1
|
Suri P, Badalov A, Ruggiu M. Alternative Splicing as a Modulator of the Interferon-Gamma Pathway. Cancers (Basel) 2025; 17:594. [PMID: 40002189 PMCID: PMC11853465 DOI: 10.3390/cancers17040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a critical cytokine that plays a pivotal role in immune system regulation. It is a key mediator of both cellular defense mechanisms and antitumor immunity. As the sole member of the type II interferon family, IFN-γ modulates immune responses by activating macrophages, enhancing natural killer cell function, and regulating gene expression across multiple cellular processes. Alternative splicing is a post-transcriptional gene expression regulatory mechanism that generates multiple mature messenger RNAs from a single gene, dramatically increasing proteome diversity without the need of a proportional genome expansion. This process occurs in 90-95% of human genes, with alternative splicing events allowing for the production of diverse protein isoforms that can have distinct-or even opposing-functional properties. Alternative splicing plays a crucial role in cancer immunology, potentially generating tumor neoepitopes and modulating immune responses. However, how alternative splicing affects IFN-γ's activity is still poorly understood. This review explores how alternative splicing regulates the expression and function of both upstream regulators and downstream effectors of IFN-γ, revealing complex mechanisms of gene expression and immune response modulation. Key transcription factors and signaling molecules of the IFN-γ pathway are alternatively spliced, and alternative splicing can dramatically alter IFN-γ signaling, immune cell function, and response to environmental cues. Specific splice variants can enhance or inhibit IFN-γ-mediated immune responses, potentially influencing cancer immunotherapy, autoimmune conditions, and infectious disease outcomes. The emerging understanding of these splicing events offers promising therapeutic strategies for manipulating immune responses through targeted molecular interventions.
Collapse
Affiliation(s)
- Parul Suri
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Ariana Badalov
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Matteo Ruggiu
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| |
Collapse
|
2
|
Williams O, Hu L, Huang W, Patel P, Bartom ET, Bei L, Hjort E, Hijiya C, Eklund EA. Nore1 inhibits age-associated myeloid lineage skewing and clonal hematopoiesis but facilitates termination of emergency (stress) granulopoiesis. J Biol Chem 2023; 299:104867. [PMID: 37247756 PMCID: PMC10404618 DOI: 10.1016/j.jbc.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Age-associated bone marrow changes include myeloid skewing and mutations that lead to clonal hematopoiesis. Molecular mechanisms for these events are ill defined, but decreased expression of Irf8/Icsbp (interferon regulatory factor 8/interferon consensus sequence binding protein) in aging hematopoietic stem cells may contribute. Irf8 functions as a leukemia suppressor for chronic myeloid leukemia, and young Irf8-/- mice have neutrophilia with progression to acute myeloid leukemia (AML) with aging. Irf8 is also required to terminate emergency granulopoiesis during the innate immune response, suggesting this may be the physiologic counterpart to leukemia suppression by this transcription factor. Identifying Irf8 effectors may define mediators of both events and thus contributors to age-related bone marrow disorders. In this study, we identified RASSF5 (encoding Nore1) as an Irf8 target gene and investigated the role of Nore1 in hematopoiesis. We found Irf8 activates RASSF5 transcription and increases Nore1a expression during emergency granulopoiesis. Similar to Irf8-/- mice, we found that young Rassf5-/- mice had increased neutrophils and progressed to AML with aging. We identified enhanced DNA damage, excess clonal hematopoiesis, and a distinct mutation profile in hematopoietic stem cells from aging Rassf5-/- mice compared with wildtype. We found sustained emergency granulopoiesis in Rassf5-/- mice, with repeated episodes accelerating AML, also similar to Irf8-/- mice. Identifying Nore1a downstream from Irf8 defines a pathway involved in leukemia suppression and the innate immune response and suggests a novel molecular mechanism contributing to age-related clonal myeloid disorders.
Collapse
Affiliation(s)
- Olatundun Williams
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Liping Hu
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Weiqi Huang
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Priyam Patel
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T Bartom
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Ling Bei
- RxD Nova Pharmaceuticals, Inc, Vacaville, California, USA
| | | | - Christina Hijiya
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Elizabeth A Eklund
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
3
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
4
|
Pogosova-Agadjanyan EL, Kopecky KJ, Ostronoff F, Appelbaum FR, Godwin J, Lee H, List AF, May JJ, Oehler VG, Petersdorf S, Pogosov GL, Radich JP, Willman CL, Meshinchi S, Stirewalt DL. The prognostic significance of IRF8 transcripts in adult patients with acute myeloid leukemia. PLoS One 2013; 8:e70812. [PMID: 23967110 PMCID: PMC3743845 DOI: 10.1371/journal.pone.0070812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/23/2013] [Indexed: 11/19/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor that plays a critical role in normal hematopoiesis, such that disruption of IRF8 activity promotes leukemogenesis. We and others have identified aberrant expression of IRF8 transcripts, including novel splice variants, in acute myeloid leukemia (AML), but studies have not investigated the prognostic significance of these transcripts. Therefore, we developed and optimized quantitative expression assays for both, the wild type, or the reference sequence (WT-IRF8) and novel splice variants (SV-IRF8). These assays were used to quantify IRF8 transcript levels in 194 adult patients with AML, and multivariate analyses investigated the prognostic significance of these expression levels. After adjusting for known prognostic factors, expression levels of WT- or SV-IRF8 transcripts were not significantly associated with complete responses or overall survival. However, increased expression of WT-IRF8 was associated with decreased relapse-free survival (RFS) in both univariate (P = 0.010) and multivariate (P = 0.019) analyses. Similarly, increased expression of SV-IRF8 was associated with a decreased RFS (univariate, P = 0.026 and multivariate, P = 0.021). These studies show for the first time that WT-IRF8 and SV-IRF8 are independent adverse prognostic factors for patients with AML. Additional studies are planned to examine the prognostic significance of IRF8 transcripts in other populations of AML patients.
Collapse
Affiliation(s)
- Era L. Pogosova-Agadjanyan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kenneth J. Kopecky
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fabiana Ostronoff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Frederick R. Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - John Godwin
- Providence Cancer Center Group, Earle A. Chiles Research Institute, Portland, Oregon, United States of America
| | - Hana Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alan F. List
- H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jennifer J. May
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Vivian G. Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Steve Petersdorf
- Seattle Genetics, Inc., Bothell, Washington, United States of America
| | - Galina L. Pogosov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cheryl L. Willman
- University of New Mexico Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hu L, Huang W, Hjort E, Eklund EA. Increased Fanconi C expression contributes to the emergency granulopoiesis response. J Clin Invest 2013; 123:3952-66. [PMID: 23925293 DOI: 10.1172/jci69032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc(-/-) mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc(-/-) mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
6
|
Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 (Fap1) influences βcatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. J Biol Chem 2013; 288:12766-76. [PMID: 23519466 DOI: 10.1074/jbc.m112.429696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased βcatenin activity correlates with leukemia stem cell expansion and disease progression in chronic myeloid leukemia (CML). We found previously that expression of the CML-related Bcr-abl oncoprotein in myeloid progenitor cells increases expression of Fas-associated phosphatase 1 (Fap1). This resulted in Fap1-dependent resistance to Fas-induced apoptosis in these cells. Fap1 also interacts with the adenomatous polyposis coli (Apc) protein, but the functional significance of this interaction is unknown. Apc participates in a complex that includes glycogen synthase kinase β (Gsk3β) and βcatenin. Assembly of this complex results in phosphorylation of βcatenin by Gsk3β, which facilitates βcatenin ubiquitination and degradation by the proteasome. In this study, we found increased association of Fap1 with the Apc complex in Bcr-abl(+) myeloid progenitor cells. We also found Fap1-dependent inactivation of Gsk3β and consequent stabilization of βcatenin in these cells. Consistent with this, Bcr-abl(+) cells exhibited a Fap1-dependent increase in βcatenin activity. Our studies identified Fap1-dependent Gsk3β inactivation as a molecular mechanism for increased βcatenin activity in CML.
Collapse
Affiliation(s)
- Weiqi Huang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
7
|
Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 2012; 9:227. [PMID: 23020843 PMCID: PMC3546867 DOI: 10.1186/1742-2094-9-227] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Recent fate-mapping studies establish that microglia, the resident mononuclear phagocytes of the CNS, are distinct in origin from the bone marrow-derived myeloid lineage. Interferon regulatory factor 8 (IRF8, also known as interferon consensus sequence binding protein) plays essential roles in development and function of the bone marrow-derived myeloid lineage. However, little is known about its roles in microglia. Methods The CNS tissues of IRF8-deficient mice were immunohistochemically analyzed. Pure microglia isolated from wild-type and IRF8-deficient mice were studied in vitro by proliferation, immunocytochemical and phagocytosis assays. Microglial response in vivo was compared between wild-type and IRF8-deficient mice in the cuprizon-induced demyelination model. Results Our analysis of IRF8-deficient mice revealed that, in contrast to compromised development of IRF8-deficient bone marrow myeloid lineage cells, development and colonization of microglia are not obviously affected by loss of IRF8. However, IRF8-deficient microglia demonstrate several defective phenotypes. In vivo, IRF8-deficient microglia have fewer elaborated processes with reduced expression of IBA1/AIF1 compared with wild-type microglia, suggesting a defective phenotype. IRF8-deficient microglia are significantly less proliferative in mixed glial cultures than wild-type microglia. Unlike IRF8-deficient bone marrow myeloid progenitors, exogenous macrophage colony stimulating factor (colony stimulating factor 1) (M-CSF (CSF1)) restores their proliferation in mixed glial cultures. In addition, IRF8-deficient microglia exhibit an exaggerated growth response to exogenous granulocyte-macrophage colony stimulating factor (colony stimulating factor 2) (GM-CSF (CSF2)) in the presence of other glial cells. IRF8-deficient microglia also demonstrate altered cytokine expressions in response to interferon-gamma and lipopolysaccharide in vitro. Moreover, the maximum phagocytic capacity of IRF8-deficient microglia is reduced, although their engulfment of zymosan particles is not overtly impaired. Defective scavenging activity of IRF8-deficient microglia was further confirmed in vivo in the cuprizone-induced demyelination model in mice. Conclusions This study is the first to demonstrate the essential contribution of IRF8-mediated transcription to a broad range of microglial phenotype. Microglia are distinct from the bone marrow myeloid lineage with respect to their dependence on IRF8-mediated transcription.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Neurology, University of California Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 mediates Fas resistance in myeloid progenitor cells expressing the Bcr-abl oncogene. Leuk Lymphoma 2012; 54:619-30. [PMID: 22891763 DOI: 10.3109/10428194.2012.720979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interferon consensus sequence binding protein (Icsbp) is a transcription factor that influences multiple aspects of myelopoiesis. Expression of Icsbp is decreased in the bone marrow of human subjects with chronic myeloid leukemia (CML), and studies in murine models suggest that Icsbp functions as an anti-oncogene for CML. We previously identified a set of Icsbp target genes that may contribute to this anti-oncogene effect. The set includes PTPN13, the gene encoding Fas-associated phosphatase 1 (Fap1, a Fas antagonist). We previously demonstrated that myeloid progenitor cells from Icsbp-knockout mice exhibit Fap1-dependent Fas resistance. In the present study, we determined that the Fas resistance of Bcr-abl+cells is Icsbp- and Fap1-dependent. We also found that treatment of Bcr-abl bone marrow cells with a Fap1-blocking peptide prevents in vitro selection of a tyrosine kinase inhibitor (TKI)-resistant population. Therefore, these results have implications for therapeutic targeting of the Fas-resistant leukemia stem cell population and addressing TKI resistance in CML.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
9
|
Shah CA, Bei L, Wang H, Platanias LC, Eklund EA. HoxA10 protein regulates transcription of gene encoding fibroblast growth factor 2 (FGF2) in myeloid cells. J Biol Chem 2012; 287:18230-48. [PMID: 22493287 DOI: 10.1074/jbc.m111.328401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HoxA10 is a member of a highly conserved family of homeodomain transcription factors that are involved in definitive hematopoiesis and implicated in the pathogenesis of acute myeloid leukemia (AML). During normal hematopoiesis, HoxA10 facilitates myeloid progenitor expansion and impedes myeloid differentiation. To better understand the molecular mechanisms that control these events, we have been identifying and characterizing HoxA10 target genes. In this study, we identified the gene encoding fibroblast growth factor 2 (Fgf2 or basic fibroblast growth factor) as a target gene that is relevant to the biological effects of HoxA10. We identified two cis elements in the proximal FGF2 promoter that are activated by HoxA10 in myeloid progenitor cells and differentiating phagocytes. We determined that Fgf2 expression and secretion are regulated in a HoxA10-dependent manner in these cells. We found that increased Fgf2 production by HoxA10-overexpressing myeloid progenitor cells induced a phosphoinositol 3-kinase-dependent increase in β-catenin protein. This resulted in autocrine stimulation of proliferation in HoxA10-overexpressing cells and hypersensitivity to other cytokines that share this pathway. Therefore, these studies identified expression of Fgf2 as a mechanism by which HoxA10 controls the size of the myeloid progenitor population. These studies also suggested that aberrant production of Fgf2 may contribute to leukemogenesis in the subset of AML with dysregulated Hox expression. Therapeutic targeting of Fgf2-stimulated signaling pathways might be a rational approach to this poor prognosis subset of AML.
Collapse
Affiliation(s)
- Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
10
|
Huang W, Hu L, Bei L, Hjort E, Eklund EA. The leukemia-associated fusion protein Tel-platelet-derived growth factor receptor β (Tel-PdgfRβ) inhibits transcriptional repression of PTPN13 gene by interferon consensus sequence binding protein (Icsbp). J Biol Chem 2012; 287:8110-25. [PMID: 22262849 PMCID: PMC3318728 DOI: 10.1074/jbc.m111.294884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
Icsbp is an interferon regulatory transcription factor with leukemia suppressor activity. In previous studies, we identified the gene encoding Fas-associated phosphatase 1 (Fap1; the PTPN13 gene) as an Icsbp target. In the current study, we determine that repression of PTPN13 by Icsbp requires cooperation with Tel and histone deacetylase 3 (Hdac3). These factors form a multiprotein complex that requires pre-binding of Tel to the PTPN13 cis element with subsequent recruitment of Icsbp and Hdac3. We found that knockdown of Tel or Hdac3 in myeloid cells increases Fap1 expression and results in Fap1-dependent resistance to Fas-induced apoptosis. The TEL gene was initially identified due to involvement in leukemia-associated chromosomal translocations. The first identified TEL translocation partner was the gene encoding platelet-derived growth factor receptor β (PdgfRβ). The resulting Tel-PdgfRβ fusion protein exhibits constitutive tyrosine kinase activity and influences cellular proliferation. In the current studies, we find that Tel-PdgfRβ influences apoptosis in a manner that is independent of tyrosine kinase activity. We found that Tel-PdgfRβ expressing myeloid cells have increased Fap1 expression and Fap1-dependent Fas resistance. We determined that interaction between Tel and Tel-PdgfRβ decreases Tel/Icsbp/Hdac3 binding to the PTPN13 cis element, resulting in increased transcription. Therefore, these studies identify a novel mechanism by which the Tel-PdgfRβ oncoprotein may contribute to leukemogenesis.
Collapse
Affiliation(s)
- Weiqi Huang
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Liping Hu
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Ling Bei
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth Hjort
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth A. Eklund
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
11
|
Bei L, Huang W, Wang H, Shah C, Horvath E, Eklund E. HoxA10 activates CDX4 transcription and Cdx4 activates HOXA10 transcription in myeloid cells. J Biol Chem 2011; 286:19047-64. [PMID: 21471217 PMCID: PMC3099719 DOI: 10.1074/jbc.m110.213983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
HoxA10 is a homeodomain transcription factor that influences a number of developmental processes, including hematopoiesis. During definitive hematopoiesis, expression of HoxA10 is maximal in committed myeloid progenitor cells and decreases as differentiation proceeds. Aberrantly increased expression of HoxA10 was found in bone marrow cells in a poor prognosis subset of human acute myeloid leukemia (AML). Consistent with this, AML developed in mice transplanted with HoxA10-overexpressing bone marrow. However, relatively few target genes have been identified that explain the role of HoxA10 in leukemogenesis. In the current study, we identified CDX4 as a HoxA10 target gene. Cdx4 is a homeodomain transcription factor that was also implicated in myeloid leukemogenesis. Although relatively few Cdx4 target genes have been identified, Cdx4 was known to influence HOX gene transcription. We identified a HoxA10-binding cis element in the CDX4 promoter that activated transcription. We also identified a Cdx4-binding cis element that activated the HOXA10 promoter. Therefore, increased Cdx4 expression in HoxA10-overexpressing cells augmented transcription of the endogenous HOXA10 gene. Increased endogenous HoxA10 in these cells induced additional CDX4 transcription. We found that Cdx4 influenced transcription of HoxA10 target genes in a HoxA10-dependent manner. Similarly, HoxA10 influenced transcription of HOX genes in a Cdx4-dependent manner. We previously found that HoxA10-overexpressing myeloid progenitors were hypersensitive to a variety of cytokines. In the current studies, we found that Cdx4 knockdown decreased cytokine hypersensitivity of HoxA10-overexpressing cells. Therefore, these studies identified a positive feedback relationship between HoxA10 and Cdx4, which potentially amplified the contribution of either transcription factor to the pathogenesis of AML.
Collapse
Affiliation(s)
- Ling Bei
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Weiqi Huang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Hao Wang
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Chirag Shah
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth Horvath
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth Eklund
- From the Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
12
|
Wang H, Bei L, Shah CA, Horvath E, Eklund EA. HoxA10 influences protein ubiquitination by activating transcription of ARIH2, the gene encoding Triad1. J Biol Chem 2011; 286:16832-45. [PMID: 21454682 DOI: 10.1074/jbc.m110.213975] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HoxA10 is a homeodomain transcription factor that is maximally expressed in myeloid progenitor cells. An increase in HoxA10 expression correlates with poor prognosis in human acute myeloid leukemia (AML). Consistent with this scenario, HoxA10 overexpression in murine bone marrow induces a myeloproliferative neoplasm that advances AML over time. Despite the importance of HoxA10 for leukemogenesis, few genuine HoxA10 target genes have been identified. The current study identified ARIH2, the gene encoding Triad1, as a HoxA10 target gene. We identified two distinct HoxA10-binding cis elements in the ARIH2 promoter and determined that HoxA10 activates these cis elements in myeloid cells. Triad1 has E3 ubiquitin ligase activity, and we found that HoxA10-overexpressing myeloid cells exhibited a Triad1-dependent increase in protein ubiquitination. Therefore, these studies have identified the regulation of protein ubiquitination as a novel function of Hox transcription factors. Forced overexpression of Triad1 has been show previously to inhibit colony formation by myeloid progenitor cells. In contrast, HoxA10-overexpressing myeloid progenitor cells exhibited increased proliferation in response to low doses of various cytokines. We found that Triad1 knockdown further increased cytokine-induced proliferation in HoxA10-overexpressing cells. Therefore, these studies have identified a HoxA10 target gene that antagonizes the overall influence of overexpressed HoxA10 on myeloproliferation. This result suggests that the consequences of HoxA10 overexpression reflect a balance between the target genes that facilitate and antagonize proliferation. These results have implications for understanding the mechanisms of leukemogenesis in AML with Hox overexpression.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
13
|
Shah CA, Wang H, Bei L, Platanias LC, Eklund EA. HoxA10 regulates transcription of the gene encoding transforming growth factor beta2 (TGFbeta2) in myeloid cells. J Biol Chem 2010; 286:3161-76. [PMID: 21087928 DOI: 10.1074/jbc.m110.183251] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
HoxA10 is a homeodomain transcription factor that is maximally expressed in myeloid progenitor cells. HoxA10 is overexpressed in a poor prognosis subset of human acute myeloid leukemia (AML) and in vivo overexpression of HoxA10 in murine bone marrow induces myeloid leukemia. HoxA10 contributes to myeloid progenitor expansion and differentiation block, but few target genes have been identified that explain the influence of HoxA10 on these processes. The current study identifies the gene encoding transforming growth factor β2 (TGFβ2) as a HoxA10 target gene. We found that HoxA10 activated TGFβ2 transcription by interacting with tandem cis elements in the promoter. We also determined that HoxA10 overexpression in myeloid progenitor cells increased Tgfβ2 production by the cells. Tgfβ2 stimulates proliferation of hematopoietic stem and progenitor cells. Therefore, these studies identified autocrine stimulation of myeloid progenitors by Tgfβ2 as one mechanism by which HoxA10 expands this population. Because HoxA proteins had not been previously known to influence expression of pro-proliferative cytokines, this has implications for understanding molecular mechanisms involved in progenitor expansion and the pathobiology of AML.
Collapse
Affiliation(s)
- Chirag A Shah
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
14
|
Kinder M, Thompson JE, Wei C, Shelat SG, Blair IA, Carroll M, Puré E. Interferon regulatory factor-8-driven myeloid differentiation is regulated by 12/15-lipoxygenase-mediated redox signaling. Exp Hematol 2010; 38:1036-1046.e1-4. [PMID: 20647030 PMCID: PMC2963586 DOI: 10.1016/j.exphem.2010.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 06/18/2010] [Accepted: 07/09/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Several transcription factors determine the cell fate decision between granulocytes and monocytes, but the upstream signal transduction pathways that govern myelopoiesis are largely unknown. Based on our observation of aberrant myeloid cell representation in hematopoietic tissues of 12/15-lipoxygenase (12/15-LOX)-deficient (Alox15) mice, we tested the hypothesis that polyunsaturated fatty acid metabolism regulates myelopoiesis. MATERIALS AND METHODS Multicolor flow cytometric analysis and methylcellulose assays were used to compare myelopoiesis and the differentiative capacity of progenitors from Alox15 and wild-type mice. Furthermore, we elucidated the mechanism by which 12/15-LOX is involved in regulation of myelopoiesis. RESULTS Granulopoiesis in Alox15 mice is increased while monopoiesis is reduced. Moreover, there is an accumulation of granulocyte-macrophage progenitors that exhibit defective differentiation. Mechanistically, we demonstrate that transcriptional activity of interferon regulatory factor-8 (Irf8), which regulates myelopoiesis, is impaired in Alox15 progenitors and bone marrow-derived macrophages due to loss of 12/15-LOX-mediated redox regulation of Irf8 nuclear accumulation. Restoration of redox signaling in Alox15 bone marrow cells and granulocyte-macrophage progenitors reversed the defect in myeloid differentiation. CONCLUSIONS These data establish 12/15-LOX-mediated redox signaling as a novel regulator of myelopoiesis and Irf8.
Collapse
Affiliation(s)
- Michelle Kinder
- The Wistar Institute, Philadelphia, PA 19104
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - James E. Thompson
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Cong Wei
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104
| | - Suresh G. Shelat
- Dept. of Pathology & Laboratory Medicine, University of Pennsylvania, Children’s Hospital Of Philadelphia, Philadelphia, PA 19104
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin Carroll
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Ellen Puré
- The Wistar Institute, Philadelphia, PA 19104
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
15
|
Huang W, Zhou W, Saberwal G, Konieczna I, Horvath E, Katsoulidis E, Platanias LC, Eklund EA. Interferon consensus sequence binding protein (ICSBP) decreases beta-catenin activity in myeloid cells by repressing GAS2 transcription. Mol Cell Biol 2010; 30:4575-94. [PMID: 20679491 PMCID: PMC2950519 DOI: 10.1128/mcb.01595-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/11/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022] Open
Abstract
The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor, also referred to as IRF8. ICSBP acts as a suppressor of myeloid leukemia, although few target genes explaining this effect have been identified. In the current studies, we identified the gene encoding growth arrest specific 2 (GAS2) as an ICSBP target gene relevant to leukemia suppression. We find that ICSBP, Tel, and histone deacetylase 3 (HDAC3) bind to a cis element in the GAS2 promoter and repress transcription in myeloid progenitor cells. Gas2 inhibits calpain protease activity, and beta-catenin is a calpain substrate in these cells. Consistent with this, ICSBP decreases beta-catenin protein and activity in a Gas2- and calpain-dependent manner. Conversely, decreased ICSBP expression increases beta-catenin protein and activity by the same mechanism. This is of interest, because decreased ICSBP expression and increased beta-catenin activity are associated with poor prognosis and blast crisis in chronic myeloid leukemia (CML). We find that the expression of Bcr/abl (the CML oncoprotein) increases Gas2 expression in an ICSBP-dependent manner. This results in decreased calpain activity and a consequent increase in beta-catenin activity in Bcr/abl-positive (Bcr/abl(+)) cells. Therefore, these studies have identified a Gas2/calpain-dependent mechanism by which ICSBP influences beta-catenin activity in myeloid leukemia.
Collapse
Affiliation(s)
- Weiqi Huang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Wei Zhou
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Gurveen Saberwal
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Iwona Konieczna
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Elizabeth Horvath
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Efstratios Katsoulidis
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Leonidas C. Platanias
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Elizabeth A. Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| |
Collapse
|
16
|
Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, Purkayastha A, Dressel A, Karp J, Bockenstedt P, Al-Zoubi A, Talpaz M, Kujawski L, Liu Y, Shedden K, Shakhan S, Li C, Erba H, Malek SN. NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res 2010; 16:4135-47. [PMID: 20505189 PMCID: PMC2921448 DOI: 10.1158/1078-0432.ccr-09-2639] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE This study was conducted to identify novel genes with importance to the biology of adult acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN We analyzed DNA from highly purified AML blasts and paired buccal cells from 95 patients for recurrent genomic microdeletions using ultra-high density Affymetrix single nucleotide polymorphism 6.0 array-based genomic profiling. RESULTS Through fine mapping of microdeletions on 17q, we derived a minimal deleted region of approximately 0.9-Mb length that harbors 11 known genes; this region includes Neurofibromin 1 (NF1). Sequence analysis of all NF1 coding exons in the 11 AML cases with NF1 copy number changes identified acquired truncating frameshift mutations in two patients. These NF1 mutations were already present in the hematopoetic stem cell compartment. Subsequent expression analysis of NF1 mRNA in the entire AML cohort using fluorescence-activated cell sorting sorted blasts as a source of RNA identified six patients (one with a NF1 mutation) with absent NF1 expression. The NF1 null states were associated with increased Ras-bound GTP, and short hairpin RNA-mediated NF1 suppression in primary AML blasts with wild-type NF1 facilitated colony formation in methylcellulose. Primary AML blasts without functional NF1, unlike blasts with functional NF1, displayed sensitivity to rapamycin-induced apoptosis, thus identifying a dependence on mammalian target of rapamycin (mTOR) signaling for survival. Finally, colony formation in methylcellulose ex vivo of NF1 null CD34+/CD38- cells sorted from AML bone marrow samples was inhibited by low-dose rapamycin. CONCLUSIONS NF1 null states are present in 7 of 95 (7%) of adult AML and delineate a disease subset that could be preferentially targeted by Ras or mammalian target of rapamycin-directed therapeutics.
Collapse
Affiliation(s)
- Brian Parkin
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Peter Ouillette
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Yin Wang
- Department of Surgery, Division of Immunotherapy, 109 Zina Pitcher Place the University of Michigan, Ann Arbor, MI, 48109
| | - Yan Liu
- Department of Surgery, Division of Immunotherapy, 109 Zina Pitcher Place the University of Michigan, Ann Arbor, MI, 48109
| | - Whitney Wright
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Diane Roulston
- Department of Pathology, 2900 Huron Parkway, Traverwood 2
| | | | - Amanda Dressel
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Judith Karp
- Department of Oncology, Johns Hopkins Cancer Center, 1650 Orleans St, Baltimore, MD 21231
| | - Paula Bockenstedt
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Ammar Al-Zoubi
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Moshe Talpaz
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Lisa Kujawski
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Yang Liu
- Department of Surgery, Division of Immunotherapy, 109 Zina Pitcher Place the University of Michigan, Ann Arbor, MI, 48109
| | | | - Sajid Shakhan
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Cheng Li
- Departments of Biostatistics and Biostatistics and Computational Biology, Harvard School of Public Health and the Dana-Farber Cancer Institute, 3 Blackfan Circle, Boston, MA, 02115
| | - Harry Erba
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
| | - Sami N. Malek
- Department of Internal Medicine, Division of Hematology and Oncology, 1500 East Medical Center Dr
- Department of Pathology, 2900 Huron Parkway, Traverwood 2
| |
Collapse
|
17
|
Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116:2759-67. [PMID: 20585039 DOI: 10.1182/blood-2009-07-234559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon regulatory factor 4 (IRF-4) plays important functions in B- and T-cell development and immune response regulation and was originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. Although IRF-4 is expressed in myeloid cells, its function in that lineage is not known. The closely related family member IRF-8 is a critical regulator of myelopoiesis, which when deleted in mice results in a syndrome highly similar to human chronic myelogenous leukemia. In early lymphoid development, we have shown previously that IRF-4 and IRF-8 can function redundantly. We therefore investigated the effects of a combined loss of IRF-4 and IRF-8 on hematologic tumorigenesis. We found that mice deficient in both IRF-4 and IRF-8 develop from a very early age a more aggressive chronic myelogenous leukemia-like disease than mice deficient in IRF-8 alone, correlating with a greater expansion of granulocyte-monocyte progenitors. Although these results demonstrate, for the first time, that IRF-4 can function as tumor suppressor in myeloid cells, interestingly, all mice deficient in both IRF-4 and IRF-8 eventually develop and die of a B-lymphoblastic leukemia/lymphoma. Combined losses of IRF-4 and IRF-8 therefore can cooperate in the development of both myeloid and lymphoid tumors.
Collapse
|
18
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
19
|
Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism. Blood 2010; 115:5012-22. [PMID: 20357242 DOI: 10.1182/blood-2009-09-243139] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fatty acid metabolism governs multiple intracellular signaling pathways in many cell types, but its role in hematopoietic stem cells (HSCs) is largely unknown. Herein, we establish a critical role for 12/15-lipoxygenase (12/15-LOX)-mediated unsaturated fatty acid metabolism in HSC function. HSCs from 12/15-LOX-deficient mice are severely compromised in their capacity to reconstitute the hematopoietic compartment in competitive and serial reconstitution assays. Furthermore, we demonstrate that 12/15-LOX is required for the maintenance of long-term HSC quiescence and number. The defect in HSCs is cell-autonomous and associated with a selective reduction in 12/15-LOX-mediated generation of bioactive lipid mediators and reactive oxygen species and with a decrease in canonical Wnt signaling as measured by nuclear beta-catenin staining. These results have implications for development, aging, and transformation of the hematopoietic compartment.
Collapse
|
20
|
Battistini A. Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res 2010; 29:765-80. [PMID: 19929577 DOI: 10.1089/jir.2009.0030] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the interferon regulatory factor (IRF) family are transcription factors implicated in the regulation of a variety of biological processes. Originally identified as intracellular mediators of the induction and biological activities of interferons, their central role in host resistance to pathogens has recently been confirmed by the recognition of their involvement in the regulation of gene expression in responses triggered by Toll-like receptors and other pattern recognition receptors (PRRs). Their function in regulating the development as well as the activity of hematopoietic cells puts them at the interface between innate and adaptive immune responses. IRFs also regulate cell growth and apoptosis in several cell types, thereby affecting susceptibility to and the progression of cancer. In this review the role of some members of the family more deeply involved in the differentiation of hematopoietic cells and in immune regulation is addressed, with a specific focus on T cells and dendritic cells.
Collapse
Affiliation(s)
- Angela Battistini
- Molecular Pathogenesis Unit, Department of Infectious, Parasitic, and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
21
|
Saberwal G, Horvath E, Hu L, Zhu C, Hjort E, Eklund EA. The interferon consensus sequence binding protein (ICSBP/IRF8) activates transcription of the FANCF gene during myeloid differentiation. J Biol Chem 2009; 284:33242-54. [PMID: 19801548 DOI: 10.1074/jbc.m109.010231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor with leukemia-suppressor activity. ICSBP regulates genes that are involved in phagocyte function, proliferation, and apoptosis. In murine models ICSBP deficiency results in a myeloproliferative disorder (MPD) with increased mature neutrophils. Over time this MPD progresses to acute myeloid leukemia (AML), suggesting that ICSBP deficiency is adequate for MPD, but additional genetic lesions are required for AML. The hypothesis of these studies is that dysregulation of key target genes predisposes to disease progression under conditions of decreased ICSBP expression. To investigate this hypothesis, we used chromatin co-immunoprecipitation to identify genes involved the ICSBP-leukemia suppressor effect. In the current studies, we identify the gene encoding Fanconi F (FANCF) as an ICSBP target gene. FancF participates in a repair of cross-linked DNA. We identify a FANCF promoter cis element, which is activated by ICSBP in differentiating myeloid cells. We also determine that DNA cross-link repair is impaired in ICSBP-deficient myeloid cells in a FancF-dependent manner. This effect is observed in differentiating cells, suggesting that ICSBP protects against the genotoxic stress of myelopoiesis. Decreased ICSBP expression is found in human AML and chronic myeloid leukemia during blast crisis (CML-BC). Our studies suggest that ICSBP deficiency may be functionally important for accumulation of chromosomal abnormalities during disease progression in these myeloid malignancies.
Collapse
Affiliation(s)
- Gurveen Saberwal
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Abstract
Acute myelogenous leukemia is driven by leukemic stem cells (LSCs) generated by mutations that confer (or maintain) self-renewal potential coupled to an aberrant differentiation program. Using retroviral mutagenesis, we identified genes that generate LSCs in collaboration with genetic disruption of the gene encoding interferon response factor 8 (Irf8), which induces a myeloproliferation in vivo. Among the targeted genes, we identified Mef2c, encoding a MCM1-agamous-deficiens-serum response factor transcription factor, and confirmed that overexpression induced a myelomonocytic leukemia in cooperation with Irf8 deficiency. Strikingly, several of the genes identified in our screen have been reported to be up-regulated in the mixed-lineage leukemia (MLL) subtype. High MEF2C expression levels were confirmed in acute myelogenous leukemia patient samples with MLL gene disruptions, prompting an investigation of the causal interplay. Using a conditional mouse strain, we demonstrated that Mef2c deficiency does not impair the establishment or maintenance of LSCs generated in vitro by MLL/ENL fusion proteins; however, its loss led to compromised homing and invasiveness of the tumor cells. Mef2c-dependent targets included several genes encoding matrix metalloproteinases and chemokine ligands and receptors, providing a mechanistic link to increased homing and motility. Thus, MEF2C up-regulation may be responsible for the aggressive nature of this leukemia subtype.
Collapse
|
23
|
Abstract
Loss of neurofibromin or interferon consensus sequence binding protein (Icsbp) leads to a myeloproliferative disorder. Transcription of NF1 is directly controlled by ICSBP. It has been postulated that loss of NF1 expression resulting from loss of transcriptional activation by ICSBP contributes to human hematologic malignancies. To investigate the functional cooperation of these 2 proteins, we have established Icsbp-deficient mice with Nf1 haploinsufficiency. We here demonstrate that loss of Icsbp and Nf1 haploinsufficiency synergize to induce a forced myeloproliferation in Icsbp-deficient mice because of an expansion of a mature myeloid progenitor cell. Furthermore, Nf1 haploinsufficiency and loss of Icsbp contribute synergistically to progression of the myeloproliferative disorder toward transplantable leukemias. Leukemias are characterized by distinct phenotypes, which correlate with progressive genetic abnormalities. Loss of Nf1 heterozygosity is not mandatory for disease progression, but its occurrence with other genetic abnormalities indicates progressive genetic alterations in a defined subset of leukemias. These data show that loss of the 2 tumor suppressor genes Nf1 and Icsbp synergize in the induction of leukemias.
Collapse
|
24
|
Stirewalt DL, Choi YE, Sharpless NE, Pogosova-Agadjanyan EL, Cronk MR, Yukawa M, Larson EB, Wood BL, Appelbaum FR, Radich JP, Heimfeld S. Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells. Leukemia 2009; 23:391-3. [PMID: 18596738 PMCID: PMC2640437 DOI: 10.1038/leu.2008.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine how aging impacts gene expression in hematopoietic stem cells (HSCs), human CD34+ cells from bone marrow (BMCD34+) and mobilized stem cell products (PBCD34+38-) were examined using microarray-based expression profiling. The age-associated expression changes in CD34+ cells were then compared to age-associated expression changes in murine HSCs. Interferon regulatory factor 8 (IRF8) was the only gene with age-associated expression changes in all analyses, decreasing its expression in human CD34+ cells and murine HSCs. Microarray-based expression profiling found that IRF8 expression also decreased with aging in human T-cells, suggesting that the effects of aging on IRF8 expression may extend to more differentiated populations of hematopoietic cells. Quantitative-RT/PCR studies confirmed that IRF8 mRNA expression decreased with aging in additional samples of BMCD34+, PBCD34+38-, and T-cells, and IRF8 protein expression was found to decrease with aging and to correlate with mRNA levels in PBCD34+ cells. The results suggest that IRF8 may be a novel biomarker of aging for hematopoietic cells. Given that inactivation of IRF8 causes CML-like syndromes in mice and decreased IRF8 expression occurs in human hematopoietic malignancies, it will be critical to determine if decreased IRF8 expression plays a role in the increased incidence of hematopoietic malignancies in older adults.
Collapse
Affiliation(s)
- Derek L. Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Yongjae Edward Choi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Norman E. Sharpless
- Departments of Medicine and Genetics, the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Michelle R. Cronk
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michi Yukawa
- Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA
| | | | - Brent L. Wood
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Shelly Heimfeld
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
25
|
Wang H, Lindsey S, Konieczna I, Bei L, Horvath E, Huang W, Saberwal G, Eklund EA. Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia. J Biol Chem 2008; 284:2549-67. [PMID: 19022774 DOI: 10.1074/jbc.m804704200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The homeodomain transcription factor HoxA10 is maximally expressed in myeloid progenitor cells. Sustained HoxA10 expression during differentiation has been described in poor prognosis human acute myeloid leukemia (AML). Consistent with this, engineered overexpression of HoxA10 in murine bone marrow induces a myeloproliferative disorder that progresses to AML over time. This murine model suggests that HoxA10 overexpression is sufficient for myeloproliferation but that differentiation block, and therefore AML, requires acquisition of additional mutations. In myeloid progenitor cells, HoxA10 represses transcription of genes that encode phagocyte effector proteins such as gp91PHOX and p67PHOX. Tyrosine phosphorylation of HoxA10 during myelopoiesis decreases binding to these target genes. In immature myeloid cells, HoxA10 also activates transcription of the DUSP4 gene that encodes Mkp2, an anti-apoptotic protein. HoxA10 binding to the DUSP4 promoter decreases during myelopoiesis. Therefore, both myeloid-specific gene repression and DUSP4 activation by HoxA10 decrease during myelopoiesis. This results in phenotypic differentiation and facilitates apoptosis as differentiation proceeds. HoxA10 is de-phosphorylated by SHP2 protein-tyrosine phosphatase in myeloid progenitors. This mechanism maintains HoxA10 in a nonphosphorylated state in immature, but not differentiating, myeloid cells. Constitutively active SHP2 mutants have been described in human AML, which dephosphorylate HoxA10 throughout myelopoiesis. In this study, we hypothesize that constitutive SHP2 activation synergizes with HoxA10 overexpression to accelerate progression to AML. Because both HoxA10 overexpression and constitutive SHP2 activation are found in poor prognosis human AML, these studies contribute to understanding biochemical aspects of disease progression in myeloid malignancy.
Collapse
Affiliation(s)
- Hao Wang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26:535-84. [PMID: 18303999 DOI: 10.1146/annurev.immunol.26.021607.090400] [Citation(s) in RCA: 996] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Collapse
Affiliation(s)
- Tomohiko Tamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
27
|
Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene 2008; 27:5267-76. [PMID: 18469857 DOI: 10.1038/onc.2008.147] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
16q24 is frequently deleted in multiple tumors including cancers of nasopharynx, esophagus, breast, prostate and liver. By array comparative genomic hybridization (aCGH), we refined a 16q24 hemizygous deletion in nasopharyngeal carcinoma (NPC) cell lines. Semi-quantitative RT-PCR analysis revealed interferon regulatory factor 8 (IRF8) as the only downregulated gene within this deletion. IRF8 belongs to a family of interferon (IFN) regulatory factors that modulate various important physiologic processes including host defense, cell growth and differentiation and immune regulation. In contrast to the broad expression of IRF8 in normal adult and fetal tissues, transcriptional silencing and promoter methylation of IRF8 were frequently detected in multiple carcinoma (except for hepatocellular) cell lines (100% in NPC, 88% in esophageal and 18-78% in other carcinoma cell lines) and in a large collection of primary carcinomas (78% in NPC, 36-71% in other carcinomas). Methylation of the IRF8 promoter led to the disruption of its response to IFN-gamma stimulation. Pharmacological and genetic demethylation could restore IRF8 expression, indicating a direct epigenetic mechanism. Ectopic expression of IRF8 in tumor cells lacking its expression strongly inhibited their clonogenicity, confirming its tumor suppressor function. Thus, IRF8 was identified as a functional tumor suppressor, which is frequently silenced by epigenetic mechanism in multiple carcinomas.
Collapse
|
28
|
Konieczna I, Horvath E, Wang H, Lindsey S, Saberwal G, Bei L, Huang W, Platanias L, Eklund EA. Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest 2008; 118:853-67. [PMID: 18246201 DOI: 10.1172/jci33742] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 11/28/2007] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative disorders (MPDs) are characterized by cytokine hypersensitivity and apoptosis resistance. Development of a block in myeloid differentiation is associated with progression of MPD to acute myeloid leukemia (AML) and portends poor prognosis. Identifying molecular markers of this transition may suggest targets for therapeutic intervention. Interferon consensus sequence binding protein (ICSBP, also known as IRF8) is an interferon-regulatory transcription factor that functions as a leukemia tumor suppressor. In mice, ICSBP deficiency induces an MPD that progresses to AML over time, suggesting that ICSBP deficiency is sufficient for myeloproliferation, but additional genetic lesions are necessary for AML. Since activity of ICSBP is influenced by tyrosine phosphorylation state, we hypothesized that mutations in molecular pathways that regulate this process might synergize with ICSBP deficiency for progression to AML. Consistent with this, we found that constitutive activation of SHP2 protein tyrosine phosphatase synergized with ICSBP haploinsufficiency to facilitate cytokine-induced myeloproliferation, apoptosis resistance, and rapid progression to AML in a murine bone marrow transplantation model. Constitutive SHP2 activation cooperated with ICSBP deficiency to increase the number of progenitors in the bone marrow and myeloid blasts in circulation, indicating a block in differentiation. Since SHP2 activation and ICSBP deficiency may coexist in human myeloid malignancies, our studies have identified a molecular mechanism potentially involved in disease progression in such diseases.
Collapse
Affiliation(s)
- Iwona Konieczna
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Acceleration of chronic myeloproliferation by enforced expression of Meis1 or Meis3 in Icsbp-deficient bone marrow cells. Oncogene 2008; 27:3865-9. [PMID: 18223676 DOI: 10.1038/sj.onc.1211043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identifying genetic pathways that cooperate in leukemogenesis facilitates our understanding of the molecular mechanisms at play. Interferon consensus sequence-binding protein (ICSBP) is a tumor suppressor, whose downregulation cooperates with BCR-ABL and NUP98-TOP1 gene products to accelerate leukemia induction in mouse models. Similarly, Meis1 synergizes with HoxA9 or NUP98-HOX (but not NUP98-TOP1) fusion genes to promote the early onset of leukemia. To investigate whether Icsbp deficiency interacts with Meis1 or its family member Meis3, we transplanted Icsbp(-/-) bone marrow (BM) cells after transduction with Meis1 or Meis3 retroviral vectors. Here, we show that enforced expression of Meis1 or Meis3 in Icsbp(-/-) BM cells induces a fatal, invasive myeloproliferative disease. Secondary mutations, such as activation of Mn1, led to the progression to acute myeloid leukemia in a few mice. Interestingly, expression of endogenous Meis1 and Meis3 mRNAs was repressed in the granulocytic progenitor population of Icsbp(-/-) mice. These results reveal a novel collaboration between Icsbp deficiency and Meis1/Meis3 in the acceleration of chronic myeloid leukemia-like disease.
Collapse
|
30
|
Huang W, Zhu C, Wang H, Horvath E, Eklund EA. The interferon consensus sequence-binding protein (ICSBP/IRF8) represses PTPN13 gene transcription in differentiating myeloid cells. J Biol Chem 2008; 283:7921-35. [PMID: 18195016 DOI: 10.1074/jbc.m706710200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon consensus sequence-binding protein (ICSBP/IRF8) is an interferon regulatory factor that is expressed in myeloid and B-cells. ICSBP-deficient mice develop a myeloproliferative disorder characterized by cytokine hypersensitivity and apoptosis resistance. To identify ICSBP target genes involved in these effects, we screened a CpG island microarray with chromatin that co-immunoprecipitated with ICSBP from myeloid cells. Using this technique, we identified PTPN13 as an ICSBP target gene. PTPN13 encodes Fas-associated phosphatase 1 (Fap-1), a ubiquitously expressed protein-tyrosine phosphatase. This was of interest because interaction of Fap-1 with Fas results in Fas dephosphorylation and inhibition of Fas-induced apoptosis. In this study, we found that ICSBP influenced Fas-induced apoptosis in a Fap-1-dependent manner. We also found that ICSBP interacted with a cis element in the proximal PTPN13 promoter and repressed transcription. This interaction increased during myeloid differentiation and was regulated by phosphorylation of conserved tyrosine residues in the interferon regulatory factor domain of ICSBP. ICSBP deficiency was present in human myeloid malignancies, including chronic myeloid leukemia. Therefore, these studies identified a mechanism for increased survival of mature myeloid cells in the ICSBP-deficient murine model and in human myeloid malignancies with decreased ICSBP expression.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
31
|
Zhu C, Lindsey S, Konieczna I, Eklund EA. Constitutive activation of SHP2 protein tyrosine phosphatase inhibits ICSBP-induced transcription of the gene encoding gp91PHOX during myeloid differentiation. J Leukoc Biol 2007; 83:680-91. [PMID: 18089853 DOI: 10.1189/jlb.0807514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The IFN consensus sequence-binding protein (ICSBP; also referred to as IFN regulatory factor 8) is a transcription factor which is expressed in myeloid and B cells. In previous studies, we found that ICSBP activated transcription of the gene encoding gp91(PHOX) (the CYBB gene), a rate-limiting component of the phagocyte respiratory burst oxidase expressed exclusively after the promyelocyte stage of myelopoiesis. Previously, we found that CYBB transcription was dependent on phosphorylation of specific ICSBP tyrosine residues. Since ICSBP is tyrosine-phosphorylated during myelopoiesis, this provided a mechanism of differentiation stage-specific CYBB transcription. In the current studies, we found that ICSBP was a substrate for Src homology-containing tyrosine phosphatase 2 (SHP2-PTP) in immature myeloid cells but not during myelopoiesis. Therefore, SHP2-PTP inhibited CYBB transcription and respiratory burst activity in myeloid progenitor cells by dephosphorylating ICSBP. In contrast, we found that ICSBP was a substrate for a leukemia-associated, constitutively active mutant form of SHP2, described previously, throughout differentiation. Consistent with this, constitutive SHP2 activation blocked ICSBP-induced CYBB transcription and respiratory burst activity in differentiating myeloid cells. ICSBP-deficiency and constitutive SHP2 activation have been described in human myelodysplastic syndromes. As these two abnormalities may coexist, our results identified a potential molecular mechanism for impaired phagocyte function in this malignant myeloid disease.
Collapse
Affiliation(s)
- Chunliu Zhu
- Feinberg School of Medicine, Northwestern University, 710 N. Fairbanks Court, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
32
|
Huang W, Horvath E, Eklund EA. PU.1, Interferon Regulatory Factor (IRF) 2, and the Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Cooperate to Activate NF1 Transcription in Differentiating Myeloid Cells. J Biol Chem 2007; 282:6629-43. [PMID: 17200120 DOI: 10.1074/jbc.m607760200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nf1 (neurofibromin 1) is a Ras-GAP protein that regulates cytokine-induced proliferation of myeloid cells. In previous studies, we found that the interferon consensus sequence-binding protein (ICSBP; also referred to as interferon regulatory factor 8) activates transcription of the gene encoding Nf1 (the NF1 gene) in differentiating myeloid cells. We also found that NF1 activation requires cytokine-stimulated phosphorylation of a conserved tyrosine residue in the interferon regulatory factor (IRF) domain of ICSBP/IRF8. In this study, we found that ICSBP/IRF8 cooperates with PU.1 and interferon regulatory factor 2 to activate a composite ets/IRF-cis element in the NF1 promoter. We found that PU.1 binds directly to the NF1-cis element, and DNA-bound PU.1 interacts with IRF2, recruiting IRF2 to the cis element. This interaction requires cytokine-induced phosphorylation of specific serine residues in the PU.1 PEST domain and of a conserved tyrosine residue in the IRF domain of IRF2. We found that ICSBP/IRF8 interaction with the NF1-cis element requires pre-binding of PU.1 and IRF2. The conserved IRF domain tyrosine in ICSBP/IRF8 is required for interaction with the DNA-bound PU.1-IRF2 heterodimer. NF1 deficiency in myeloid progenitor cells results in cytokine hypersensitivity and myeloproliferation. Therefore, these studies identify a target gene for the previously observed tumor-suppressor effect of PU.1. Additionally, these studies identify a tumor-suppressor function for the "oncogenic" transcription factor, IRF2.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
33
|
Lindsey S, Huang W, Wang H, Horvath E, Zhu C, Eklund EA. Activation of SHP2 Protein-tyrosine Phosphatase Increases HoxA10-induced Repression of the Genes Encoding gp91PHOX and p67PHOX. J Biol Chem 2007; 282:2237-49. [PMID: 17138561 DOI: 10.1074/jbc.m608642200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CYBB and NCF2 genes encode the phagocyte oxidase proteins gp91(PHOX) and p67(PHOX), respectively. These genes are transcribed after the promyelocyte stage of differentiation, and transcription continues until cell death. In undifferentiated myeloid cells, homologous cis-elements in the CYBB and NCF2 genes are repressed by the homeodomain transcription factor HoxA10. During cytokine-induced myelopoiesis, tyrosine phosphorylation of HoxA10 decreases binding affinity for the CYBB and NCF2 cis-elements. This abrogates HoxA10-induced transcriptional repression as differentiation proceeds. Therefore, mechanisms involved in differentiation stage-specific HoxA10 tyrosine phosphorylation are of interest because HoxA10 phosphorylation modulates myeloid-specific gene transcription. In this study, we found that HoxA10 is a substrate for SHP2 protein-tyrosine phosphatase in undifferentiated myeloid cells. In contrast, HoxA10 is a substrate for a constitutively active mutant form of SHP2 in both undifferentiated and differentiating myeloid cells. Expression of such SHP2 mutants results in persistent HoxA10 repression of CYBB and NCF2 transcription during myelopoiesis. Both HoxA10 overexpression and activating SHP2 mutations have been described in human myeloid malignancies. Therefore, our results suggest that these mutations could cooperate, leading to decreased myeloid-specific gene transcription and functional differentiation block in myeloid cells with both defects.
Collapse
Affiliation(s)
- Stephan Lindsey
- Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
34
|
Middleton MK, Zukas AM, Rubinstein T, Jacob M, Zhu P, Zhao L, Blair I, Puré E. Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease. ACTA ACUST UNITED AC 2006; 203:2529-40. [PMID: 17043146 PMCID: PMC2118138 DOI: 10.1084/jem.20061444] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Though Abl inhibitors are often successful therapies for the initial stages of chronic myelogenous leukemia (CML), refractory cases highlight the need for novel molecular insights. We demonstrate that mice deficient in the enzyme 12/15-lipoxygenase (12/15-LO) develop a myeloproliferative disorder (MPD) that progresses to transplantable leukemia. Although not associated with dysregulation of Abl, cells isolated from chronic stage 12/15-LO–deficient (Alox15) mice exhibit increased activation of the phosphatidylinositol 3–kinase (PI3-K) pathway, as indicated by enhanced phosphorylation of Akt. Furthermore, the transcription factor interferon consensus sequence binding protein (ICSBP) is hyperphosphorylated and displays decreased nuclear accumulation, translating into increased levels of expression of the oncoprotein Bcl-2. The ICSBP defect, exaggerated levels of Bcl-2, and prolonged leukemic cell survival associated with chronic stage Alox15 MPD are all reversible upon treatment with a PI3-K inhibitor. Remarkably, the evolution of Alox15 MPD to leukemia is associated with additional regulation of ICSBP on an RNA level, highlighting the potential usefulness of the Alox15 model for understanding the transition of CML to crisis. Finally, 12/15-LO expression suppresses the growth of a human CML–derived cell line. These data identify 12/15-LO as an important suppressor of MPD via its role as a critical upstream effector in the regulation of PI3-K–dependent ICSBP phosphorylation.
Collapse
|
35
|
Huang W, Saberwal G, Horvath E, Zhu C, Lindsey S, Eklund EA. Leukemia-associated, constitutively active mutants of SHP2 protein tyrosine phosphatase inhibit NF1 transcriptional activation by the interferon consensus sequence binding protein. Mol Cell Biol 2006; 26:6311-32. [PMID: 16914719 PMCID: PMC1592828 DOI: 10.1128/mcb.00036-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deficiency in either the interferon consensus sequence binding protein (ICSBP) or neurofibromin 1 (Nf1) increases the proliferative response of myeloid progenitor cell to hematopoietic cytokines. Consistent with this, we previously demonstrated that ICSBP activates transcription of the gene encoding Nf1 (the NF1 gene). In the studies presented here, we determine that ICSBP tyrosine phosphorylation is necessary for the activation of NF1 transcription. Since ICSBP is tyrosine phosphorylated in response to hematopoietic cytokines, these studies identify a novel pathway by which cytokine-induced posttranslational modification of ICSBP results in NF1 transcription. Nf1 subsequently inactivates cytokine-activated Ras, thereby creating a negative feedback mechanism for cytokine-induced proliferation. In these studies, we also determine that ICSBP is a substrate for SHP2 protein tyrosine phosphatase (SHP2-PTP). We find that wild-type SHP2-PTP dephosphorylates ICSBP only in undifferentiated myeloid cells. In contrast, a leukemia-associated, constitutively activated mutant form of SHP2-PTP dephosphorylates ICSBP in both myeloid progenitors and differentiating myeloid cells. Activated SHP2-PTP mutants thereby inhibit ICSBP-dependent NF1 transcription, impairing this negative feedback mechanism on cytokine-activated Ras. Therefore, these studies suggest that leukemia-associated ICSBP deficiency cooperates with leukemia-associated activating mutants of SHP2-PTP to contribute to the proliferative phenotype in myeloid malignancies.
Collapse
Affiliation(s)
- Weiqi Huang
- Feinberg School of Medicine, 710 North Fairbanks Court, Olson Pavilion Room 8524, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lee CH, Melchers M, Wang H, Torrey TA, Slota R, Qi CF, Kim JY, Lugar P, Kong HJ, Farrington L, van der Zouwen B, Zhou JX, Lougaris V, Lipsky PE, Grammer AC, Morse HC. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med 2006; 203:63-72. [PMID: 16380510 PMCID: PMC2118063 DOI: 10.1084/jem.20051450] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 11/21/2005] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lindsey S, Zhu C, Lu YF, Eklund EA. HoxA10 represses transcription of the gene encoding p67phox in phagocytic cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:5269-79. [PMID: 16210632 DOI: 10.4049/jimmunol.175.8.5269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
p67(phox) and gp91(phox) are components of the phagocyte-specific respiratory burst oxidase that are encoded by the NCF2 and CYBB genes, respectively. These genes are transcribed exclusively in myeloid cells that have differentiated beyond the promyelocyte stage. In mature phagocytes, NCF2 and CYBB transcription continues until cell death and further increases in response to IFN-gamma and other inflammatory mediators. Because p67(phox) and gp91(phox) expression profiles are similar, we hypothesize that common transcription factors interact with homologous cis elements in the CYBB and NCF2 genes to coordinate transcription. Previously, we identified a negative CYBB promoter cis element that is repressed by the homeodomain transcription factor HoxA10. We found that transcriptional repression requires HoxA10-dependent recruitment of histone deacetylase activity to the CYBB cis element. In response to IFN-gamma, phosphorylation of two tyrosine residues in the HoxA10 homeodomain decreases binding to CYBB promoter, thereby abrogating HoxA10-mediated repression. In the current studies, we investigate the possibility that HoxA10 similarly represses NCF2 transcription. We identify a sequence in the NCF2 promoter that is homologous to the HoxA10-binding CYBB cis element. We find that this NCF2 promoter sequence functions as a negative cis element that is repressed by HoxA10 in a tyrosine phosphorylation and histone deacetylase-dependent manner. Our results suggest that cytokine-stimulated pathways regulate HoxA10-mediated repression of the CYBB and NCF2 genes in differentiating myeloid cells and in mature phagocytes during the inflammatory response. Because p67(phox) and gp91(phox) are rate-limiting components for respiratory burst activity, our studies may identify rational therapeutic targets to modulate free radical generation in pathological conditions.
Collapse
Affiliation(s)
- Stephan Lindsey
- Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|