1
|
Sereesongsaeng N, Burrows JF, Scott CJ, Brix K, Burden RE. Cathepsin V regulates cell cycle progression and histone stability in the nucleus of breast cancer cells. Front Pharmacol 2023; 14:1271435. [PMID: 38026973 PMCID: PMC10657903 DOI: 10.3389/fphar.2023.1271435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: We previously identified that Cathepsin V (CTSV) expression is associated with poor prognosis in ER+ breast cancer, particularly within the Luminal A subtype. Examination of the molecular role of the protease within Luminal A tumours, revealed that CTSV promotes tumour cell invasion and proliferation, in addition to degradation of the luminal transcription factor, GATA3, via the proteasome. Methods: Cell line models expressing CTSV shRNA or transfected to overexpress CTSV were used to examine the impact of CTSV on cell proliferation by MTT assay and flow cytometry. Western blotting analysis was used to identify the impact of CTSV on histone and chaperone protein expression. Cell fractionation and confocal microscopy was used to illustrate the presence of CTSV in the nuclear compartment. Results: In this work we have identified that CTSV has an impact on breast cancer cell proliferation, with CTSV depleted cells exhibiting delayed progression through the G2/M phase of the cell cycle. Further investigation has revealed that CTSV can control nuclear expression levels of histones H3 and H4 via regulating protein expression of their chaperone sNASP. We have discovered that CTSV is localised to the nuclear compartment in breast tumour cells, mediated by a bipartite nuclear localisation signal (NLS) within the CTSV sequence and that nuclear CTSV is required for cell cycle progression and histone stability in breast tumour cells. Discussion: Collectively these findings support the hypothesis that targeting CTSV may have utility as a novel therapeutic target in ER+ breast cancer by impairing cell cycle progression via manipulating histone stabilisation.
Collapse
Affiliation(s)
| | - James F. Burrows
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| | - Christopher J. Scott
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| | - Klaudia Brix
- School of Science, Constructor University, Bremen, Germany
| | - Roberta E. Burden
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
3
|
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front Immunol 2022; 13:955407. [PMID: 35990632 PMCID: PMC9382241 DOI: 10.3389/fimmu.2022.955407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins were first described, as endolysosomal proteolytic enzymes in reference to the organelles where they degrade the bulk of endogenous and exogenous substrates in a slightly acidic environment. These substrates include pathogens internalized via endocytosis and/or marked for destruction by autophagy. However, the role of cathepsins during infection far exceeds that of direct digestion of the pathogen. Cathepsins have been extensively investigated in the context of tumour associated immune cells and chronic inflammation. Several cathepsin-dependent immune responses develop in the endocytic pathway while others take place in the cytosol, the nucleus, or in the extracellular space. In this review we highlight the spatial localization of cathepsins and their implications in immune activation and resolution pathways during infection.
Collapse
|
4
|
Rudzinska-Radecka M, Frolova AS, Balakireva AV, Gorokhovets NV, Pokrovsky VS, Sokolova DV, Korolev DO, Potoldykova NV, Vinarov AZ, Parodi A, Zamyatnin AA. In Silico, In Vitro, and Clinical Investigations of Cathepsin B and Stefin A mRNA Expression and a Correlation Analysis in Kidney Cancer. Cells 2022; 11:1455. [PMID: 35563761 PMCID: PMC9101197 DOI: 10.3390/cells11091455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
The cysteine protease Cathepsin B (CtsB) plays a critical role in multiple signaling pathways, intracellular protein degradation, and processing. Endogenous inhibitors regulate its enzymatic activity, including stefins and other cystatins. Recent data proved that CtsB is implicated in tumor extracellular matrix remodeling, cell invasion, and metastasis: a misbalance between cathepsins and their natural inhibitors is often considered a sign of disease progression. In the present study, we investigated CtsB and stefin A (StfA) expression in renal cell carcinoma (RCC). mRNA analysis unveiled a significant CTSB and STFA increase in RCC tissues compared to adjacent non-cancerogenic tissues and a higher CtsB expression in malignant tumors than in benign renal neoplasms. Further analysis highlighted a positive correlation between CtsB and StfA expression as a function of patient sex, age, tumor size, grade, lymph node invasion, metastasis occurrence, and survival. Alternative overexpression and silencing of CtsB and StfA confirmed the correlation expression between these proteins in human RCC-derived cells through protein analysis and fluorescent microscopy. Finally, the ectopic expression of CtsB and StfA increased RCC cell proliferation. Our data strongly indicated that CtsB and StfA expression play an important role in RCC development by mutually stimulating their expression in RCC progression.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
| | - Vadim S. Pokrovsky
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darina V. Sokolova
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Immunology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
5
|
Ni J, Lan F, Xu Y, Nakanishi H, Li X. Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathol 2022; 32:e13071. [PMID: 35411983 PMCID: PMC9425006 DOI: 10.1111/bpa.13071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cathepsin B (CatB) is a typical cysteine lysosomal protease involved in a variety of physiologic and pathological processes. It is expressed in most cell types and is primarily localized within subcellular endosomal and lysosomal compartments. Emerging scientific evidence indicates that lysosomal leaked CatB is involved in mitochondrial stress, inflammasome activation, and nuclear senescence, but without the acidic environment. CatB is also secreted as a myokine, which is involved in muscle‐brain cross talk and neuronal dendritic remodeling. Lysosomal‐leaked and cellular‐secreted CatB functions are dependent on its enzymatic activity at a neutral pH. In the present review, we summarize the available experimental evidence that mechanistically links extralysosomal CatB to physiological and pathological functions in central nervous system, and their potential for use in therapeutic approaches.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ma K, Chen X, Liu W, Chen S, Yang C, Yang J. CTSB is a negative prognostic biomarker and therapeutic target associated with immune cells infiltration and immunosuppression in gliomas. Sci Rep 2022; 12:4295. [PMID: 35277559 PMCID: PMC8917123 DOI: 10.1038/s41598-022-08346-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Previous researches have demonstrated the meaning of CTSB for the progress of several tumors, whereas few clues about its immunological characteristic in gliomas. Here we systematically explored its biologic features and clinical significance for gliomas. 699 glioma cases of TCGA and 325 glioma cases of CGGA were respectively included as training and validating cohorts. R software was used for data analysis and mapping. We found that CTSB was remarkably highly-expressed for HGG, IDH wild type, 1p19q non-codeletion type, MGMT promoter unmethylation type and mesenchymal gliomas. CTSB could specifically and sensitively indicate mesenchymal glioma. Upregulated CTSB was an independent hazard correlated with poor survival. CTSB-related biological processes in gliomas chiefly concentrated on immunoreaction and inflammation response. Then we proved that CTSB positively related to most inflammatory metagenes except IgG, including HCK, LCK, MHC II, STAT1 and IFN. More importantly, the levels of glioma-infiltrating immune cells were positively associated with the expression of CTSB, especially for TAMs, MDSCs and Tregs. In conclusion, CTSB is closely related to the malignant pathological subtypes, worse prognosis, immune cells infiltration and immunosuppression of gliomas, which make it a promising biomarker and potential target in the diagnosis, treatment and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
7
|
Al-Hashimi A, Venugopalan V, Sereesongsaeng N, Tedelind S, Pinzaru AM, Hein Z, Springer S, Weber E, Führer D, Scott CJ, Burden RE, Brix K. Significance of nuclear cathepsin V in normal thyroid epithelial and carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118846. [PMID: 32910988 DOI: 10.1016/j.bbamcr.2020.118846] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Altered expression and/or localization of cysteine cathepsins is believed to involve in thyroid diseases including cancer. Here, we examined the localization of cathepsins B and V in human thyroid tissue sections of different pathological conditions by immunolabeling and morphometry. Cathepsin B was mostly found within endo-lysosomes as expected. In contrast, cathepsin V was detected within nuclei, predominantly in cells of cold nodules, follicular and papillary thyroid carcinoma tissue, while it was less often detected in this unusual localization in hot nodules and goiter tissue. To understand the significance of nuclear cathepsin V in thyroid cells, this study aimed to establish a cellular model of stable nuclear cathepsin V expression. As representative of a specific form lacking the signal peptide and part of the propeptide, N-terminally truncated cathepsin V fused to eGFP recapitulated the nuclear localization of endogenous cathepsin V throughout the cell cycle in Nthy-ori 3-1 cells. Interestingly, the N-terminally truncated cathepsin V-eGFP was more abundant in the nuclei during S phase. These findings suggested a possible contribution of nuclear cathepsin V forms to cell cycle progression. Indeed, we found that N-terminally truncated cathepsin V-eGFP expressing cells were more proliferative than those expressing full-length cathepsin V-eGFP or wild type controls. We conclude that a specific molecular form of cathepsin V localizes to the nucleus of thyroid epithelial and carcinoma cells, where it might involve in deregulated pathways leading to hyperproliferation. These findings highlight the necessity to better understand cathepsin trafficking in health and disease. In particular, cell type specificity of mislocalization of cysteine cathepsins, which otherwise act in a functionally redundant manner, seems to be important to understand their non-canonical roles in cell cycle progression.
Collapse
Affiliation(s)
- Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | | | - Sofia Tedelind
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Alexandra M Pinzaru
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ekkehard Weber
- Institute of Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystrasse 1, D-06114 Halle-Saale, Germany
| | - Dagmar Führer
- Universität Duisburg-Essen, Universitätsklinikum Essen (AöR), Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Hufeland Strasse 55, D-45177 Essen, Germany
| | - Christopher J Scott
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
8
|
Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020; 9:cells9071679. [PMID: 32668602 PMCID: PMC7407943 DOI: 10.3390/cells9071679] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.
Collapse
|
9
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
12
|
Soond SM, Kozhevnikova MV, Frolova AS, Savvateeva LV, Plotnikov EY, Townsend PA, Han YP, Zamyatnin AA. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Lett 2019; 462:43-50. [PMID: 31381961 DOI: 10.1016/j.canlet.2019.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
While research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general. In this review article, we address these key aspects of cathepsin isoform proteins, with particular emphasis on how they have shaped what is now known in the context of nuclear cathepsin localization and what potential these hold as nuclear-based therapeutic targets in cancer.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Maria V Kozhevnikova
- Hospital Therapy Department № 1, Sechenov First Moscow State Medical University , 6-1 Bolshaya Pirogovskaya str, Moscow, 119991, Russian Federation.
| | - Anastasia S Frolova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; and the NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Yuan-Ping Han
- College of Life Sciences Sichuan University, Chengdu, Sichuan, PO 6100064, People's Republic of China.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| |
Collapse
|
13
|
Soond SM, Kozhevnikova MV, Zamyatnin AA. 'Patchiness' and basic cancer research: unravelling the proteases. Cell Cycle 2019; 18:1687-1701. [PMID: 31213124 DOI: 10.1080/15384101.2019.1632639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent developments in Cathepsin protease research have unveiled a number of key observations which are fundamental to further our understanding of normal cellular homeostasis and disease. By far, the most interesting and promising area of Cathepsin biology stems from how these proteins are linked to the fate of living cells through the phenomenon of Lysosomal Leakage and Lysosomal Membrane Permeabilisation. While extracellular Cathepsins are generally believed to be of central importance in tumour progression, through their ability to modulate the architecture of the Extracellular Matrix, intracellular Cathepsins have been established as being of extreme significance in mediating cell death through Apoptosis. With these two juxtaposed key research areas in mind, the focus of this review highlights recent advancements in how this fast-paced area of Cathepsin research has recently evolved in the context of their mechanistic regulation in cancer research. Abbreviations : ECM, Extracellular Matrix; MMP, Matrix Metalloproteases; LL, Lysosomal Leakage; LMP, Lysosomal Membrane Permeabilisation; LMA, Lysosomorphic Agents; BC, Breast Cancer; ASM, Acid Sphingomyelinase; TNF-α, Tumor Necrosis Factor-alpha; LAMP, Lysosomal Associated membrane Protein; PCD, Programmed Cell Death; PDAC, Pancreatic Ductal Adenocarcinoma; ROS, Reactive Oxygen Species; aa, amino acids.
Collapse
Affiliation(s)
- Surinder M Soond
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Maria V Kozhevnikova
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Andrey A Zamyatnin
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation.,b Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
14
|
Rebernik M, Lenarčič B, Novinec M. The catalytic domain of cathepsin C (dipeptidyl-peptidase I) alone is a fully functional endoprotease. Protein Expr Purif 2019; 157:21-27. [PMID: 30703555 DOI: 10.1016/j.pep.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Cathepsin C is a tetrameric lysosomal protease that acts as a dipeptidyl-peptidase due to the presence of the exclusion domain that is unique among papain-like cysteine proteases. Here we describe a recombinant form of cathepsin C lacking its exclusion domain (CatCΔEx) produced in a bacterial expression system (E. coli). CatCΔEx is a monomer with endoprotease activity and affinity for hydrophobic residues such as Phe, Leu or Pro, but not Val, in the P2 position. As opposed to cathepsin C, it does not require chloride ions for its activity. Despite lower turnover rates of hydrolysis of synthetic substrates, CatCΔEx has elastolytic and gelatinolytic activity comparable to other cysteine cathepsins.
Collapse
Affiliation(s)
- Mateja Rebernik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia; Department of Biochemistry and Molecular and Structural Biology, "Jožef Stefan" Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Host Cell Proteases: Cathepsins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7123490 DOI: 10.1007/978-3-319-75474-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. They are known to reside within endo-lysosomes where they acquire optimal conditions for proteolytic activity and substrate cleavage. However, cathepsins have been detected in locations other than the canonical compartments of the endocytotic pathway. They are often secreted from cells in either proteolytically inactive proform or as mature and active enzyme; this may happen in both physiological and pathological conditions. Moreover, cytosolic and nuclear forms of cathepsins have been described and are currently an emerging field of research aiming at understanding their functions in such unexpected cellular locations. This chapter summarizes the canonical pathways of biosynthesis and transport of cathepsins in healthy cells. We further describe how cathepsins can reach unexpected locations such as the extracellular space or the cytosol and the nuclear matrix. No matter where viruses and cathepsins encounter, several outcomes can be perceived. Thus, scenarios are discussed on how cathepsins may support virus entry into host cells, involve in viral fusion factor and polyprotein processing in different host cell compartments, or help in packaging of viral particles during maturation. It is of note to mention that this review is not meant to comprehensively cover the present literature on viruses encountering cathepsins but rather illustrates, on some representative examples, the possible roles of cathepsins in replication of viruses and in the course of disease.
Collapse
|
17
|
Blass G, Levchenko V, Ilatovskaya DV, Staruschenko A. Chronic cathepsin inhibition by E-64 in Dahl salt-sensitive rats. Physiol Rep 2017; 4:4/17/e12950. [PMID: 27597769 PMCID: PMC5027357 DOI: 10.14814/phy2.12950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes expressed in the kidneys and other tissues, and are involved in the maturation and breakdown of cellular proteins. They have been shown to be integrally involved in the progression of many cardiovascular and renal diseases. The goal of this study was to determine the involvement of cysteine cathepsins in the development of salt‐sensitive hypertension and associated kidney damage. In our experiments, Dahl salt‐sensitive (SS) rats were fed an 8% high salt NaCl diet and intravenously infused with the irreversible cysteine cathepsin inhibitor E‐64 (1 mg/day) or the vehicle (control). Both the control and E‐64 infused groups developed significant hypertension and kidney damage, and no difference of the mean arterial pressure and the hypertension‐associated albuminuria was observed between the groups. We next tested basal calcium levels in the podocytes of both control and infused groups using confocal calcium imaging. Basal calcium did not differ between the groups, indicative of the lack of a protective or aggravating influence by the cathepsin inhibition. The efficacy of E‐64 was tested in Western blotting. Our findings corresponded to the previously reported, E‐64 induced increase in cathepsin B and L abundance. We conclude that the inhibition of cysteine cathepsins by E‐64 does not have any effects on the blood pressure development and kidney damage, at least under the studied conditions of this model of SS hypertension.
Collapse
Affiliation(s)
- Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
18
|
Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation. J Nutr Biochem 2017; 39:145-155. [DOI: 10.1016/j.jnutbio.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
|
19
|
Tamhane T, Lllukkumbura R, Lu S, Maelandsmo GM, Haugen MH, Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie 2015; 122:208-18. [PMID: 26343556 DOI: 10.1016/j.biochi.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Prominent tasks of cysteine cathepsins involve endo-lysosomal proteolysis and turnover of extracellular matrix constituents or plasma membrane proteins for maintenance of intestinal homeostasis. Here we report on enhanced levels and altered subcellular localization of distinct cysteine cathepsins in adenocarcinoma tissue in comparison to adjacent normal colon. Immunofluorescence and immunoblotting investigations revealed the presence of cathepsin L in the nuclear compartment in addition to its expected endo-lysosomal localization in colorectal carcinoma cells. Cathepsin L was represented as the full-length protein in the nuclei of HCT116 cells from which stefin B, a potent cathepsin L inhibitor, was absent. Fluorescence activated cell sorting analyses with synchronized cell cultures revealed deceleration of cell cycle progression of HCT116 cells upon inhibition of cathepsin L activity, while expression of cathepsin L-enhanced green fluorescent protein chimeras accelerated S-phase entry. We conclude that the activity of cathepsin L is high in the nucleus of colorectal carcinoma cells because of lacking stefin B inhibitory activity. Furthermore, we hypothesize that nuclear cathepsin L accelerates cell cycle progression of HCT116 cells thereby supporting the notion that cysteine cathepsins may play significant roles in carcinogenesis due to deregulated trafficking.
Collapse
Affiliation(s)
- Tripti Tamhane
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Rukshala Lllukkumbura
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Shiying Lu
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | - Mads H Haugen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany; Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
| |
Collapse
|
20
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
21
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
22
|
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. PROTOPLASMA 2015; 252:755-774. [PMID: 25398648 DOI: 10.1007/s00709-014-0730-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.
Collapse
Affiliation(s)
- Klaudia Brix
- Research Area HEALTH, Research Center MOLIFE-Molecular Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | | | | | | | | | |
Collapse
|
23
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
24
|
Jerič B, Dolenc I, Mihelič M, Klarić M, Zavašnik-Bergant T, Gunčar G, Turk B, Turk V, Stoka V. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2254-66. [PMID: 23684953 DOI: 10.1016/j.bbamcr.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/13/2023]
Abstract
The contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity. Wild-type human cathepsin F and its N-terminally truncated forms, Ala(20)-Asp(484) (Δ(19)CatF), Pro(126)-Asp(484) (Δ(125)CatF), and Met(147)-Asp(484) (Δ(146)CatF) were cloned into the pcDNA3 vector and overexpressed in HEK 293T cells. Wild-type human cathepsin F displayed a clear vesicular labeling and colocalized with the LAMP2 protein, a lysosomal marker. However, all three N-terminally truncated forms of human cathepsin F were recovered as insoluble proteins, suggesting that the deletion of at least the signal peptides (Δ(19)CatF), results in protein aggregation. Noteworthy, they concentrated large perinuclear-juxtanuclear aggregates that accumulated within aggresome-like inclusions. These inclusions showed p62-positive immunoreactivity and were colocalized with the autophagy marker LC3B, but not with the LAMP2 protein. In addition, an approximately 2-3 fold increase in DEVDase activity was not sufficient to induce apoptotic cell death. These results suggested the clearance of the N-terminally truncated forms of human cathepsin F via the autophagy pathway, underlying its protective and prosurvival mechanisms.
Collapse
Affiliation(s)
- Barbara Jerič
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dana D, Davalos AR, De S, Rathod P, Gamage RK, Huestis J, Afzal N, Zavlanov Y, Paroly SS, Rotenberg SA, Subramaniam G, Mark KJ, Chang EJ, Kumar S. Development of cell-active non-peptidyl inhibitors of cysteine cathepsins. Bioorg Med Chem 2013; 21:2975-87. [PMID: 23623677 DOI: 10.1016/j.bmc.2013.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/15/2013] [Accepted: 03/23/2013] [Indexed: 11/26/2022]
Abstract
Cysteine cathepsins are an important class of enzymes that coordinate a variety of important cellular processes, and are implicated in various types of human diseases. However, small molecule inhibitors that are cell-permeable and non-peptidyl in nature are scarcely available. Herein the synthesis and development of sulfonyloxiranes as covalent inhibitors of cysteine cathepsins are reported. From a library of compounds, compound 5 is identified as a selective inhibitor of cysteine cathepsins. Live cell imaging and immunocytochemistry of metastatic human breast carcinoma MDA-MB-231 cells document the efficacy of compound 5 in inhibiting cysteine cathepsin activity in living cells. A cell-motility assay demonstrates that compound 5 is effective in mitigating the cell-migratory potential of highly metastatic breast carcinoma MDA-MB-231 cells.
Collapse
Affiliation(s)
- Dibyendu Dana
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of The City University of New York, Queens, NY 11367-1597, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
INTRODUCTION Cathepsin B is of significant importance to cancer therapy as it is involved in various pathologies and oncogenic processes in humans. Numerous studies have shown that abnormal regulation of cathepsin B overexpression is correlated with invasive and metastatic phenotypes in cancers. Cathepsin B is normally associated with the lysosomes involved in autophagy and immune response, but its aberrant expression has been shown to lead to cancers. AREAS COVERED This review highlights the oncogenic role of cathepsin B, discusses the regulation of cathepsin B in light of oncogenesis, discusses the role of cathepsin B as a signaling molecule, and highlights the therapeutic potential of targeting cathepsin B. EXPERT OPINION Targeting cathepsin B alone does not appear to abolish tumor growth, and this is probably because cathepsin B appears to have diverse functions and influence numerous pathways. It is not clear whether global suppression of cathepsin B activity or expression would produce unintended effects or cause the activation or suppression of unwanted pathways. A localized approach for targeting the expression of cathepsin B would be more relevant. Moreover, a combination of targeting cathepsin B with other relevant oncogenic molecules has significant therapeutic potential.
Collapse
Affiliation(s)
- Christopher S Gondi
- University of Illinois College of Medicine at Peoria, Department of Cancer Biology and Pharmacology and Neurosurgery, Peoria, IL, USA
| | | |
Collapse
|
27
|
Cheng XW, Shi GP, Kuzuya M, Sasaki T, Okumura K, Murohara T. Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication. Circulation 2012; 125:1551-62. [PMID: 22451605 DOI: 10.1161/circulationaha.111.066712] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Louie MW, Choi AWT, Liu HW, Chan BTN, Lo KKW. Synthesis, Emission Characteristics, Cellular Studies, and Bioconjugation Properties of Luminescent Rhenium(I) Polypyridine Complexes with a Fluorous Pendant. Organometallics 2012. [DOI: 10.1021/om3003575] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Man-Wai Louie
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Alex Wing-Tat Choi
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Hua-Wei Liu
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Bruce Ting-Ngok Chan
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| | - Kenneth Kam-Wing Lo
- Institute of Molecular Functional Materials (Areas
of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's
Republic of China
| |
Collapse
|
29
|
Shi R, Weng J, Szelemej P, Kong J. Caspase-Independent Stroke Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Müller S, Dennemärker J, Reinheckel T. Specific functions of lysosomal proteases in endocytic and autophagic pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:34-43. [PMID: 21767668 PMCID: PMC7105187 DOI: 10.1016/j.bbapap.2011.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
Abstract
Endolysosomal vesicles form a highly dynamic multifunctional cellular compartment that contains multiple highly potent proteolytic enzymes. Originally these proteases have been assigned to cooperate solely in executing the unselective ‘bulk proteolysis’ within the acidic milieu of the lysosome. Although to some degree this notion still holds true, evidence is accumulating for specific and regulatory functions of individual ‘acidic’ proteases in many cellular processes linked to the endosomal/lysosomal compartment. Here we summarize and discuss the functions of individual endolysosomal proteases in such diverse processes as the termination of growth factor signaling, lipoprotein particle degradation, infection, antigen presentation, and autophagy. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Sabrina Müller
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, D-79104, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Julia Dennemärker
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, D-79104, Germany
- Dept. of Visceral Surgery, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, D-79104, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Corresponding author at: Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität-Freiburg, Stefan Meier Str. 17, D-79104 Freiburg, Germany. Tel.: + 49 761 203 9606; fax: + 49 761 203 9634.
| |
Collapse
|
31
|
Suski M, Olszanecki R, Madej J, Totoń-Żurańska J, Niepsuj A, Jawień J, Bujak-Giżycka B, Okoń K, Korbut R. Proteomic analysis of changes in protein expression in liver mitochondria in apoE knockout mice. J Proteomics 2011; 74:887-93. [PMID: 21406262 DOI: 10.1016/j.jprot.2011.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/13/2023]
Abstract
The involvement of both apolipoprotein E (apoE) and mitochondria in lipid metabolism is widely recognized, however there is surprisingly scarce data about the putative mitochondrial action(s) of this protein. The aim of the study was to screen the alterations in liver mitochondrial proteome caused by apoE deficiency. We applied 2DE-LC-MS/MS methodology to investigate the changes in liver mitochondrial protein expression in 6-months old apoE(-/-) mice as compared to C57BL/6J controls. ApoE(-/-), but not C57BL/6J mice developed visible atherosclerotic changes in aorta and mild, diffuse steatosis of the liver. Collectively, 18 differentially expressed proteins were identified in mitochondria, related to apoptosis, antioxidant and detoxifying mechanisms of mitochondria, as well as lipid metabolism and transport. In conclusion, differential proteomic approach revealed several lines of proteomic evidence that mitochondrial function in the liver of apoE(-/-) mice could be altered as a result of overlapping of pathological and compensatory changes in expression of proteins.
Collapse
Affiliation(s)
- Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 2011; 391:923-35. [PMID: 20536394 DOI: 10.1515/bc.2010.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.
Collapse
Affiliation(s)
- Sofia Tedelind
- Research Center of Molecular Life Science, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 2010; 120:3421-31. [PMID: 20921628 DOI: 10.1172/jci42918] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cathepsins were originally identified as proteases that act in the lysosome. Recent work has uncovered nontraditional roles for cathepsins in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized cathepsins participate in many physiologic and pathophysiologic cellular processes, in which they can act as both digestive and regulatory proteases. In this review, we discuss the transcriptional and translational control of cathepsin expression, the regulation of intracellular sorting of cathepsins, and the structural basis of cathepsin activation and inhibition. In particular, we highlight the emerging roles of various cathepsin forms in disease, particularly those of the cardiac and renal systems.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, Florida, USA.
| | | | | |
Collapse
|
34
|
In vivo chemoresistance of prostate cancer in metronomic cyclophosphamide therapy. J Proteomics 2010; 73:1342-54. [PMID: 20219715 DOI: 10.1016/j.jprot.2010.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/06/2010] [Accepted: 02/22/2010] [Indexed: 12/29/2022]
Abstract
A human prostate cancer (PC3) xenograft model was established which reflects acquired in vivo resistance towards metronomic cyclophosphamide (CPA) treatment. Cell cultures of two in vivo resistant PC3 tumors were established which maintain chemoresistant phenotypes upon xenografting into mice. A comparative proteome analysis of the two resistant cell lines PC3-D3 and -D4 versus the non-resistant parental PC3 cell line by 2D-DIGE approach followed by MALDI-TOF-TOF analysis revealed a total of 25 differently expressed proteins. Validation of protein candidates by Western blot analysis of the corresponding in vivo tumor xenografts identified three differentially expressed proteins (thioredoxin containing protein 5, cathepsin B, and annexin A3). Thioredoxin containing protein 5 was up-regulated in resistant xenografts only upon in vivo CPA therapy. A truncated version of cathepsin B translocated into mitochondria in the resistant clones whereas it stays cytoplasmic in corresponding parental PC3 cells. Annexin A3 (ANXA3) presents a very interesting candidate which was found to be up-regulated both in vitro and in xenografts, with protein levels further increased by metronomic CPA treatment in vivo. It is noteworthy that independent studies in other epithelial cancers recently identified ANXA3 as cancer progression and resistance marker.
Collapse
|
35
|
|
36
|
Joshi A, Bondada V, Geddes JW. Mitochondrial micro-calpain is not involved in the processing of apoptosis-inducing factor. Exp Neurol 2009; 218:221-7. [PMID: 19393648 PMCID: PMC2756010 DOI: 10.1016/j.expneurol.2009.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/15/2009] [Indexed: 11/23/2022]
Abstract
Caspase-independent cell death, an important death pathway in many cells including neurons, is executed via apoptosis-inducing factor (AIF), an oxidoreductase, localized to the mitochondrial intermembrane space. AIF is processed and released from mitochondria following mitochondrial permeability transition pore (mPTP) formation, and translocates to the nucleus to induce DNA fragmentation and cell death. The release of AIF requires cleavage of its N-terminus anchored in the inner mitochondrial membrane. The protease responsible for this AIF truncation has not been established, although there is considerable evidence suggesting a role for micro-calpain. We previously found that a pool of micro-calpain is localized to the mitochondrial intermembrane space, the submitochondrial compartment in which AIF truncation occurs. The close submitochondrial proximity of mitochondrial micro-calpain and AIF gives support to the hypothesis that mitochondrial micro-calpain may be the protease responsible for processing AIF prior to its release. In the present study, AIF was released from rat liver mitochondria following mPTP induction by atractyloside. This release was inhibited by the cysteine protease inhibitor MDL28170, but not by more specific calpain inhibitors PD150606 and calpastatin. Atractyloside caused swelling in rat brain mitochondria, but did not induce AIF release. In a mitochondrial fraction from SH-SY5Y neuroblastoma cells, incubation with 5 mM Ca(2+) resulted in the activation of micro-calpain but not in AIF truncation. In summary, the localization of micro-calpain to the mitochondrial intermembrane space is suggestive of its possible involvement in AIF processing, but direct experimental evidence supporting such a role has been elusive.
Collapse
Affiliation(s)
- Aashish Joshi
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA
| | | | | |
Collapse
|
37
|
Schenker P, Alfarano P, Kolb P, Caflisch A, Baici A. A double-headed cathepsin B inhibitor devoid of warhead. Protein Sci 2008; 17:2145-55. [PMID: 18796695 DOI: 10.1110/ps.037341.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most synthetic inhibitors of peptidases have been targeted to the active site for inhibiting catalysis through reversible competition with the substrate or by covalent modification of catalytic groups. Cathepsin B is unique among the cysteine peptidase for the presence of a flexible segment, known as the occluding loop, which can block the primed subsites of the substrate binding cleft. With the occluding loop in the open conformation cathepsin B acts as an endopeptidase, and it acts as an exopeptidase when the loop is closed. We have targeted the occluding loop of human cathepsin B at its surface, outside the catalytic center, using a high-throughput docking procedure. The aim was to identify inhibitors that would interact with the occluding loop thereby modulating enzyme activity without the help of chemical warheads against catalytic residues. From a large library of compounds, the in silico approach identified [2-[2-(2,4-dioxo-1,3-thiazolidin-3-yl)ethylamino]-2-oxoethyl] 2-(furan-2-carbonylamino) acetate, which fulfills the working hypothesis. This molecule possesses two distinct binding moieties and behaves as a reversible, double-headed competitive inhibitor of cathepsin B by excluding synthetic and protein substrates from the active center. The kinetic mechanism of inhibition suggests that the occluding loop is stabilized in its closed conformation, mainly by hydrogen bonds with the inhibitor, thus decreasing endoproteolytic activity of the enzyme. Furthermore, the dioxothiazolidine head of the compound sterically hinders binding of the C-terminal residue of substrates resulting in inhibition of the exopeptidase activity of cathepsin B in a physiopathologically relevant pH range.
Collapse
Affiliation(s)
- Patricia Schenker
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T. Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 2007; 282:37045-52. [PMID: 17942402 DOI: 10.1074/jbc.m703447200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the lysosomal cysteine protease cathepsin L (Ctsl) in mice results in a phenotype affecting multiple tissues, including thymus, epidermis, and hair follicles, and in the heart develops as a progressive dilated cardiomyopathy (DCM). To understand the role of Ctsl in the maintenance of regular heart morphology and function, it is critical to determine whether the DCM in Ctsl-/- mice is primarily because of the lack of Ctsl expression and activity in the cardiomyocytes or is caused by the additional extracardiac pathologies. Cardiomyocyte-specific expression of Ctsl in Ctsl-/- mice, using an alpha-myosin heavy chain promoter-Ctsl transgene, results in improved cardiac contraction, normal mRNA expression of atrionatriuretic peptide, normal heart weight, and regular ultrastructure of cardiomyocytes. Epithelial expression of cathepsin L2 (CTSL2) by a K14 promoter-CTSL2-transgene resulted in rescue of the Ctsl-/- hair loss phenotype. In these mice, cardiac atrionatriuretic peptide expression and end systolic heart dimensions were also significantly attenuated. However, cardiac contraction was not improved, and increased heart weight as well as the typical changes in lysosomal ultrastructure of Ctsl-/- hearts persisted. Myocardial fibrosis was detected in all Ctsl-/- mice irrespective of transgene-mediated cardiac Ctsl expression or extracardiac CTSL2 expression. Expression of collagen 1 was not enhanced in Ctsl-/- hearts, but a reduced collagenolytic activity suggests a role for Ctsl in collagen turnover by cardiac fibroblasts. We conclude that the DCM of Ctsl-/- mice is primarily caused by absence of the protease in cardiomyocytes, whereas the complex gross phenotype of Ctsl-deficient mice, i.e. the fur defect, results in additional stress to the heart.
Collapse
Affiliation(s)
- Daniel Spira
- Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie 2007; 90:194-207. [PMID: 17825974 DOI: 10.1016/j.biochi.2007.07.024] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/26/2007] [Indexed: 12/25/2022]
Abstract
Cysteine cathepsins belong to the papain-like family C1 of clan CA cysteine peptidases. These enzymes are ubiquitously expressed and exert their proteolytic activity mainly, but not exclusively within the compartments along the endocytic pathway. Moreover, cysteine cathepsins are active in pericellular environments as soluble enzymes or bound to cell surface receptors at the plasma membrane, and possibly even within secretory vesicles, the cytosol, mitochondria, and within the nuclei of eukaryotic cells. Proteolytic actions performed by cysteine cathepsins are essential in the maintenance of homeostasis and depend heavily upon their correct sorting and trafficking within cells. As a consequence, the numerous and diverse approaches to identification, qualitative and quantitative determination, and visualization of cysteine cathepsin functions in vitro, in situ, and in vivo cover the entire spectrum of biochemistry, molecular and cell biology. This review focuses upon the transport pathways directing cysteine cathepsins to their points of action and thus emphasizes the broader role and functionality of cysteine cathepsins in a number of specific cellular locales. Such understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.
Collapse
Affiliation(s)
- Klaudia Brix
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany.
| | | | | | | |
Collapse
|
40
|
Olivotto E, Vitellozzi R, Fernandez P, Falcieri E, Battistelli M, Burattini S, Facchini A, Flamigni F, Santi S, Facchini A, Borzi' RM. Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol 2007; 210:417-27. [PMID: 17096385 DOI: 10.1002/jcp.20864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CXCR2 ligands contribute to chondrocyte hypertrophy and apoptosis, important determinants in cartilage pathophysiology. We unraveled the kinetics of signaling, biochemical, transcriptional, and morphological events triggered by GROalpha in human osteoarthritic chondrocytes kept in three-dimensional culture. p38 MAPK activation was assessed with a highly sensitive ELISA. Effector caspase activation was evaluated by cleavage of a fluorogenic substrate. Gene expression of key markers of hypertrophy (MMP-13, Runx-2) and matrix synthesis (aggrecan), and of cathepsin B isoform CB(-2,3) was evaluated by real time PCR. Occurrence of the morphological markers of apoptosis was investigated by transmission electron microscopy (TEM). GROalpha led to p38 MAPK activation in passaged chondrocytes cultured in micromass but not as a high-density monolayer. This caused the downstream triggering of chondrocyte hypertrophy (MMP-13 and Runx-2 upregulation, and calcium deposition) and apoptosis/anoikis following concurrence of matrix degrading activity, and inhibition of matrix synthesis which also involved the induction of CB(-2,3). These phenomena proved to be dependent on the co-receptor role of sulfated glycosaminoglycans (sGAG) and the activation of p38 MAPK, since they were abrogated either by preincubation with soluble chondroitin-4 sulfate or p38 MAPK inhibitors. The co-receptor role of sGAG was further demonstrated by colocalization experiments of these molecules with GROalpha in the stimulated micromasses. These findings suggest that extracellular matrix exerts a regulatory role in chondrocytes differentiation, and that meaningful investigation of the effects of chemokines on chondrocyte biology requires culture conditions respectful of both the differentiated status of the chondrocytes and of their three-dimensional interaction with the extracellular matrix.
Collapse
Affiliation(s)
- Eleonora Olivotto
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baici A, Müntener K, Willimann A, Zwicky R. Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol Chem 2006; 387:1017-21. [PMID: 16895470 DOI: 10.1515/bc.2006.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the control mechanisms of cathepsin B biosynthesis and trafficking operates through alternative splicing of pre-mRNA. An mRNA lacking exon 2 is more efficiently translated than that containing all exons, and may be responsible for elevated biosynthesis and enzyme routing to the extracellular space, with critical consequences for connective tissue integrity in pathologies such as cancer and arthritis. mRNA missing exons 2 and 3 encodes a truncated procathepsin B form that is targeted to mitochondria. This enzyme variant is catalytically inactive because it cannot properly fold. However, it provokes a cascade of events, which result first in morphological changes in intracellular organelles and the nucleus, finally leading to cell death.
Collapse
Affiliation(s)
- Antonio Baici
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
42
|
Taha TA, El-Alwani M, Hannun YA, Obeid LM. Sphingosine kinase-1 is cleaved by cathepsin B in vitro: identification of the initial cleavage sites for the protease. FEBS Lett 2006; 580:6047-54. [PMID: 17064696 PMCID: PMC1732625 DOI: 10.1016/j.febslet.2006.09.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 11/29/2022]
Abstract
Previous work has identified sphingosine kinase-1 (SK1) as a substrate for the cysteine protease cathepsin B in vitro. In this study, the mechanism of SK1 cleavage by cathepsin B was investigated. We identified two initial cleavage sites for the protease, the first at histidine 122 and the second at arginine 199. Mutation analysis showed that replacement of histidine 122 with a tyrosine maintained the activity of SK1 while significantly reducing cleavage by cathepsin B at the initial cleavage site. The efficacy of cleavage of SK1 at arginine 199, however, was not affected. These studies demonstrate that SK1 is cleaved by cathepsin B in a sequential manner after basic amino acids, and that the initial cleavages at the two identified sites occur independently of each other.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Mazen El-Alwani
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
| | - Yusuf A. Hannun
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401, and ¶ Department of Medicine and
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Corresponding Author: Lina M. Obeid, M.D., Department of Medicine, Medical University of South Carolina, 114 Doughty St., P.O.Box 250779, Charleston, South Carolina 29425, USA, Tel: +1-843-876-5169, Fax: +1-843-876-5172,
| |
Collapse
|
43
|
Abstract
Caspase activation has been frequently viewed as synonymous with apoptotic cell death; however, caspases can also contribute to processes that do not culminate in cell demise. Moreover, inhibition of caspases can have cytoprotective effects. In a number of different models, caspase inhibition does not maintain cellular viability and instead shifts the morphology of death from apoptosis to nonapoptotic pathways. Here, we explore the contribution of caspases to cell death, either as upstream signals or as downstream effectors contributing to apoptotic morphology, as well as alternative strategies for cell death inhibition. Such alternative strategies may either target catabolic hydrolases or be aimed at preventing mitochondrial membrane permeabilization and its upstream triggers.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France.
| | | |
Collapse
|
44
|
Bestvater F, Dallner C, Spiess E. The C-terminal subunit of artificially truncated human cathepsin B mediates its nuclear targeting and contributes to cell viability. BMC Cell Biol 2005; 6:16. [PMID: 15807897 PMCID: PMC1087480 DOI: 10.1186/1471-2121-6-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 04/04/2005] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Splicing variants of human cathepsinB primary transcripts (CB(-2,3)) result in an expression product product which lacks the signal peptide and parts of the propeptide. This naturally truncated Delta51CB is thus unable to follow the regular CB processing and sorting pathway. It is addressed to the mitochondria through an activated N-terminal mitochondrial targeting signal instead. Although Delta51CB is supposed to be devoid of the typical CB enzymatic activity, it might play a role in malignancies and trigger cell death/apoptosis independent from the function of the regular enzyme. Cytoplasmic presence of the mature CB might occur as a result of lysosomal damage. RESULTS We investigated such "aberrant" proteins by artificial CB-GFP chimeras covering various sequence parts in respect to their enzymatic activity, their localization in different cell types, and the effects on the cell viability. Unlike the entire full length CB form, the artificial single chain form was not processed and did not reveal typical enzymatic CB activity during transient overexpression in large cell lung carcinoma cells. Delta51CB was found predominantly in mitochondria. In contrast, the shorter artificial CB constructs localized in the cytoplasm, inside the cell nucleus, and in the midbodies of dividing cells. Bleaching experiments revealed both mobile and immobile fractions of these constructs in the nucleus. Nuclear accumulation of artificially truncated CB variants led to disintegration of nuclei, followed by cell death. CONCLUSION We propose that cell death associated with CB is not necessarily triggered by its regular enzymatic activity but alternatively by a yet unknown activity profile of truncated CB. Cytoplasmic CB might be able to enter the cell nucleus. According to a mutational analysis, the part of CB that mediates its nuclear import is a signal patch within its heavy chain domain. The results suggest that besides the N-terminal signal peptide also other CB domains contain patterns which are responsible for a differentiated targeting of the molecule, e.g. to the mitochondria, to the nucleus, or to vesicles. We propose a hierarchy of targeting signals depending on their strength and availability. This implies other possible transport mechanisms besides the usual trafficking via the mannose-6-sound recording copyright sign pathway.
Collapse
Affiliation(s)
- Felix Bestvater
- Deutsches Krebsforschungszentrum, PO Box 101949, D-69009 Heidelberg, Germany
| | - Claudia Dallner
- Deutsches Krebsforschungszentrum, PO Box 101949, D-69009 Heidelberg, Germany
| | - Eberhard Spiess
- Deutsches Krebsforschungszentrum, PO Box 101949, D-69009 Heidelberg, Germany
| |
Collapse
|
45
|
Artal-Sanz M, Tavernarakis N. Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 2005; 579:3287-96. [PMID: 15943973 DOI: 10.1016/j.febslet.2005.03.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
Programmed neuronal cell death is required during development to achieve the accurate wiring of the nervous system. However, genetic or accidental factors can lead to the premature, non-programmed death of neurons during adult life. Inappropriate death of cells in the nervous system is the cause of multiple neurodegenerative disorders. Pathological neuronal death can occur by apoptosis, by necrosis or by a combination of both. Necrotic cell death underlies the pathology of devastating neurological diseases such as neurodegenerative disorders, stroke or trauma. However, little is known about the molecular mechanisms that bring about necrotic cell death. Proteases play crucial roles in neuron degeneration by exerting both regulatory and catabolic functions. Elevated intracellular calcium is the most ubiquitous feature of neuronal death with the concomitant activation of cysteine calcium-dependent proteases, calpains. Calpains and lysosomal, catabolic aspartyl proteases, play key roles in the necrotic death of neurons. In this review, we survey the recent literature on the role of cysteine and aspartyl proteases in necrosis and neurodegeneration, aiming to delineate common proteolytic mechanisms mediating cellular destruction.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
46
|
Müntener K, Willimann A, Zwicky R, Svoboda B, Mach L, Baici A. Folding competence of N-terminally truncated forms of human procathepsin B. J Biol Chem 2005; 280:11973-80. [PMID: 15657038 DOI: 10.1074/jbc.m413052200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides acting as an inhibitor, the propeptide of human cathepsin B exerts an important auxiliary function as a chaperone in promoting correct protein folding. To explore the ability of N-terminally truncated forms of procathepsin B to fold into enzymatically active proteins, we produced procathepsin B variants progressively lacking N-terminal structural elements in baculovirus-infected insect cells. N-terminal truncation of the propeptide by up to 22 amino acids did not impair the production of activable procathepsin B. Secreted forms lacking the first 20, 21, or 22 amino acids spontaneously generated mature cathepsin B through autocatalytic processing, demonstrating that the first alpha-helix (Asp11-Arg20) is necessary for efficient inhibition of the enzyme by its propeptide. In contrast, proenzymes lacking the N-terminal part including the first beta-sheet (Trp24-Ala26) of the propeptide or containing an amino acid mutation directly preceding this beta-sheet were no longer properly folded. This shows that interactions between Trp24 of the propeptide and Tyr183, Tyr188, and Phe180 of the mature enzyme are important for stabilization and essential for procathepsin B folding. Thus, proenzyme forms missing more than the N-terminal 22 amino acids of the propeptide (notably truncated cathepsin B produced by the mRNA splice variant lacking exons 2 and 3, resulting in a propeptide shortened by 34 amino acids) are devoid of proteolytic activity because they cannot fold correctly. Thus, any pathophysiological involvement of truncated cathepsin B must be ascribed to properties other than proteolysis.
Collapse
Affiliation(s)
- Kathrin Müntener
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Lockwood TD. Cys-His proteases are among the wired proteins of the cell. Arch Biochem Biophys 2004; 432:12-24. [PMID: 15519292 DOI: 10.1016/j.abb.2004.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Integrated cell protein degradation can be paced by the transfer of reductive energy, as revealed by experimental agents of informative actions. The peptidolytic pair of Cys-His proteases can undergo oxidative reactions to inactive derivatives and inhibitory metal binding. Proton-dependent ionizations can modify ongoing activity. If the reaction rate of a Cys-His protease were found responsive to the ranges of metal/redox/proton factors regulated within the cell, then these factors might serve to link the peptidolytic reaction rate to cell controls. Here, cathepsin B (cat B) was found to be inhibited by Zn2+, Fe3+, and Cu2+ (1-50 microM) under excess GSH or DTT protease activators (6 mM). Under DTT or GSH (6 mM) the initial inhibitory action of Zn2+ is stable indefinitely; however, the inhibitory actions of Fe3+ and Cu2+ are reversed over approximately 1h. The 12-14 min half time of reversal of initial protease inhibition is correlated with the measured reduction of Fe3+ to Fe2+ by DTT or GSH (pH 5.5 or 6.5). Endogenous Fe2+ concentrations (100 microM) inhibit cat B only marginally. However, the inhibitory threshold of several microM Fe3+ is only a few percent oxidation of the endogenous pool. Without metals cat B reaction is reportedly proportional to GSH concentration, and is inhibited by increasing GSSG/GSH redox ratio. Following activation with GSH, cat B can be influenced by Fe3+/Fe2+, Cu2+/Cu+, and GSSG/GSH ratios and concentrations. Results are interpreted in relation to properties of the thiolate-imidazolium pair as illustrated by Dock modeling of their shared Fe3+ binding. It is proposed that the interaction of Cys-His with 1 electron transition between Fe2+ and Fe3+ serves as a sensor, signal integrator and switch wiring cat B reaction rate to the transfer of reductive energy in the presence of excess GSH. Speciated metals might also serve among electron acceptors transferring from reduced protease to oxygen. Results provide a model for pharmacologic redox switching of protease functions with metal-interactive drugs, and other nano-technology engineering.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Cox Building, 3525 Southern Blvd, Kettering, OH 45429, USA.
| |
Collapse
|