5002407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptococcal pyrogenic exotoxin B is an extracellular cysteine protease. Only nephritis-associated strains of group A streptococci secrete this protease and this may be involved in the pathogenesis of post-streptococcal glomerulonephritis. Mice were actively immunized with a recombinant protease inactive exotoxin B mutant or passively immunized with exotoxin B antibody. Characteristics of glomerulonephritis were measured using histology, immunoglobulin deposition, complement activation, cell infiltration, and proteinuria. None of the mice given bovine serum albumin or exotoxin A as controls showed any marked changes. Immunoglobulin deposition, complement activation, and leukocyte infiltration occurred only in the glomeruli of exotoxin B-hyperimmunized mice. One particular anti-exotoxin B monoclonal antibody, 10G, was cross-reactive with kidney endothelial cells and it caused kidney injury and proteinuria when infused into mice. This cross-reactivity may be involved in the pathogenesis of glomerulonephritis following group A streptococcal infection.
Collapse
Affiliation(s)
- Y-H Luo
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|