1
|
Zhao H, Jia P, Nanding K, Wu M, Bai X, Morigen M, Fan L. Lysophosphatidic acid suppresses apoptosis of high-grade serous ovarian cancer cells by inducing autophagy activity and promotes cell-cycle progression via EGFR-PI3K/Aurora-A Thr288-geminin dual signaling pathways. Front Pharmacol 2022; 13:1046269. [PMID: 36601056 PMCID: PMC9806123 DOI: 10.3389/fphar.2022.1046269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) and geminin are overexpressed in ovarian cancer, and increasing evidence supports their contribution to ovarian tumor development. Here, we reveal that geminin depletion induces autophagy suppression and enhances reactive oxygen species (ROS) production and apoptosis of high-grade serous ovarian cancer (HGSOC) cells. Bioinformatics analysis and pharmacological inhibition studies confirm that LPA activates geminin expression in the early S phase in HGSOC cells via the LPAR1/3/MMPs/EGFR/PI3K/mTOR pathway. Furthermore, LPA phosphorylates Aurora-A kinase on Thr288 through EGFR transactivation, and this event potentiates additional geminin stabilization. In turn, overexpressed and stabilized geminin regulates DNA replication, cell-cycle progression, and cell proliferation of HGSOC cells. Our data provide potential targets for enhancing the clinical benefit of HGSOC precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Zhao H, Gezi G, Tian X, Jia P, Morigen M, Fan L. Lysophosphatidic Acid-Induced EGFR Transactivation Promotes Gastric Cancer Cell DNA Replication by Stabilizing Geminin in the S Phase. Front Pharmacol 2021; 12:706240. [PMID: 34658851 PMCID: PMC8511314 DOI: 10.3389/fphar.2021.706240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022] Open
Abstract
Geminin, an inhibitor of the DNA replication licensing factor, chromatin licensing and DNA replication factor (Cdt) 1, is essential for the maintenance of genomic integrity. As a multifunctional protein, geminin is also involved in tumor progression, but the molecular details are largely unknown. Here, we found that lysophosphatidic acid (LPA)–induced upregulation of geminin was specific to gastric cancer cells. LPA acted via LPA receptor (LPAR) 3 and matrix metalloproteinases (MMPs) signaling to transactivate epidermal growth factor receptor (EGFR) (Y1173) and thereby stabilize geminin expression level during the S phase. LPA also induced the expression of deubiquitinating protein (DUB) 3, which prevented geminin degradation. These results reveal a novel mechanism underlying gastric cancer progression that involves the regulation of geminin stability by LPA-induced EGFR transactivation and provide potential targets for the signaling pathway and tumor cell–specific inhibitors.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gezi Gezi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoxia Tian
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peijun Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, Yang L, Xia Z, Zhang N. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol 2021; 23:743-756. [PMID: 33325513 DOI: 10.1093/neuonc/noaa279] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Aberrant epidermal growth factor receptor (EGFR) activation is observed in over 50% of cases of adult glioblastoma (GBM). Nevertheless, EGFR antibodies are ineffective in clinical GBM treatment, suggesting the existence of redundant EGFR activation mechanisms. Whether circular RNA (circRNA) encodes a protein involved in EGFR-driven GBM remains unclear. We reported an unexpected mechanism in which circular EGFR RNA (circ-EGFR) encodes a novel EGFR variant to sustained EGFR activation. METHOD We used RNA-seq, Northern blot, and Sanger sequencing to confirm the existence of circ-EGFR. Antibodies and a liquid chromatograph tandem mass spectrometer were used to identify circ-EGFR protein products. Lentivirus-transfected stable cell lines were used to assess the biological functions of the novel protein in vitro and in vivo. Clinical implications of circ-EGFR were assessed using 97 pathologically diagnosed GBM patient samples. RESULTS The infinite open reading frame (iORF) in circ-EGFR translated repeating amino acid sequences via rolling translation and programmed -1 ribosomal frameshifting (-1PRF) induced out-of-frame stop codon (OSC), forming a polymetric novel protein-complex, which we termed rolling-translated EGFR (rtEGFR). rtEGFR directly interacted with EGFR, maintained EGFR membrane localization and attenuated EGFR endocytosis and degradation. Importantly, circ-EGFR levels correlated with the EGFR signature and predicted the poor prognosis of GBM patients. Deprivation of rtEGFR in brain tumor-initiating cells (BTICs) attenuated tumorigenicity and enhanced the anti-GBM effect. CONCLUSION Our findings identified the endogenous rolling-translated protein and provided strong clinical evidence that targeting rtEGFR could improve the efficiency of EGFR-targeting therapies in GBM.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhongjun Li
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Maolei Zhang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Huangkai Zhou
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Xujia Wu
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Jian Zhong
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nunu Huang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Xuesong Yang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Rong Zeng
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lixuan Yang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhibo Xia
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Nu Zhang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Tigyi GJ, Johnson LR, Lee SC, Norman DD, Szabo E, Balogh A, Thompson K, Boler A, McCool WS. Lysophosphatidic acid type 2 receptor agonists in targeted drug development offer broad therapeutic potential. J Lipid Res 2019; 60:464-474. [PMID: 30692142 PMCID: PMC6399510 DOI: 10.1194/jlr.s091744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
The growth factor-like lipid mediator, lysophosphatidic acid (LPA), is a potent signaling molecule that influences numerous physiologic and pathologic processes. Manipulation of LPA signaling is of growing pharmacotherapeutic interest, especially because LPA resembles compounds with drug-like features. The action of LPA is mediated through activation of multiple types of molecular targets, including six G protein-coupled receptors that are clear targets for drug development. However, the LPA signaling has been linked to pathological responses that include promotion of fibrosis, atherogenesis, tumorigenesis, and metastasis. Thus, a question arises: Can we harness, in an LPA-like drug, the many beneficial activities of this lipid without eliciting its dreadful actions? We developed octadecyl thiophosphate (OTP; subsequently licensed as Rx100), an LPA mimic with higher stability in vivo than LPA. This article highlights progress made toward developing analogs like OTP and exploring prosurvival and regenerative LPA signaling. We determined that LPA prevents cell death triggered by various cellular stresses, including genotoxic stressors, and rescues cells condemned to apoptosis. LPA2 agonists provide a new treatment option for secretory diarrhea and reduce gastric erosion caused by nonsteroidal anti-inflammatory drugs. The potential uses of LPA2 agonists like OTP and sulfamoyl benzoic acid-based radioprotectins must be further explored for therapeutic uses.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- RxBio Inc. Memphis, TN 38163
- Research Division Veterans Affairs Medical Center, Memphis, TN 38104
| | - Leonard R Johnson
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- RxBio Inc. Memphis, TN 38163
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
- Research Division Veterans Affairs Medical Center, Memphis, TN 38104
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN 38163
| | | | | | | |
Collapse
|
6
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|
7
|
Tigyi GJ, Yue J, Norman DD, Szabo E, Balogh A, Balazs L, Zhao G, Lee SC. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul 2018; 71:183-193. [PMID: 30243984 DOI: 10.1016/j.jbior.2018.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary.
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| |
Collapse
|
8
|
Balogh A, Shimizu Y, Lee SC, Norman DD, Gangwar R, Bavaria M, Moon C, Shukla P, Rao R, Ray R, Naren AP, Banerjee S, Banerje S, Miller DD, Balazs L, Pelus L, Tigyi G. The autotaxin-LPA2 GPCR axis is modulated by γ-irradiation and facilitates DNA damage repair. Cell Signal 2015; 27:1751-62. [PMID: 26027517 DOI: 10.1016/j.cellsig.2015.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022]
Abstract
In this study we characterized the effects of radiation injury on the expression and function of the autotaxin (ATX)-LPA2 GPCR axis. In IEC-6 crypt cells and jejunum enteroids quantitative RT-PCR showed a time- and dose-dependent upregulation of lpa2 in response to γ-irradiation that was abolished by mutation of the NF-κB site in the lpa2 promoter or by inhibition of ATM/ATR kinases with CGK-733, suggesting that lpa2 is a DNA damage response gene upregulated by ATM via NF-κB. The resolution kinetics of the DNA damage marker γ-H2AX in LPA-treated IEC-6 cells exposed to γ-irradiation was accelerated compared to vehicle, whereas pharmacological inhibition of LPA2 delayed the resolution of γ-H2AX. In LPA2-reconstituted MEF cells lacking LPA1&3 the levels of γ-H2AX decreased rapidly, whereas in Vector MEF were high and remained sustained. Inhibition of ERK1&2 or PI3K/AKT signaling axis by pertussis toxin or the C311A/C314A/L351A mutation in the C-terminus of LPA2 abrogated the effect of LPA on DNA repair. LPA2 transcripts in Lin(-)Sca-1(+)c-Kit(+) enriched for bone marrow stem cells were 27- and 5-fold higher than in common myeloid or lymphoid progenitors, respectively. Furthermore, after irradiation higher residual γ-H2AX levels were detected in the bone marrow or jejunum of irradiated LPA2-KO mice compared to WT mice. We found that γ-irradiation increases plasma ATX activity and LPA level that is in part due to the previously established radiation-induced upregulation of TNFα. These findings identify ATX and LPA2 as radiation-regulated genes that appear to play a physiological role in DNA repair.
Collapse
Affiliation(s)
- Andrea Balogh
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Yoshibumi Shimizu
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - ChangSuk Moon
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Pradeep Shukla
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Radakrishna Rao
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Ramesh Ray
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Anjaparavanda P Naren
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | | | - Souvik Banerje
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Louisa Balazs
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA
| | - Louis Pelus
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN 46202, USA
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Sciences Center Memphis, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
9
|
Deng W, Kimura Y, Gududuru V, Wu W, Balogh A, Szabo E, Thompson KE, Yates CR, Balazs L, Johnson LR, Miller DD, Strobos J, McCool WS, Tigyi GJ. Mitigation of the hematopoietic and gastrointestinal acute radiation syndrome by octadecenyl thiophosphate, a small molecule mimic of lysophosphatidic acid. Radiat Res 2015; 183:465-75. [PMID: 25807318 DOI: 10.1667/rr13830.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously demonstrated that the small molecule octadecenyl thiophosphate (OTP), a synthetic mimic of the growth factor-like mediator lysophosphatidic acid (LPA), showed radioprotective activity in a mouse model of total-body irradiation (TBI) when given orally or intraperitoneally 30 min before exposure to 9 Gy γ radiation. In the current study, we evaluated the effects of OTP, delivered subcutaneously, for radioprotection or radiomitigation from -24 h before to up to +72 h postirradiation using a mouse TBI model with therapeutic doses at around 1 mg/kg. OTP was injected at 10 mg/kg without observable toxic side effects in mice, providing a comfortable safety margin. Treatment of C57BL/6 mice with a single dose of OTP over the time period from -12 h before to +26 h after a lethal dose of TBI reduced mortality by 50%. When administered at +48 h to +72 h postirradiation (LD50/30 to LD100/30), OTP reduced mortality by ≥34%. OTP administered at +24 h postirradiation significantly elevated peripheral white blood cell and platelet counts, increased crypt survival in the jejunum, enhanced intestinal glucose absorption and reduced endotoxin seepage into the blood. In the 6.4-8.6 Gy TBI range using LD50/10 as the end point, OTP yielded a dose modification factor of 1.2. The current data indicate that OTP is a potent radioprotector and radiomitigator ameliorating the mortality and tissue injury of acute hematopoietic as well as acute gastrointestinal radiation syndrome.
Collapse
|
10
|
Patil R, Szabó E, Fells JI, Balogh A, Lim KG, Fujiwara Y, Norman DD, Lee SC, Balazs L, Thomas F, Patil S, Emmons-Thompson K, Boler A, Strobos J, McCool SW, Yates CR, Stabenow J, Byrne GI, Miller DD, Tigyi GJ. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. ACTA ACUST UNITED AC 2015; 22:206-16. [PMID: 25619933 DOI: 10.1016/j.chembiol.2014.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023]
Abstract
Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ-H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34(+) hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering from the hematopoietic acute radiation syndrome after total-body irradiation. DBIBB represents a drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system.
Collapse
Affiliation(s)
- Renukadevi Patil
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Erzsébet Szabó
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James I Fells
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Keng G Lim
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Derek D Norman
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sue-Chin Lee
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Louisa Balazs
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fridtjof Thomas
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivaputra Patil
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | - Jennifer Stabenow
- The Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerrald I Byrne
- The Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gábor J Tigyi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Patil R, Fells JI, Szabó E, Lim KG, Norman DD, Balogh A, Patil S, Strobos J, Miller DD, Tigyi GJ. Design and synthesis of sulfamoyl benzoic acid analogues with subnanomolar agonist activity specific to the LPA2 receptor. J Med Chem 2014; 57:7136-40. [PMID: 25100502 PMCID: PMC4148159 DOI: 10.1021/jm5007116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Lysophosphatidic
acid (LPA) is a growth factor-like mediator and
a ligand for multiple GPCR. The LPA2 GPCR mediates antiapoptotic
and mucosal barrier-protective effects in the gut. We synthesized
sulfamoyl benzoic acid (SBA) analogues that are the first specific
agonists of LPA2, some with subnanomolar activity. We developed
an experimental SAR that is supported and rationalized by computational
docking analysis of the SBA compounds into the LPA2 ligand-binding
pocket.
Collapse
Affiliation(s)
- Renukadevi Patil
- Departments of Pharmaceutical Sciences and ‡Physiology, The University of Tennessee Health Science Center , Memphis, Tennessee 894 Union Avenue 38163 United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mitigation of radiation injury by selective stimulation of the LPA(2) receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:117-25. [PMID: 23127512 DOI: 10.1016/j.bbalip.2012.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 11/21/2022]
Abstract
Due to its antiapoptotic action, derivatives of the lipid mediator lysophosphatidic acid (LPA) provide potential therapeutic utility in diseases associated with programmed cell death. Apoptosis is one of the major pathophysiological processes elicited by radiation injury to the organism. Consequently, therapeutic explorations applying compounds that mimic the antiapoptotic action of LPA have begun. Here we present a brief account of our decade-long drug discovery effort aimed at developing LPA mimics with a special focus on specific agonists of the LPA(2) receptor subtype, which was found to be highly effective in protecting cells from apoptosis. We describe new evidence that 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), a prototypic nonlipid agonist specific to the LPA(2) receptor subtype, rescues apoptotically condemned cells in vitro and in vivo from injury caused by high-dose γ-irradiation. GRI977143 shows the features of a radiomitigator because it is effective in rescuing the lives of mice from deadly levels of radiation when administered 24h after radiation exposure. Our findings suggest that by specifically activating LPA(2) receptors GRI977143 activates the ERK1/2 prosurvival pathway, effectively reduces Bax translocation to the mitochondrion, attenuates the activation of initiator and effector caspases, reduces DNA fragmentation, and inhibits PARP-1 cleavage associated with γ-irradiation-induced apoptosis. GRI977143 also inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced by irradiated cells. Thus, GRI977143 can serve as a prototype scaffold for lead optimization paving the way to more potent analogs amenable for therapeutic exploration. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
13
|
Brindley DN, Lin FT, Tigyi GJ. Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:74-85. [PMID: 22954454 PMCID: PMC3584168 DOI: 10.1016/j.bbalip.2012.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 02/01/2023]
Abstract
High expression of autotaxin in cancers is often associated with increased tumor progression, angiogenesis and metastasis. This is explained mainly since autotaxin produces the lipid growth factor, lysophosphatidate (LPA), which stimulates cell division, survival and migration. It has recently become evident that these signaling effects of LPA also produce resistance to chemotherapy and radiation-induced cell death. This results especially from the stimulation of LPA(2) receptors, which depletes the cell of Siva-1, a pro-apoptotic signaling protein and stimulates prosurvival kinase pathways through a mechanism mediated via TRIP-6. LPA signaling also increases the formation of sphingosine 1-phosphate, a pro-survival lipid. At the same time, LPA decreases the accumulation of ceramides, which are used in radiation therapy and by many chemotherapeutic agents to stimulate apoptosis. The signaling actions of extracellular LPA are terminated by its dephosphorylation by a family of lipid phosphate phosphatases (LPP) that act as ecto-enzymes. In addition, lipid phosphate phoshatase-1 attenuates signaling downstream of the activation of both LPA receptors and receptor tyrosine kinases. This makes many cancer cells hypersensitive to the action of various growth factors since they often express low LPP1/3 activity. Increasing our understanding of the complicated signaling pathways that are used by LPA to stimulate cell survival should identify new therapeutic targets that can be exploited to increase the efficacy of chemo- and radio-therapy. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
14
|
Kiss GN, Fells JI, Gupte R, Lee SC, Liu J, Nusser N, Lim KG, Ray RM, Lin FT, Parrill AL, Sümegi B, Miller DD, Tigyi G. Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions. Mol Pharmacol 2012; 82:1162-73. [PMID: 22968304 PMCID: PMC3502618 DOI: 10.1124/mol.112.079699] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/10/2012] [Indexed: 01/11/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a highly potent endogenous lipid mediator that protects and rescues cells from programmed cell death. Earlier work identified the LPA₂ G protein-coupled receptor subtype as an important molecular target of LPA mediating antiapoptotic signaling. Here we describe the results of a virtual screen using single-reference similarity searching that yielded compounds 2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (NSC12404), 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), 4,5-dichloro-2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (H2L5547924), and 2-((9,10-dioxo-9,10-dihydroanthracen-2-yl)carbamoyl) benzoic acid (H2L5828102), novel nonlipid and drug-like compounds that are specific for the LPA₂ receptor subtype. We characterized the antiapoptotic action of one of these compounds, GRI977143, which was effective in reducing activation of caspases 3, 7, 8, and 9 and inhibited poly(ADP-ribose)polymerase 1 cleavage and DNA fragmentation in different extrinsic and intrinsic models of apoptosis in vitro. Furthermore, GRI977143 promoted carcinoma cell invasion of human umbilical vein endothelial cell monolayers and fibroblast proliferation. The antiapoptotic cellular signaling responses were present selectively in mouse embryonic fibroblast cells derived from LPA(1&2) double-knockout mice reconstituted with the LPA₂ receptor and were absent in vector-transduced control cells. GRI977143 was an effective stimulator of extracellular signal-regulated kinase 1/2 activation and promoted the assembly of a macromolecular signaling complex consisting of LPA₂, Na⁺ - H⁺ exchange regulatory factor 2, and thyroid receptor interacting protein 6, which has been shown previously to be a required step in LPA-induced antiapoptotic signaling. The present findings indicate that nonlipid LPA₂-specific agonists represent an excellent starting point for development of lead compounds with potential therapeutic utility for preventing the programmed cell death involved in many types of degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Gyöngyi N Kiss
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoshikawa K, Tanabe E, Shibata A, Inoue S, Kitayoshi M, Okimoto S, Fukushima N, Tsujiuchi T. Involvement of oncogenic K-ras on cell migration stimulated by lysophosphatidic acid receptor-2 in pancreatic cancer cells. Exp Cell Res 2012; 319:105-12. [PMID: 23041208 DOI: 10.1016/j.yexcr.2012.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/30/2022]
Abstract
Lysophosphatidic acid (LPA) mediates a variety of cellular responses with atleast six G protein-coupled transmembrane receptors (LPA receptor-1 (LPA(1)-LPA(6))). The interaction between LPA receptors and other cellular molecules on the biological function is not fully understood. Recently, we have reported that LPA(1) suppressed and LPA(3) stimulated cell migration of pancreatic cancer cells. In the present study, to evaluate the function of LPA(2) on motile and invasive activities of pancreatic cancer cells, we generated Lpar2 knockdown (HPD-sh2) cells from hamster pancreatic cancer cells and measured their cell migration ability. In cell motility and invasive assays with an uncoated Cell Culture Insert, HPD-sh2 cells showed significantly lower intrinsic activity than control (HPD-GFP) cells. Since K-ras mutations were frequently detected in pancreatic cancer, we next investigated whether oncogenic K-ras is involved in cell migration induced by LPA(2) using K-ras knockdown (HPD-K2) cells. The cell motile ability of HPD-K2 cells was significantly lower than that of control cells. To confirm LPA(2) increases cell migration activity, cells were pretreated with dioctylglycerol pyrophosphate (DGPP) which is the antagonist of LPA(1)/LPA(3). The cell motile and invasive abilities of DGPP -treated HPD-GFP cells were markedly higher than those of untreated cells, but DGPP did not stimulate cell migration of HPD-K2 cells. These results suggest that cell migration activity of pancreatic cancer cells stimulated by LPA(2) may be enhanced by oncogenic K-ras.
Collapse
Affiliation(s)
- Kyohei Yoshikawa
- Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, Higashiosaka, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chaturvedi D, Cohen MS, Taunton J, Patel TB. The PKARIalpha subunit of protein kinase A modulates the activation of p90RSK1 and its function. J Biol Chem 2009; 284:23670-81. [PMID: 19570980 DOI: 10.1074/jbc.m109.032813] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we showed that interactions between p90(RSK1) (RSK1) and the subunits of type I protein kinase A (PKA) regulate the activity of PKA and cellular distribution of active RSK1 (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell Biol. 26, 4586-4600). Here we examined the role of the PKARIalpha subunit of PKA in regulating RSK1 activation and cell survival. In mouse lung fibroblasts, silencing of the PKARIalpha increased the phosphorylation and activation of RSK1, but not of RSK2 and RSK3, in the absence of any stimulation. Silencing of PKARIalpha also decreased the nuclear accumulation of active RSK1 and increased its cytoplasmic content. The increased activation of RSK1 in the absence of any agonist and changes in its subcellular redistribution resulted in increased phosphorylation of its cytoplasmic substrate BAD and increased cell survival. The activity of PKA and phosphorylation of BAD (Ser-155) were also enhanced when PKARIalpha was silenced, and this, in part, contributed to increased cell survival in unstimulated cells. Furthermore, we show that RSK1, PKA subunits, D-AKAP1, and protein phosphatase 2A catalytic subunit (PP2Ac) exist in a complex, and dissociation of RSK1 from D-AKAP1 by either silencing of PKARIalpha, depletion of D-AKAP1, or by using a peptide that competes with PKARIalpha for binding to AKAPs, decreased the amount of PP2Ac in the RSK1 complex. We also demonstrate that PP2Ac is one of the phosphatases that dephosphorylates RSK, but not ERK1/2. Thus, in unstimulated cells, the increased phosphorylation and activation of RSK1 after silencing of PKARIalpha or depletion of D-AKAP1 are due to decreased association of PP2Ac in the RSK1 complex.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Sprouty (SPRY) proteins modulate receptor-tyrosine kinase signaling and, thereby, regulate cell migration and proliferation. Here, we have examined the role of endogenous human SPRY2 (hSPRY2) in the regulation of cellular apoptosis. Small inhibitory RNA-mediated silencing of hSPRY2 abolished the anti-apoptotic action of serum in adrenal cortex adenocarcinoma (SW13) cells. Silencing of hSPRY2 decreased serum- or epidermal growth factor (EGF)-elicited activation of AKT and ERK1/2 and reduced the levels of EGF receptor. Silencing of hSPRY2 also inhibited serum-induced activation of p90RSK and decreased phosphorylation of pro-apoptotic protein BAD (BCL2-antagonist of cell death) by p90RSK. Inhibiting both the ERK1/2 and AKT pathways abolished the ability of serum to protect against apoptosis, mimicking the effects of silencing hSPRY2. Serum transactivated the EGF receptor (EGFR), and inhibition of the EGFR by a neutralizing antibody attenuated the anti-apoptotic actions of serum. Consistent with the role of EGFR and perhaps other growth factor receptors in the anti-apoptotic actions of serum, the tyrosine kinase binding domain of c-Cbl (Cbl-TKB) protected against down-regulation of the growth factor receptors such as EGFR and preserved the anti-apoptotic actions of serum when hSpry2 was silenced. Additionally, silencing of Spry2 in c-Cbl null cells did not alter the ability of serum to promote cell survival. Moreover, reintroduction of wild type hSPRY2, but not its mutants that do not bind c-Cbl or CIN85 into SW13 cells after endogenous hSPRY2 had been silenced, restored the anti-apoptotic actions of serum. Overall, we conclude that endogenous hSPRY2-mediated regulation of apoptosis requires c-Cbl and is manifested by the ability of hSPRY2 to sequester c-Cbl and thereby augment signaling via growth factor receptors.
Collapse
Affiliation(s)
- Francis Edwin
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Tarun B Patel
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
18
|
Deng W, Shuyu E, Tsukahara R, Valentine WJ, Durgam G, Gududuru V, Balazs L, Manickam V, Arsura M, Vanmiddlesworth L, Johnson LR, Parrill AL, Miller DD, Tigyi G. The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury. Gastroenterology 2007; 132:1834-51. [PMID: 17484878 PMCID: PMC3446791 DOI: 10.1053/j.gastro.2007.03.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/24/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We recently identified lysophosphatidic acid (LPA) as a potent antiapoptotic agent for the intestinal epithelium. The objective of the present study was to evaluate the effect of octadecenyl thiophosphate (OTP), a novel rationally designed, metabolically stabilized LPA mimic, on radiation-induced apoptosis of intestinal epithelial cells in vitro and in vivo. METHODS The receptors and signaling pathways activated by OTP were examined in IEC-6 and RH7777 cell lines and wild-type and LPA(1) and LPA(2) knockout mice exposed to different apoptotic stimuli. RESULTS OTP was more efficacious than LPA in reducing gamma irradiation-, camptothecin-, or tumor necrosis factor alpha/cycloheximide-induced apoptosis and caspase-3-8, and caspase-9 activity in the IEC-6 cell line. In RH7777 cells lacking LPA receptors, OTP selectively protected LPA(2) but not LPA(1) and LPA(3) transfectants. In C57BL/6 and LPA(1) knockout mice exposed to 15 Gy gamma irradiation, orally applied OTP reduced the number of apoptotic bodies and activated caspase-3-positive cells but was ineffective in LPA(2) knockout mice. OTP, with higher efficacy than LPA, enhanced intestinal crypt survival in C57BL/6 mice but was without any effect in LPA(2) knockout mice. Intraperitoneally administered OTP reduced death caused by lethal dose (LD)(100/30) radiation by 50%. CONCLUSIONS Our data indicate that OTP is a highly effective antiapoptotic agent that engages similar prosurvival pathways to LPA through the LPA(2) receptor subtype.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Apoptosis/radiation effects
- Cell Line
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- GTP-Binding Proteins/physiology
- Gamma Rays/adverse effects
- Gene Expression Regulation
- Injections, Intraperitoneal
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestinal Mucosa/radiation effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/physiology
- Nerve Tissue Proteins/pharmacology
- Organophosphorus Compounds/administration & dosage
- Organophosphorus Compounds/pharmacology
- Phosphatidylinositol 3-Kinases/physiology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/prevention & control
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/physiology
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Wenlin Deng
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
- RxBio Inc, Memphis
| | - E Shuyu
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
| | - Ryoko Tsukahara
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
| | - William J. Valentine
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
| | - Gangadhar Durgam
- Department of Pharmaceutical Science, University of Tennessee Health Sciences Center, Memphis
| | - Veeresa Gududuru
- Department of Pharmaceutical Science, University of Tennessee Health Sciences Center, Memphis
- RxBio Inc, Memphis
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Sciences Center, Memphis
| | - Venkatraman Manickam
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis
| | - Marcello Arsura
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis
| | | | - Leonard R. Johnson
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
| | - Abby L. Parrill
- Department of Chemistry and Computational Research on Materials Institute, University of Memphis, Memphis, Tennessee
| | - Duane D. Miller
- Department of Pharmaceutical Science, University of Tennessee Health Sciences Center, Memphis
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis
- Department of Chemistry and Computational Research on Materials Institute, University of Memphis, Memphis, Tennessee
| |
Collapse
|
19
|
Chaturvedi D, Poppleton HM, Stringfield T, Barbier A, Patel TB. Subcellular localization and biological actions of activated RSK1 are determined by its interactions with subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 2006; 26:4586-600. [PMID: 16738324 PMCID: PMC1489132 DOI: 10.1128/mcb.01422-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP)-dependent protein kinase (PKA) and ribosomal S6 kinase 1 (RSK1) share several cellular proteins as substrates. However, to date no other similarities between the two kinases or interactions between them have been reported. Here, we describe novel interactions between subunits of PKA and RSK1 that are dependent upon the activation state of RSK1 and determine its subcellular distribution and biological actions. Inactive RSK1 interacts with the type I regulatory subunit (RI) of PKA. Conversely, active RSK1 interacts with the catalytic subunit of PKA (PKAc). Binding of RSK1 to RI decreases the interactions between RI and PKAc, while the binding of active RSK1 to PKAc increases interactions between PKAc and RI and decreases the ability of cAMP to stimulate PKA. The RSK1/PKA subunit interactions ensure the colocalization of RSK1 with A-kinase PKA anchoring proteins (AKAPs). Disruption of the interactions between PKA and AKAPs decreases the nuclear accumulation of active RSK1 and, thus, increases its cytosolic content. This subcellular redistribution of active RSK1 is manifested by increased phosphorylation of its cytosolic substrates tuberous sclerosis complex 2 and BAD by epidermal growth factor along with decreased cellular apoptosis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Department of Pharmacology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|